Loading [MathJax]/jax/output/SVG/jax.js

3  B48

M_{PS}_5 = 0.05703(14) χ2/dof= 0.13582

M_{PS}_4 = 0.09716(11) χ2/dof= 0.093013

M_{PS}_3 = 0.12436(10) χ2/dof= 0.12299

M_{PS}_2 = 0.14639(10) χ2/dof= 0.15091

M_{PS}_1 = 0.16990(11) χ2/dof= 0.45464

M_{K}_5 = 0.19982(13) χ2/dof= 0.27299

M_{K}_4 = 0.20704(11) χ2/dof= 0.17173

M_{K}_3 = 0.21407(11) χ2/dof= 0.20041

M_{K}_2 = 0.22092(11) χ2/dof= 0.20844

M_{K}_1 = 0.22923(11) χ2/dof= 0.20696

01020304000.20.40.60.81
\verb|M_{PS}_5|\verb|M_{PS}_4|\verb|M_{PS}_3|\verb|M_{PS}_2|\verb|M_{PS}_1|\verb|M_{K}_5|\verb|M_{K}_4|\verb|M_{K}_3|\verb|M_{K}_2|\verb|M_{K}_1|t$M_{PS}$

<r >

The correction to the pion correlator is C(t)=C0(t)+e2δeC(t)

We define the discrete second derivative 2ef(e)=(f(e)2f(0)+f(e))/e2. due to the different quark charges we need to compute the derivative respect the two quark lines separately δeC=12[e2u2e1C+e2d2e2C+eued(2eC2e1C2e2C)] with e1 is the derivative respect only one leg. To compute the correction respect to the effective mass M(e)=M0+δM we use the formula δM(t)=(δC(t+1)C0(t)δC(t)C0(t))1[(T/2t1)tanh(M0(T/2t1))(T/2t)tanh(M0(T/2t))](3.1)

Delta_e_M_{PS}_5 = 0.010(11) χ2/dof= 0.073818

Delta_e_M_{PS}_1 = -0.0328(33) χ2/dof= 0.069971

Delta_e_M_{Kp}_5 = -0.0684(95) χ2/dof= 0.13614

Delta_e_M_{Kp}_1 = -0.0397(26) χ2/dof= 0.086328

Delta_e_M_{K0}_5 = -0.0246(24) χ2/dof= 0.12349

Delta_e_M_{K0}_1 = -0.01733(80) χ2/dof= 0.096857

010203040−0.100.10.20.30.40.5
\verb|Delta_e_M_{PS}_5|\verb|Delta_e_M_{PS}_1|\verb|Delta_e_M_{Kp}_5|\verb|Delta_e_M_{Kp}_1|\verb|Delta_e_M_{K0}_5|\verb|Delta_e_M_{K0}_1|t$\Delta_e M_{PS}$

<r >

3.1 exchange only

Below we compute only δexcC12eued(2eC2e1C2e2C) and we plot δexcC/C

Delta_e_exc_fit_M_{PS}_5 = 0.010207(48) -0.7670(12) χ2/dof= 0.00068649

010203040−0.8−0.7−0.6−0.5−0.4−0.3−0.2
\verb|Delta_e_exc_fit_M_{PS}_5|t$\delta_{exc} C(t)/C_0(t)$

<r >

using formula () using M0(t) and M0 from the plateau fit we get

Delta_e_exc_M_{PS}_5 = 0.010207(47) χ2/dof= 0.20755

Delta_e_exc_mefft_M_{PS}_5 = 0.010216(45) χ2/dof= 0.29331

0102030400.010.020.030.040.050.060.070.08
\verb|Delta_e_exc_M_{PS}_5|\verb|Delta_e_exc_mefft_M_{PS}_5|t$\Delta_\mu M_{PS}$

<r >

3.2 mass

The correction to the pion correlator due to a change of mass μu=μiso+δμu and μd=μiso+δμd C(t)=C0(t)+δμuδμuC(t)+δμdδμdC(t) since δμuC=δμdCδμC we car rewrite C(t)=C0(t)+2(μudμiso)δμC(t) where δμC is computed with the insertions

Delta_mu_u_M_{PS}_5 = -19.337(43) χ2/dof= 0.40255

Delta_mu_u_M_{PS}_1 = -6.0712(28) χ2/dof= 0.25454

Delta_mu_u_M_{Kp}_5 = -5.073(48) χ2/dof= 0.64198

Delta_mu_u_M_{Kp}_1 = -4.5459(39) χ2/dof= 0.19412

Delta_mu_u_M_{K0}_5 = -5.073(48) χ2/dof= 0.64198

Delta_mu_u_M_{K0}_1 = -4.5459(39) χ2/dof= 0.19412

010203040−120−100−80−60−40−200
\verb|Delta_mu_u_M_{PS}_5|\verb|Delta_mu_u_M_{PS}_1|\verb|Delta_mu_u_M_{Kp}_5|\verb|Delta_mu_u_M_{Kp}_1|\verb|Delta_mu_u_M_{K0}_5|\verb|Delta_mu_u_M_{K0}_1|t$\Delta_\mu M_{PS}$

<r >

3.3 critical mass

The correction to the pion correlator due to a change of critical mass m0 C(t)=C0(t)+δmu0δm0C(t)+δmd0δm0C(t) where δm0C is computed with the insertions

Delta_m0_u_M_{PS}_5 = -0.059(91) χ2/dof= 0.065068

Delta_m0_u_M_{PS}_1 = -0.329(25) χ2/dof= 0.048132

Delta_m0_u_M_{Kp}_5 = -0.601(91) χ2/dof= 0.14434

Delta_m0_u_M_{Kp}_1 = -0.392(23) χ2/dof= 0.040707

Delta_m0_u_M_{K0}_5 = -0.601(91) χ2/dof= 0.14434

Delta_m0_u_M_{K0}_1 = -0.392(23) χ2/dof= 0.040707

010203040−1−0.500.511.522.5
\verb|Delta_m0_u_M_{PS}_5|\verb|Delta_m0_u_M_{PS}_1|\verb|Delta_m0_u_M_{Kp}_5|\verb|Delta_m0_u_M_{Kp}_1|\verb|Delta_m0_u_M_{K0}_5|\verb|Delta_m0_u_M_{K0}_1|t$\Delta_{m_0} M_{PS}$

<r >

3.4 critical mass determination

We consider the correlator VP:

CVP=(ˉu+γ0d)(x)(ˉdγ5u+)(0) expanding in the counterterms, after noticing that it does not depend on μ, we get CVP=CVP0+e2δeCVP+2(mud0miso0)δm0CVP. From the requirement CVP=0 we compute mud0miso0=e2δeCVP2δm0CVP

Delta_e_VP_5 = 0.05997(32) χ2/dof= -nan

Delta_e_VP_1 = 0.026551(37) χ2/dof= inf

Delta_m0u_VP_5 = -0.4323(23) χ2/dof= inf

Delta_m0u_VP_1 = -0.19595(26) χ2/dof= inf

dm0_cr_nabla_5 = 0.0064760(21) χ2/dof= 0.9496

dm0_cr_nabla_1 = 0.0064672(25) χ2/dof= 0.85433

010203040−0.5−0.4−0.3−0.2−0.100.1
\verb|Delta_e_VP_5|\verb|Delta_e_VP_1|\verb|Delta_m0u_VP_5|\verb|Delta_m0u_VP_1|\verb|dm0_cr_nabla_5|\verb|dm0_cr_nabla_1|tVP

<r >

3.5 Approximated System

Here we want to solve the system taking the lattice spacing from ISOQCD: (δμuMπ+δμdMπ+0δμuMK+0δμsMK+0δμdMK0δμsMK0)(δμuδμdδμs)=(Mexpπ+Misoπ+e2δeMπ+MexpK+MisoKe2δeMK+MexpK0MisoKe2δeMK0)(δmuMπ+δmdMπ+0δmuMK+0δmsMK+0δmdMK0δmsMK0)(δmuδmdδms)

3.6 Fit from large Mπ

χ2/dof= 37.3647

P value
P[0] -0.000196(31)
P[1] -0.38162(46)
00.0050.010.0150.020.0250.03−0.004−0.00200.0020.0040.0060.0080.01
upfitup downfit down strangefit strange$(aM_\pi)^2-(aM_\pi^{iso})^2$$a\delta$

<r >