3 B48
M_{PS}_5 = 0.05703(14) χ2/dof= 0.13582
M_{PS}_4 = 0.09716(11) χ2/dof= 0.093013
M_{PS}_3 = 0.12436(10) χ2/dof= 0.12299
M_{PS}_2 = 0.14639(10) χ2/dof= 0.15091
M_{PS}_1 = 0.16990(11) χ2/dof= 0.45464
M_{K}_5 = 0.19982(13) χ2/dof= 0.27299
M_{K}_4 = 0.20704(11) χ2/dof= 0.17173
M_{K}_3 = 0.21407(11) χ2/dof= 0.20041
M_{K}_2 = 0.22092(11) χ2/dof= 0.20844
M_{K}_1 = 0.22923(11) χ2/dof= 0.20696
<r >
The correction to the pion correlator is C(t)=C0(t)+e2δeC(t)
We define the discrete second derivative ∇2ef(e)=(f(e)−2f(0)+f(−e))/e2. due to the different quark charges we need to compute the derivative respect the two quark lines separately δeC=12[e2u∇2e1C+e2d∇2e2C+eued(∇2eC−∇2e1C−∇2e2C)] with ∇e1 is the derivative respect only one leg. To compute the correction respect to the effective mass M(e)=M0+δM we use the formula δM(t)=(δC(t+1)C0(t)−δC(t)C0(t))1[(T/2−t−1)tanh(M0(T/2−t−1))−(T/2−t)tanh(M0(T/2−t))](3.1)
Delta_e_M_{PS}_5 = 0.010(11) χ2/dof= 0.073818
Delta_e_M_{PS}_1 = -0.0328(33) χ2/dof= 0.069971
Delta_e_M_{Kp}_5 = -0.0684(95) χ2/dof= 0.13614
Delta_e_M_{Kp}_1 = -0.0397(26) χ2/dof= 0.086328
Delta_e_M_{K0}_5 = -0.0246(24) χ2/dof= 0.12349
Delta_e_M_{K0}_1 = -0.01733(80) χ2/dof= 0.096857
<r >
3.1 exchange only
Below we compute only δexcC12eued(∇2eC−∇2e1C−∇2e2C) and we plot δexcC/C
Delta_e_exc_fit_M_{PS}_5 = 0.010207(48) -0.7670(12) χ2/dof= 0.00068649
<r >
using formula (Equation 3.1) using M0(t) and M0 from the plateau fit we get
Delta_e_exc_M_{PS}_5 = 0.010207(47) χ2/dof= 0.20755
Delta_e_exc_mefft_M_{PS}_5 = 0.010216(45) χ2/dof= 0.29331
<r >
3.2 mass
The correction to the pion correlator due to a change of mass μu=μiso+δμu and μd=μiso+δμd C(t)=C0(t)+δμuδμuC(t)+δμdδμdC(t) since δμuC=δμdC≡δμC we car rewrite C(t)=C0(t)+2(μud−μiso)δμC(t) where δμC is computed with the insertions
Delta_mu_u_M_{PS}_5 = -19.337(43) χ2/dof= 0.40255
Delta_mu_u_M_{PS}_1 = -6.0712(28) χ2/dof= 0.25454
Delta_mu_u_M_{Kp}_5 = -5.073(48) χ2/dof= 0.64198
Delta_mu_u_M_{Kp}_1 = -4.5459(39) χ2/dof= 0.19412
Delta_mu_u_M_{K0}_5 = -5.073(48) χ2/dof= 0.64198
Delta_mu_u_M_{K0}_1 = -4.5459(39) χ2/dof= 0.19412
<r >
3.3 critical mass
The correction to the pion correlator due to a change of critical mass m0 C(t)=C0(t)+δmu0δm0C(t)+δmd0δm0C(t) where δm0C is computed with the insertions
Delta_m0_u_M_{PS}_5 = -0.059(91) χ2/dof= 0.065068
Delta_m0_u_M_{PS}_1 = -0.329(25) χ2/dof= 0.048132
Delta_m0_u_M_{Kp}_5 = -0.601(91) χ2/dof= 0.14434
Delta_m0_u_M_{Kp}_1 = -0.392(23) χ2/dof= 0.040707
Delta_m0_u_M_{K0}_5 = -0.601(91) χ2/dof= 0.14434
Delta_m0_u_M_{K0}_1 = -0.392(23) χ2/dof= 0.040707
<r >
3.4 critical mass determination
We consider the correlator VP:
CVP=⟨(ˉu+γ0d−)(x)(ˉd−γ5u+)(0)⟩ expanding in the counterterms, after noticing that it does not depend on μ, we get CVP=CVP0+e2δeCVP+2(mud0−miso0)δm0CVP. From the requirement CVP=0 we compute mud0−miso0=−e2δeCVP2δm0CVP
Delta_e_VP_5 = 0.05997(32) χ2/dof= -nan
Delta_e_VP_1 = 0.026551(37) χ2/dof= inf
Delta_m0u_VP_5 = -0.4323(23) χ2/dof= inf
Delta_m0u_VP_1 = -0.19595(26) χ2/dof= inf
dm0_cr_nabla_5 = 0.0064760(21) χ2/dof= 0.9496
dm0_cr_nabla_1 = 0.0064672(25) χ2/dof= 0.85433
<r >
3.5 Approximated System
Here we want to solve the system taking the lattice spacing from ISOQCD: (δμuMπ+δμdMπ+0δμuMK+0δμsMK+0δμdMK0δμsMK0)(δμuδμdδμs)=(Mexpπ+−Misoπ+−e2δeMπ+MexpK+−MisoK−e2δeMK+MexpK0−MisoK−e2δeMK0)−(δmuMπ+δmdMπ+0δmuMK+0δmsMK+0δmdMK0δmsMK0)(δmuδmdδms)
3.6 Fit from large Mπ
χ2/dof= 37.3647
P | value |
---|---|
P[0] | -0.000196(31) |
P[1] | -0.38162(46) |
<r >