Multiple Decrement Model

  • \(_tp_x^{(\tau)}=\displaystyle\prod_{j=1}^m{_tp'^{(j)}_x}=\exp\left\{-\displaystyle\int_0^t\sum_{j=1}^m\mu_{x+s}^{(j)}\ ds\right\}=1-{_tq^{(\tau)}_x}\)
  • \(_tq_x^{(j)}=\displaystyle\int_0^t{_sp^{(\tau)}_x}\mu_{x+s}^{(j)}\ ds\)
  • \(\ell_{x+t}=\ell_x\ {_tp^{(\tau)}_x}\)
  • \(d_x^{(j)}=\ell_xq^{(j)}_x\)

Associated Single Decrement

  • \(_tp'^{(j)}_x=\exp\left\{-\displaystyle\int_0^t\mu_{x+s}^{(j)}\ ds\right\}\)
  • \(_tq'^{(j)}_x=\displaystyle\int_0^t{_sp'^{(j)}_x}\mu_{x+s}^{(j)}\ ds\)

Fractional Age Assumptions

Under both UDD in multiple decrement model and CF, \[p'^{(j)}_x=\left(p^{(\tau)}_x\right)^{q^{(j)}_x/q^{(\tau)}_x}\quad\longleftrightarrow\quad q^{(j)}_x=\frac{\ln p'^{(j)}_x}{\ln p^{(\tau)}_x}q^{(\tau)}_x\]

UDD in multiple decrement model

  • \(_tq^{(j)}_x=tq^{(j)}\)
  • \(_tp^{(\tau)}_x=1-tq^{(\tau)}_x\)
  • \(_tp^{(\tau)}_x\mu_{x+t}^{(j)}=q^{(j)}_x\)

CF

  • \(_tp^{(\tau)}_x=\left(p^{(\tau)}_x\right)^t\)
  • \(_tq^{(j)}_x=\dfrac{q^{(j)}_x}{q^{(\tau)}_x}\left[1-\left(p^{(\tau)}_x\right)^t\right]\)

UDD in associated single decrement

  • \(_tq'^{(j)}_x=tq'^{(j)}\)
  • \(_tp'^{(j)}_x\mu^{(j)}_{x+t}=q'^{(j)}_x\) \[_tq^{(j)}_x=q'^{(j)}_x\int_0^t\prod_{k=1,k\neq j}^m\left(1-uq'^{(k)}_x\right)\ du\]