Chapter 4 Methods
Problem 1
ggplot(data= mpg, aes(x = hwy, fill=drv))+
geom_histogram(alpha=0.5)+
labs(title = "Histogram",
subtitle = "Histogram of Highway Mile Per Gallon",
caption = "Source: mpg")+
theme_minimal()
## `stat_bin()` using `bins = 30`. Pick better value
## with `binwidth`.
Problem 2
ggplot(data= mpg, aes(x = hwy, fill=drv))+
geom_histogram(alpha=0.5)+
facet_grid(rows=vars(drv))+
theme_minimal()+
labs(title = "Histogram using facet_grid()",
subtitle = "Histogram of Highway Mile Per Gallon",
caption = "Source: mpg")
## `stat_bin()` using `bins = 30`. Pick better value
## with `binwidth`.
Problem 3
ggplot(data= midwest, aes(x = area, y = poptotal)) +
geom_point(alpha = 0.4,aes(color = state, size = popdensity))+
scale_x_continuous(limits = c(0,0.1))+
scale_y_continuous(limits = c(0, 500000))+
theme_classic()+
labs(title = "Scatterplot",
subtitle = "Area Vs Population",
caption = "Source: midwest",
y = "Population",
x = "Area")+
geom_smooth(aes(group=1),se=FALSE)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 15 rows containing non-finite values
## (stat_smooth).
## Warning: Removed 15 rows containing missing values
## (geom_point).
Problem 4
ggplot(data= iris,aes(x = Sepal.Length, y = Sepal.Width, color=Species, shape= Species))+
geom_point(alpha = 0.5, size=6)+
labs(title = "Scatterplot",
subtitle = "Sepal.Length Vs Sepal.Width",
caption = "Source:iris",
y = "Sepal.Width",
x = "Sepal.Length")+
theme_minimal()
Problem 5
## sex ageYear ageMonth heightIn weightLb
## 1 f 11.92 143 56.3 85.0
## 2 f 12.92 155 62.3 105.0
## 3 f 12.75 153 63.3 108.0
## 4 f 13.42 161 59.0 92.0
## 5 f 15.92 191 62.5 112.5
## 6 f 14.25 171 62.5 112.0
ggplot(data=heightweight,aes(x=heightIn, y=weightLb, color = sex))+
geom_point(alpha=0.5, size=3)+geom_smooth(method = "lm", se=FALSE)+
labs(title = "Scatterplot",
subtitle = "Weight Vs Height",
caption = "source: heightweight",
y = "weightLb",
x = "heightIn")+
theme_classic()
## `geom_smooth()` using formula 'y ~ x'
Problem 6
ggplot(data=mpg, aes(x=manufacturer, fill= class,color = class))+
geom_bar(width = 0.5)+
labs(title = "Barplot",
subtitle = "Manufacturer across Vehicle Classes",
y = "count",
x = "manufacturer")+
scale_color_brewer(palette = "Spectral")+
theme_minimal()+
theme(axis.text.x = element_text(angle=65, hjust=1))+
scale_fill_brewer(palette = "Spectral")