3 Day 3 (June 11)

3.1 Announcements

  • If office hours times don’t work for you let me know

  • Recommended reading

    • Chapters 1 and 2 (pgs 1 - 27) in Linear Models with R

3.2 Matrix algebra

  • Column vectors
    • y(y1,y2,,yn)
    • x(x1,x2,,xn)
    • \boldsymbol{\beta}\equiv(\beta_{1},\beta_{2},\ldots,\beta_{p})^{'}
    • \boldsymbol{1}\equiv(1,1,\ldots,1)^{'}
    • In R
    y <- matrix(c(1,2,3),nrow=3,ncol=1)
    y
    ##      [,1]
    ## [1,]    1
    ## [2,]    2
    ## [3,]    3
  • Matrices
    • \mathbf{X}\equiv(\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{p})
    • In R
    X <- matrix(c(1,2,3,4,5,6),nrow=3,ncol=2,byrow=FALSE)
    X
    ##      [,1] [,2]
    ## [1,]    1    4
    ## [2,]    2    5
    ## [3,]    3    6
  • Vector multiplication
    • \mathbf{y}^{'}\mathbf{y}
    • \mathbf{1}^{'}\mathbf{1}
    • \mathbf{1}\mathbf{1}^{'}
    • In R
    t(y)%*%y    
    ##      [,1]
    ## [1,]   14
  • Matrix by vector multiplication
    • \mathbf{X}^{'}\mathbf{y}
    • In R
    t(X)%*%y
    ##      [,1]
    ## [1,]   14
    ## [2,]   32
  • Matrix by matrix multiplication
    • \mathbf{X}^{'}\mathbf{X}
    • In R
    t(X)%*%X
    ##      [,1] [,2]
    ## [1,]   14   32
    ## [2,]   32   77
  • Matrix inversion
    • (\mathbf{X}^{'}\mathbf{X})^{-1}
    • In R
    solve(t(X)%*%X)
    ##            [,1]       [,2]
    ## [1,]  1.4259259 -0.5925926
    ## [2,] -0.5925926  0.2592593
  • Determinant of a matrix
    • |\mathbf{I}|
    • In R
    I <- diag(1,3)
    I
    ##      [,1] [,2] [,3]
    ## [1,]    1    0    0
    ## [2,]    0    1    0
    ## [3,]    0    0    1
    det(I)
    ## [1] 1
  • Quadratic form
    • \mathbf{y}^{'}\mathbf{S}\mathbf{y}
  • Derivative of a quadratic form (Note \mathbf{S} is a symmetric matrix; e.g., \mathbf{X}^{'}\mathbf{X})
    • \frac{\partial}{\partial\mathbf{y}}\mathbf{y^{'}\mathbf{S}\mathbf{y}}=2\mathbf{S}\mathbf{y}
  • Other useful derivatives
    • \frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{x^{'}}\mathbf{y}}=\mathbf{x}
    • \frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{X^{'}}\mathbf{y}}=\mathbf{X}