Chapter 2 Communication

Total points: 49

“The simple graph has brought more information to the data analyst’s mind than any other device.” — John Tukey

2.1 Introduction

For publishing purposes, you need to communicate your understanding to others. Your audience will likely not share your background knowledge and will not be deeply invested in the data. To help others quickly build up a good mental model of the data, you will need to invest considerable effort in making your plots as self-explanatory as possible. In this chapter, you’ll learn some of the tools that ggplot2 provides to do so.

This chapter focuses on the tools you need to create good graphics. We assume that you know what you want, and just need to know how to do it. For that reason, we highly recommend pairing this chapter with a good general visualization book.

This chapter focuses on the tools you need to create good graphics. We assume that you know what you want, and just need to know how to do it. For that reason, we highly recommend pairing this chapter with a good general visualization book. We particularly like The Truthful Art, by Albert Cairo. It doesn’t teach the mechanics of creating visualizations, but instead focuses on what you need to think about in order to create effective graphics.

2.1.1 Prerequisites

In this chapter, we’ll focus once again on ggplot2. We’ll also use a little dplyr for data manipulation, scales to override the default breaks, labels, transformations and palettes, and a few ggplot2 extension packages, including ggrepel (https://ggrepel.slowkow.com) by Kamil Slowikowski and patchwork (https://patchwork.data-imaginist.com) by Thomas Lin Pedersen.

First install the packages patchwork, ggthemes and scales if you haven’t already done so by uncommenting this code:

# install.packages(c("patchwork","scales","ggthemes"))
library(ggplot2)
library(tidyverse)
library(scales)
library(ggrepel)
library(patchwork)
library(ggthemes)

2.2 Labels

The easiest place to start when turning an exploratory graphic into an expository graphic is with good labels. You add labels with the labs() function, it’s a little bit easier to use than theme() because it’s designed to work with the aes() function.

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  labs(
    x = "Engine displacement (L)",
    y = "Highway fuel economy (mpg)",
    color = "Car type",
    title = "Fuel efficiency generally decreases with engine size",
    subtitle = "Two seaters (sports cars) are an exception because
    of their light weight",
    caption = "Data from fueleconomy.gov"
  )

Scatterplot of highway fuel efficiency versus engine size of cars, where
points are colored according to the car class. A smooth curve following
the trajectory of the relationship between highway fuel efficiency versus
engine size of cars is overlaid.

The purpose of a plot title is to summarize the main finding. Avoid titles that just describe what the plot is, e.g., “A scatterplot of engine displacement vs. fuel economy”.

If you need to add more text, there are two other useful labels: subtitle adds additional detail in a smaller font beneath the title and caption adds text at the bottom right of the plot, often used to describe the source of the data. You can also use labs() to replace the axis and legend titles. Note the replacement of the legend title by “Car type” in the previous plot. It’s usually a good idea to replace short variable names with more detailed descriptions, and to include the units.

It’s possible to use mathematical equations instead of text strings. Just switch "" out for quote() and read about the available options in ?plotmath:

df <- tibble(
  x = 1:10,
  y = cumsum(x^2)
)

ggplot(df, aes(x, y)) +
  geom_point() +
  labs(
    x = quote(x[i]),
    y = quote(sum(x[i]^2, i == 1, n))
  )

Scatterplot with math text on the x and y axis labels. X-axis label
says x_i, y-axis label says sum of x_i  squared, for i from 1 to n.

Exercises 1.2.1

  1. Create a boxplot using the fuel economy data with x = hwy and y = class customized title, subtitle, caption, x, y, and color labels. +8pts

Ans-1.2.1.1.1:

# Your code here
  1. Recreate the following plot using the fuel economy data. Note that both the colors and shapes of points vary by type of drive train. +6pts
Scatterplot of highway versus city fuel efficiency.

Figure 2.1: Scatterplot of highway versus city fuel efficiency.

Ans-1.2.1.2

# Your code here

2.3 Annotations

In addition to labeling major components of your plot, it’s often useful to label individual observations or groups of observations. The first tool you have at your disposal is geom_text(). geom_text() is similar to geom_point(), but it has an additional aesthetic: label. This makes it possible to add textual labels to your plots.

There are two possible sources of labels. First, you might have a tibble that provides labels. In the following plot we pull out the cars with the highest engine size in each drive type and save their information as a new data frame called label_info.

slice_head() is a useful function from the dplyr package that allows you to select the first n rows of a data frame so when n = 1 it means the right-most point for each drive type.

case_when() is a function that allows you to specify multiple conditions and their corresponding values in a single line of code. It’s a more readable and concise way to write multiple if_else() statements.

label_info <- mpg |>
  group_by(drv) |>
  arrange(desc(displ)) |>
  slice_head(n = 1) |>
  mutate(
    drive_type = case_when(
      drv == "f" ~ "front-wheel drive",
      drv == "r" ~ "rear-wheel drive",
      drv == "4" ~ "4-wheel drive"
    )
  ) |>
  select(displ, hwy, drv, drive_type)

label_info
## # A tibble: 3 × 4
## # Groups:   drv [3]
##   displ   hwy drv   drive_type       
##   <dbl> <int> <chr> <chr>            
## 1   6.5    17 4     4-wheel drive    
## 2   5.3    25 f     front-wheel drive
## 3   7      24 r     rear-wheel drive

Notice that displ values in label_info have captured the right-most point for each drive type.

Then, we use this new data frame to directly label the three groups to replace the legend with labels placed directly on the plot. Using the fontface and size arguments we can customize the look of the text labels.

They’re larger than the rest of the text on the plot and bolded. (theme(legend.position = "none") turns all the legends off — we’ll talk about it more shortly.)

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
  geom_point(alpha = 0.3) +
  geom_smooth(se = FALSE) +
  geom_text(
    data = label_info,
    aes(x = displ, y = hwy, label = drive_type),
    fontface = "bold", size = 5, hjust = "right", vjust = "top"
  ) +
  theme(legend.position = "none")

Scatterplot of highway mileage versus engine size where points are colored
by drive type. Smooth curves for each drive type are overlaid.
Text labels identify the curves as front-wheel, rear-wheel, and 4-wheel. Once you see the placement you can use nudge_x and nudge_y to set it so that it doesn’t overlap.

Note the use of hjust (horizontal justification) and vjust (vertical justification) to control the alignment of the label.

However the annotated plot we made above is hard to read because the labels overlap with each other, and with the points.

We can use the geom_label_repel() function from the ggrepel package to address both of these issues. This useful package will automatically adjust labels so that they don’t overlap:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
  geom_point(alpha = 0.3) +
  geom_smooth(se = FALSE) +
  geom_label_repel(
    data = label_info,
    aes(x = displ, y = hwy, label = drive_type),
    fontface = "bold",
    size = 5,
    nudge_y = 2
  ) +
  theme(legend.position = "none")

Scatterplot of highway fuel efficiency versus engine size of cars, where
points are colored according to the car class. Some points are labelled
with the car's name. The labels are box with white, transparent background
and positioned to not overlap.

You can also use the same idea to highlight certain points on a plot with geom_text_repel() from the ggrepel package. Note another handy technique used here: we added a second layer of large, hollow points to further highlight the labelled points.

potential_outliers <- mpg |>
  filter(hwy > 40 | (hwy > 20 & displ > 5))

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  geom_text_repel(data = potential_outliers, aes(label = model)) +
  geom_point(data = potential_outliers, color = "red") +
  geom_point(
    data = potential_outliers,
    color = "red",
    size = 3,
    shape = "circle open"
  )

Scatterplot of highway fuel efficiency versus engine size of cars. Points
where highway mileage is above 40 as well as above 20 with engine size
above 5 are red, with a hollow red circle, and labelled with model name
of the car.

Remember, in addition to geom_text() and geom_label(), you have many other geoms in ggplot2 available to help annotate your plot. A couple ideas:

  • Use geom_hline() and geom_vline() to add reference lines. We often make them thick (linewidth = 2) and white (color = white), and draw them underneath the primary data layer. That makes them easy to see, without drawing attention away from the data.

  • Use geom_rect() to draw a rectangle around points of interest. The boundaries of the rectangle are defined by aesthetics xmin, xmax, ymin, ymax.

  • Use geom_segment() with the arrow argument to draw attention to a point with an arrow. Use aesthetics x and y to define the starting location, and xend and yend to define the end location.

Another handy function for adding annotations to plots is annotate(). As a rule of thumb, geoms are generally useful for highlighting a subset of the data while annotate() is useful for adding one or few annotation elements to a plot.

To demonstrate using annotate(), let’s create some text to add to our plot. The text is a bit long, so we’ll use stringr::str_wrap() to automatically add line breaks to it given the number of characters you want per line:

trend_text <- "Larger engine sizes tend to have lower fuel economy." |> str_wrap(width = 30)

trend_text
## [1] "Larger engine sizes tend to\nhave lower fuel economy."

Then, we add two layers of annotation: one with a label geom and the other with a segment geom. The x and y aesthetics in both define where the annotation should start, and the xend and yend aesthetics in the segment annotation define the end location of the segment.

Note also that the segment is styled as an arrow.

annotate is a very flexible function that can be used to add a wide variety of annotations to your plots. You can add text, points, lines, and more.

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  annotate(
    geom = "label",  
    x = 3.5,
    y = 38,
    label = trend_text, # the text to display
    hjust = "left",
    color = "red"
  ) +
  annotate(
    geom = "segment",
    x = 3, # start of the line
    y = 35,
    xend = 5, # end of the line
    yend = 25,
    color = "red",
    arrow = arrow(type = "closed") # add an arrow head
  )

<img src=“2024_r4ds-ggplot2_files/figure-html/unnamed-chunk-63-1.png” alt=“Scatterplot of highway fuel efficiency versus engine size of cars. A red arrow pointing down follows the trend of the points and the annotation placed next to the arrow reads”Larger engine sizes tend to have lower fuel economy”. The arrow and the annotation text is red.” width=“672” style=“display: block; margin: auto;” />

Annotation is a powerful tool for communicating main takeaways and interesting features of your visualizations. The only limit is your imagination (and your patience with positioning annotations to be aesthetically pleasing)!

Exercises 1.3.1

  1. Use geom_text() with infinite positions to place text at the four corners of the plot. **Hint: construct a data.frame similar to label_info with the coordinate positions. +2pts

Ans-1.3.1.1:

# Your code here
  1. Use annotate() to add a point geom in the middle of the following plot without having to create a tibble. Customize the shape, size, or color of the point. +2pts
ggplot(mpg, aes(displ, hwy)) +
  geom_point()

Ans-1.3.1.2:

# Your code here
    1. How do labels with geom_text() interact with faceting? Try it by adding a geom_text element to: +2pts
g <- ggplot(mpg, aes(displ, hwy)) +
  geom_point()

Ans-1.3.1.3a:

# Your code here
    1. How can you add a label to a single facet? +2pts

Ans-1.3.1.3b:

# Your code here
    1. How can you put a different label in each facet? +2pts (Hint: Think about the dataset that is being passed to geom_text().)

Ans-1.3.1.3c:

# Your code here
  1. What arguments to geom_label() control the appearance of the background box? +3pts

Ans-1.3.1.4:

  1. What are the four arguments to arrow()? +4pts How do they work? Create a series of plots that demonstrate the most important options.

Ans-1.3.1.5:

2.4 Scales

The third way you can make your plot better for communication is to adjust the scales.

Scales control how the aesthetic mappings manifest visually.

2.4.1 Default scales

Normally, ggplot2 automatically adds scales for you.

For example, when you type:

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class))

ggplot2 automatically adds default scales behind the scenes:

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class)) +
  scale_x_continuous() +
  scale_y_continuous() +
  scale_color_discrete()

Note the naming scheme for scales: scale_ followed by the name of the aesthetic, then _, then the name of the scale. The default scales are named according to the type of variable they align with: continuous, discrete, datetime, or date. scale_x_continuous() puts the numeric values from displ on a continuous number line on the x-axis, scale_color_discrete() chooses colors for each of the class of car, etc.

There are lots of non-default scales which you’ll learn about below.

The default scales have been carefully chosen to do a good job for a wide range of inputs. Nevertheless, you might want to override the defaults for two reasons:

  • You might want to tweak some of the parameters of the default scale. This allows you to do things like change the breaks on the axes, or the key labels on the legend.

  • You might want to replace the scale altogether, and use a completely different algorithm. Often you can do better than the default because you know more about the data.

2.4.2 Axis ticks and legend keys

Collectively axes and legends are called guides. Axes are used for x and y aesthetics; legends are used for everything else.

There are two primary arguments that affect the appearance of the ticks on the axes and the keys on the legend: breaks and labels. Breaks controls the position of the ticks, or the values associated with the keys. Labels controls the text label associated with each tick/key. The most common use of breaks is to override the default choice:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  scale_y_continuous(breaks = seq(15, 40, by = 5))

Scatterplot of highway fuel efficiency versus engine size of cars,
colored by drive. The y-axis has breaks starting at 15 and ending at 40,
increasing by 5.

You can use labels in the same way (a character vector the same length as breaks), but you can also set it to NULL to suppress the labels altogether. This can be useful for maps, or for publishing plots where you can’t share the absolute numbers.

You can also use breaks and labels to control the appearance of legends. For discrete scales for categorical variables, labels can be a named list of the existing levels names and the desired labels for them.

scale_color_discrete() is a discrete scale for color, and scale_color_manual() is a manual scale for color.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  scale_x_continuous(labels = NULL) +
  scale_y_continuous(labels = NULL) +
  scale_color_discrete(labels = c("4" = "4-wheel", "f" = "front", "r" = "rear"))

Scatterplot of highway fuel efficiency versus engine size of cars, colored
by drive. The x and y-axes do not have any labels at the axis ticks.
The legend has custom labels: 4-wheel, front, rear.

The labels argument coupled with labeling functions from the scales package is also useful for formatting numbers as currency, percent, etc.

The following example shows two box plots of price versus cut of diamonds.

The plot on the left shows default labeling with label_dollar() from the scales package, which adds a dollar sign as well as a thousand separator comma.

The plot on the right adds further customization by dividing dollar values by 1,000 and adding a suffix “K” (for “thousands”) as well as adding custom breaks. Note that breaks is in the original scale of the data.

ggplot(diamonds, aes(x = price, y = cut)) +
  geom_boxplot(alpha = 0.05) +
  scale_x_continuous(labels = label_dollar()) +
  ggplot(diamonds, aes(x = price, y = cut)) +
  geom_boxplot(alpha = 0.05) +
  scale_x_continuous(
    labels = label_dollar(scale = 1 / 1000, suffix = "K"),
    breaks = seq(1000, 19000, by = 6000)
  )

Two side-by-side box plots of price versus cut of diamonds. The outliers
are transparent. On both plots the x-axis labels are formatted as dollars.
The x-axis labels on the plot start at $0 and go to $15,000, increasing
by $5,000. The x-axis labels on the right plot start at $1K and go to
$19K, increasing by $6K.

Another handy label function is label_percent():

ggplot(diamonds, aes(x = cut, fill = clarity)) +
  geom_bar(position = "fill") +
  scale_y_continuous(name = "Percentage", labels = label_percent())

2.4.3 Legend layout

You will most often use breaks and labels to tweak the axes. While they both also work for legends, there are a few other techniques you are more likely to use.

To control the overall position of the legend, you need to use a theme() setting. We’ll come back to themes at the end of the chapter, but in brief, they control the non-data parts of the plot.

The theme setting legend.position controls where the legend is drawn:

base <- ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class))

# the default  right, then left
p1 <- base + theme(legend.position = "right") 

p2 <- base + theme(legend.position = "left")

# then top, then bottom
p3 <- base +
  theme(legend.position = "top") +
  guides(color = guide_legend(nrow = 3)) 

p4 <- base +
  theme(legend.position = "bottom") +
  guides(color = guide_legend(nrow = 3))

p1 + p2 + p3 + p4

Four scatterplots of highway fuel efficiency versus engine size of cars
where points are colored based on class of car. Clockwise, the legend
is placed on the right, left, top, and bottom of the plot.

If your plot is short and wide, place the legend at the top or bottom, and if it’s tall and narrow, place the legend at the left or right. You can also use legend.position = "none" to suppress the display of the legend altogether.

To control the display of individual legends, use guides() along with guide_legend() or guide_colorbar().

guides() is used to control the appearance of the legend.

guide_legend() is used for discrete scales, and guide_colorbar() is used for continuous scales.

guide_legend() has a number of arguments that allow you to control the appearance of the legend.

The following example shows two important settings: controlling the number of rows the legend uses with nrow, and overriding one of the aesthetics to make the points bigger.

This is particularly useful if you have used a low alpha to display many points on a plot.

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  theme(legend.position = "bottom") +
  guides(color = guide_legend(nrow = 2, override.aes = list(size = 4)))

Scatterplot of highway fuel efficiency versus engine size of cars
where points are colored based on class of car. Overlaid on the plot is a
smooth curve. The legend is in the bottom and classes are listed
horizontally in two rows. The points in the legend are larger than the points
in the plot.

Note that the name of the argument in guides() matches the name of the aesthetic, just like in labs().

2.4.4 Replacing a scale

Another scale that is frequently customized is color.

The default categorical scale picks colors that are evenly spaced around the color wheel.

Useful alternatives are the RColorBrewer scales which have been hand tuned to work better for people with common types of color blindness.

The two plots below look similar, but there is enough difference in the shades of red and green that the dots on the right can be distinguished even by people with red-green color blindness.1

# default color palette
p1 <- ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = drv)) 

# RColorBrewer palette
p2 <- ggplot(mpg, aes(x = displ, y = hwy)) + geom_point(aes(color = drv)) + 
  scale_color_brewer(palette = "Set1")

p1 + p2

Two scatterplots of highway mileage versus engine size where points are
colored by drive type. The first plot uses the default
`ggplot2` color palette and the plot on the right uses a different color
palette.

Don’t forget simpler techniques for improving accessibility.

If there are just a few colors, you can add a redundant shape mapping.

This will also help ensure your plot is interpretable in black and white.

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = drv, shape = drv)) +
  scale_color_brewer(palette = "Dark2")

Two scatterplots of highway mileage versus engine size where both color
and shape of points are based on drive type. The color palette is not
the default `ggplot2` palette.

The RColorBrewer scales are documented online at https://colorbrewer2.org/ and made available in R via the RColorBrewer package, by Erich Neuwirth. 2.2 shows the complete list of all palettes.

The sequential (top) and diverging (bottom) palettes are particularly useful if your categorical values are ordered, or have a “middle”. This often arises if you’ve used cut() to make a continuous variable into a categorical variable.

All colorBrewer scales. One group goes from light to dark colors.
Another group is a set of non ordinal colors. And the last group has
diverging scales (from dark to light to dark again). Within each set
there are a number of palettes.

Figure 2.2: All colorBrewer scales.

When you have a predefined mapping between values and colors, use scale_color_manual().

For example, if we map presidential party to color, we want to use the standard mapping of red for Republicans and blue for Democrats.

One approach for assigning these colors is using hex color codes:

presidential |> mutate(id = 33 + row_number()) |> # `row_number()` is a function that returns the row number of a data frame
  ggplot(aes(x = start, y = id, color = party)) +
  geom_point() +
  geom_segment(aes(xend = end, yend = id)) +
  scale_color_manual(values = c(Republican = "#E81B23", Democratic = "#00AEF3"))

Line plot of id number of presidents versus the year they started their
presidency. Start year is marked with a point and a segment that starts
there and ends at the end of the presidency. Democratic presidents are
represented in blue and Republicans in red.

For continuous color, you can use the built-in scale_color_gradient() or scale_fill_gradient().

If you have a diverging scale, you can use scale_color_gradient2().

That allows you to give, for example, positive and negative values different colors. That’s sometimes also useful if you want to distinguish points above or below the mean.

2.4.5 Zooming

There are three ways to control the plot limits:

  1. Adjusting what data are plotted.
  2. Setting the limits in each scale.
  3. Setting xlim and ylim in coord_cartesian().

We’ll demonstrate these options in a series of plots. The plot on the left shows the relationship between engine size and fuel efficiency, colored by type of drive train. The plot on the right shows the same variables, but subsets the data that are plotted. Subsetting the data has affected the x and y scales as well as the smooth curve.

  1. Adjusting what data are plotted:
# All data vs. subsetted data
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = drv)) +
  geom_smooth() + mpg |>
  filter(displ >= 5 & displ <= 6 & hwy >= 10 & hwy <= 25) |>
  ggplot(aes(x = displ, y = hwy)) +
  geom_point(aes(color = drv)) +
  geom_smooth()

On the left, scatterplot of highway mileage vs. displacement, with
displacement. The smooth curve overlaid shows a decreasing, and then
increasing trend, like a hockey stick. On the right, same variables
are plotted with displacement ranging only from 5 to 6 and highway
mileage ranging only from 10 to 25. The smooth curve overlaid shows a
trend that's slightly increasing first and then decreasing.

Let’s compare these to the two plots below where the plot on the left sets the limits on individual scales and the plot on the right sets them in coord_cartesian().

coord_cartesian() is generally more useful if you want to zoom in on a region of the plot.

We can see that reducing the limits is equivalent to subsetting the data. Therefore, to zoom in on a region of the plot, it’s generally best to use coord_cartesian(). because it doesn’t change the fitting of geom_smooth.

  1. Setting the limits in each scale (left).
  2. Setting xlim and ylim in coord_cartesian() (right).
# Limiting scale (equivalent to subsetting) vs. zooming in on data
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = drv)) +
  geom_smooth() +
  scale_x_continuous(limits = c(5, 6)) +
  scale_y_continuous(limits = c(10, 25)) + ggplot(mpg, 
    aes(x = displ, y = hwy)) +   geom_point(aes(color = drv)) +
  geom_smooth() +
  coord_cartesian(xlim = c(5, 6), ylim = c(10, 25))

On the left, scatterplot of highway mileage vs. displacement, with
displacement ranging from 5 to 6 and highway mileage ranging from
10 to 25. The smooth curve overlaid shows a trend that's slightly
increasing first and then decreasing. On the right, the same variables
are plotted with the same limits, however the smooth curve overlaid
shows a relatively flat trend with a slight increase at the end.

On the other hand, setting the limits on individual scales is generally more useful if you want to expand the limits, e.g., to match scales across different plots. For example, if we extract two classes of cars and plot them separately, it’s difficult to compare the plots because all three scales (the x-axis, the y-axis, and the color aesthetic) have different ranges.

suv <- mpg |> filter(class == "suv")
compact <- mpg |> filter(class == "compact")

# suv vs compact
ggplot(suv, aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  ggplot(compact, aes(x = displ, y = hwy, color = drv)) +
  geom_point()

On the left, a scatterplot of highway mileage vs. displacement of SUVs.
On the right, a scatterplot of the same variables for compact cars.
Points are colored by drive type for both plots. Among SUVs more of
the cars are 4-wheel drive and the others are rear-wheel drive, while
among compact cars more of the cars are front-wheel drive and the others
are 4-wheel drive. SUV plot shows a clear negative relationship
between higway mileage and displacement while in the compact cars plot
the relationship is much flatter.

One way to overcome this problem is to share scales across multiple plots, training the scales with the limits of the full data.

x_scale <- scale_x_continuous(limits = range(mpg$displ))
y_scale <- scale_y_continuous(limits = range(mpg$hwy))
col_scale <- scale_color_discrete(limits = unique(mpg$drv))

# suv vs. compact on the same scale
ggplot(suv, aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  x_scale +
  y_scale +
  col_scale +
  ggplot(compact, aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  x_scale +
  y_scale +
  col_scale

On the left, a scatterplot of highway mileage vs. displacement of SUVs.
On the right, a scatterplot of the same variables for compact cars.
Points are colored by drive type for both plots. Both plots are plotted
on the same scale for highway mileage, displacement, and drive type,
resulting in the legend showing all three types (front, rear, and 4-wheel
drive) for both plots even though there are no front-wheel drive SUVs and
no rear-wheel drive compact cars. Since the x and y scales are the same,
and go well beyond minimum or maximum highway mileage and displacement,
the points do not take up the entire plotting area.

In this particular case, you could have simply used faceting, but this technique is useful more generally, if for instance, you want to spread plots over multiple pages of a report.

Exercises 1.4.6

  1. Why doesn’t the following code override the default scale? Fix the plot so that it colors the points with a gradient set by low = "yellow", high = "red". +2pts
df <- tibble(
  x = rnorm(10000),
  y = rnorm(10000)
)

ggplot(df) +
  geom_point(aes(x = x, y = y, fill = x)) +
  scale_fill_gradient(low = "yellow", high = "red")

Ans-1.4.1.1:

# Your code here
  1. What is the first argument to every scale? How does it compare to labs()? +2pts

Ans-1.4.1.2:

  1. First, create the following plot. Then, modify the code using override.aes to make the legend easier to see. +2pts
ggplot(diamonds, aes(x = carat, y = price)) +
  geom_point(aes(color = cut), alpha = 1 / 20)

Ans-1.4.1.3:

# Your code here

2.5 Themes

Finally, you can customize the non-data elements of your plot with a theme:

ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  theme_classic()

Scatterplot of highway mileage vs. displacement of cars, colored by class
of car. The plot background is white, with gray grid lines.

ggplot2 includes the eight themes shown in 2.3, with theme_gray() as the default.[^communication-2] Many more are included in add-on packages like ggthemes (https://jrnold.github.io/ggthemes), by Jeffrey Arnold. You can also create your own themes, if you are trying to match a particular corporate or journal style.

Many people wonder why the default theme has a gray background. This was a deliberate choice because it puts the data forward while still making the grid lines visible. The white grid lines are visible (which is important because they significantly aid position judgments), but they have little visual impact and we can easily tune them out. The gray background gives the plot a similar typographic color to the text, ensuring that the graphics fit in with the flow of a document without jumping out with a bright white background. Finally, the gray background creates a continuous field of color which ensures that the plot is perceived as a single visual entity.

You can also set default theme to have a white background by using:

Setting ggplot2 theme globally in a session ggplot2::theme_set(ggplot2::theme_bw())

Eight barplots created with `ggplot2`, each
with one of the eight built-in themes:
theme_bw() - White background with grid lines,
theme_light() - Light axes and grid lines,
theme_classic() - Classic theme, axes but no grid
lines, theme_linedraw() - Only black lines,
theme_dark() - Dark background for contrast,
theme_minimal() - Minimal theme, no background,
theme_gray() - Gray background (default theme),
theme_void() - Empty theme, only geoms are visible.

Figure 2.3: The eight themes built-in to ggplot2.

It’s also possible to control individual components of each theme, like the size and color of the font used for the y axis.

We’ve already seen that legend.position controls where the legend is drawn.

There are many other aspects of the legend that can be customized with theme().

For example, in the plot below we change the direction of the legend as well as put a black border around it.

Note that customization of the legend box and plot title elements of the theme are done with element_*() functions.

These functions specify the styling of non-data components, e.g., the title text is bolded in the face argument of element_text() and the legend border color is defined in the color argument of element_rect().

The theme elements that control the position of the title and the caption are plot.title.position and plot.caption.position, respectively.

In the following plot these are set to "plot" to indicate these elements are aligned to the entire plot area, instead of the plot panel (the default).

A few other helpful theme() components are used to change the placement for format of the title and caption text (this is more what we are used to).

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  labs(
    title = "Larger engine sizes tend to have lower fuel economy",
    caption = "Source: https://fueleconomy.gov."
  ) +
  theme(
    legend.position = c(0.6, 0.7),
    legend.direction = "horizontal",
    legend.box.background = element_rect(color = "black"),
    plot.title = element_text(face = "bold"),
    plot.title.position = "plot",
    plot.caption.position = "plot",
    plot.caption = element_text(hjust = 0)
  )

Scatterplot of highway fuel efficiency versus engine size of cars, colored
by drive. The plot is titled 'Larger engine sizes tend to have lower fuel
economy' with the caption pointing to the source of the data, fueleconomy.gov.
The caption and title are left justified, the legend is inside of the plot
with a black border.

For an overview of all theme() components, see help with ?theme.

The ggplot2 book is also a great place to go for the full details on theming.

Exercises 1.5.1

  1. Pick a theme offered by the ggthemes package and apply it to this plot: +2pts
ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
  geom_point() +
  labs(
    title = "Larger engine sizes tend to have lower fuel economy",
    caption = "Source: https://fueleconomy.gov."
  )

Ans-1.5.1.1:

# Your code here
  1. Make the axis labels of your plot blue and bolded. +4pts

Ans-1.5.1.2:

# Your code here

2.6 Layout

So far we talked about how to create and modify a single plot.

What if you have multiple plots you want to lay out in a certain way?

The patchwork package allows you to combine separate plots into the same graphic.

We loaded this package earlier in the chapter.

To place two plots next to each other, you can simply add them to each other.

Note that you first need to create the plots and save them as objects (in the following example they’re called p1 and p2).

Then, you place them next to each other with +.

p1 <- ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  labs(title = "Plot 1")
p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +
  geom_boxplot() +
  labs(title = "Plot 2")
p1 + p2

Two plots (a scatterplot of highway mileage versus engine size and a
side-by-side boxplots of highway mileage versus drive train) placed next
to each other.

You can also create complex plot layouts using | and /. In the following, | places the p1 and p3 next to each other and / moves p2 to the next line.

p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +
  geom_point() +
  labs(title = "Plot 3")
(p1 | p3) / p2

Three plots laid out such that first and third plot are next to each other
and the second plot stretched beneath them. The first plot is a
scatterplot of highway mileage versus engine size, third plot is a
scatterplot of highway mileage versus city mileage, and the third plot is
side-by-side boxplots of highway mileage versus drive train) placed next
to each other.

Additionally, patchwork allows you to collect legends from multiple plots into one common legend, customize the placement of the legend as well as dimensions of the plots, and add a common title, subtitle, caption, etc. to your plots.

Below we create 5 plots:

We have turned off the legends on the box plots and the scatterplot and collected the legends for the density plots at the top of the plot with & theme(legend.position = "top").

Note the use of the & operator here instead of the usual +.

This is because we’re modifying the theme for the patchwork plot as opposed to the individual ggplots.

The legend is placed on top, inside the guide_area().

Finally, we have also customized the heights of the various components of our patchwork – the guide has a height of 1, the box plots 3, density plots 2, and the faceted scatterplot 4.

Patchwork divides up the area you have allotted for your plot using this scale and places the components accordingly.

p1 <- ggplot(mpg, aes(x = drv, y = cty, color = drv)) +
  geom_boxplot(show.legend = FALSE) +
  labs(title = "Plot 1")

p2 <- ggplot(mpg, aes(x = drv, y = hwy, color = drv)) +
  geom_boxplot(show.legend = FALSE) +
  labs(title = "Plot 2")

p3 <- ggplot(mpg, aes(x = cty, color = drv, fill = drv)) +
  geom_density(alpha = 0.5) +
  labs(title = "Plot 3")

p4 <- ggplot(mpg, aes(x = hwy, color = drv, fill = drv)) +
  geom_density(alpha = 0.5) +
  labs(title = "Plot 4")

p5 <- ggplot(mpg, aes(x = cty, y = hwy, color = drv)) +
  geom_point(show.legend = FALSE) +
  facet_wrap(~drv) +
  labs(title = "Plot 5")

(
  guide_area() / (p1 + p2) / (p3 + p4) / p5
) +
  plot_annotation(
    title = "City and highway mileage for cars with different drive trains",
    caption = "Source: https://fueleconomy.gov."
  ) +
  plot_layout(
    guides = "collect",
    heights = c(1, 3, 2, 4)
  ) &
  theme(legend.position = "top")

<img src=“2024_r4ds-ggplot2_files/figure-html/unnamed-chunk-90-1.png” alt=“Five plots laid out such that first two plots are next to each other. Plots three and four are underneath them. And the fifth plot stretches under them. The patchworked plot is titled”City and highway mileage for cars with different drive trains” and captioned “Source: https://fueleconomy.gov”. The first two plots are side-by-side box plots. Plots 3 and 4 are density plots. And the fifth plot is a faceted scatterplot. Each of these plots show geoms colored by drive train, but the patchworked plot has only one legend that applies to all of them, above the plots and beneath the title.” width=“80%” style=“display: block; margin: auto;” />

If you’d like to learn more about combining and layout out multiple plots with patchwork, we recommend looking through the guides on the package website: https://patchwork.data-imaginist.com.

Exercises 1.6.1

  1. What happens if you omit the parentheses in the following plot layout. Try it. Can you explain why this happens? +2pts
p1 <- ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  labs(title = "Plot 1")
p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +
  geom_boxplot() +
  labs(title = "Plot 2")
p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +
  geom_point() +
  labs(title = "Plot 3")

(p1 | p2) / p3

Ans-1.6.1.1:

# Your code here
  1. Using the three plots from the previous exercise, recreate the following patchwork. +4pts
Scatterplot of highway versus city fuel efficiency.

Figure 2.4: Scatterplot of highway versus city fuel efficiency.

Ans-1.6.1.2:

# Your code here

2.7 Summary

In this chapter you’ve learned about adding plot labels such as title, subtitle, caption as well as modifying default axis labels, using annotation to add informational text to your plot or to highlight specific data points, customizing the axis scales, and changing the theme of your plot. You’ve also learned about combining multiple plots in a single graph using both simple and complex plot layouts.

While you’ve so far learned about how to make many different types of plots and how to customize them using a variety of techniques, we’ve barely scratched the surface of what you can create with ggplot2.

If you want to get a comprehensive understanding of ggplot2, we recommend reading the book, ggplot2: Elegant Graphics for Data Analysis.

Other useful resources are the R Graphics Cookbook by Winston Chang and Fundamentals of Data Visualization by Claus Wilke.


  1. You can use a tool like SimDaltonism to simulate color blindness to test these images.↩︎