3 Day 3 (June 11)
3.1 Announcements
If office hours times don’t work for you let me know
Recommended reading
- Chapters 1 and 2 (pgs 1 - 27) in Linear Models with R
3.2 Matrix algebra
- Column vectors
- y≡(y1,y2,…,yn)′
- x≡(x1,x2,…,xn)′
- \boldsymbol{\beta}\equiv(\beta_{1},\beta_{2},\ldots,\beta_{p})^{'}
- \boldsymbol{1}\equiv(1,1,\ldots,1)^{'}
- In R
## [,1] ## [1,] 1 ## [2,] 2 ## [3,] 3
- Matrices
- \mathbf{X}\equiv(\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{p})
- In R
## [,1] [,2] ## [1,] 1 4 ## [2,] 2 5 ## [3,] 3 6
- Vector multiplication
- \mathbf{y}^{'}\mathbf{y}
- \mathbf{1}^{'}\mathbf{1}
- \mathbf{1}\mathbf{1}^{'}
- In R
## [,1] ## [1,] 14
- Matrix by vector multiplication
- \mathbf{X}^{'}\mathbf{y}
- In R
## [,1] ## [1,] 14 ## [2,] 32
- Matrix by matrix multiplication
- \mathbf{X}^{'}\mathbf{X}
- In R
## [,1] [,2] ## [1,] 14 32 ## [2,] 32 77
- Matrix inversion
- (\mathbf{X}^{'}\mathbf{X})^{-1}
- In R
## [,1] [,2] ## [1,] 1.4259259 -0.5925926 ## [2,] -0.5925926 0.2592593
- Determinant of a matrix
- |\mathbf{I}|
- In R
## [,1] [,2] [,3] ## [1,] 1 0 0 ## [2,] 0 1 0 ## [3,] 0 0 1
## [1] 1
- |\mathbf{I}|
- Quadratic form
- \mathbf{y}^{'}\mathbf{S}\mathbf{y}
- Derivative of a quadratic form (Note \mathbf{S} is a symmetric matrix; e.g., \mathbf{X}^{'}\mathbf{X})
- \frac{\partial}{\partial\mathbf{y}}\mathbf{y^{'}\mathbf{S}\mathbf{y}}=2\mathbf{S}\mathbf{y}
- Other useful derivatives
- \frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{x^{'}}\mathbf{y}}=\mathbf{x}
- \frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{X^{'}}\mathbf{y}}=\mathbf{X}