languages <- tuesdata$languageswrite_csv(languages,"languages.csv")languages%>%headlanguages%>%namesggplot(df,aes(appeared,language_rank))+
geom_point()df %>%
filter(appeared>1900)%>%
ggplot(aes(appeared,language_rank))+
geom_point()+
scale_y_reverse()df%>%
group_by(appeared)%>%
reframe(n_languages=n(),pldb_id,type,avg=mean(number_of_users))%>%
filter(between(appeared,2000,2023)) %>%
ggplot(aes(appeared,n_languages))+
geom_point()+
geom_line()+
geom_segment(aes(x=appeared,xend=appeared,y=0,yend=n_languages,
color=n_languages),
size=6)+
geom_text(aes(label=type),check_overlap = TRUE,vjust=-0.5)