set.seed(123)
p <- ggplot(edu_exp4, aes(x=year, y=fct_reorder(entity,value))) +
geom_tile(aes(fill = value),color="black") +
geom_vline(aes(xintercept=c(1969.5)),linetype="dashed",size=1,alpha=0.2)+
geom_vline(aes(xintercept=c(1979.5)),linetype="dashed",size=1,alpha=0.2)+
geom_vline(aes(xintercept=c(1989.5)),linetype="dashed",size=1,alpha=0.2)+
geom_vline(aes(xintercept=c(1999.5)),linetype="dashed",size=1,alpha=0.2)+
geom_vline(aes(xintercept=c(2009.5)),linetype="dashed",size=1,alpha=0.2)+
geom_vline(aes(xintercept=c(2019.5)),linetype="dashed",size=1,alpha=0.2)+
scale_fill_gradient(low="white",high="blue",
breaks=c(1.5,12),
labels=c("Min","Max")) +
guides(fill = guide_colourbar(barwidth = 9,
barheight = 2,title.position = "top",
label = F,
ticks = FALSE))+
scale_x_continuous(expand=c(0,0),
breaks=seq(1970,2019,10),
label=c("1970-1979","1980-1989","1990-1999","2000-2009","2010-2019"))+
labs(title = "Government expenditure on education", subtitle="Selected countries with on average total (% of GDP) between 3 and 9%",
caption="#30DayChartChallenge 2022 #Day23 -Tiles
DataSource: UNESCO Institute for Statistics via OurWorldInData\n
DataViz: Federica Gazzelloni",
x="",y="",fill="AVG tot GDP %")+
theme_ipsum()+
theme(text=element_text(size=12,face="bold",
family="Roboto Condensed"),
axis.text.x = element_text(size=16,vjust=0.5,hjust=-0.5),
axis.text.y = element_text(size=15),
plot.title = element_text(size=42,
family="Roboto Condensed"),
plot.subtitle = element_text(family="Roboto Condensed",size=18,face="bold"),
plot.caption = element_text(family="Roboto Condensed",size=15,hjust=1,face="bold"),
plot.title.position = "panel",
plot.background = element_rect(color="grey80",fill="grey80"),
panel.background = element_rect(color="grey80",fill="grey80"),
legend.title = element_text(size=18,vjust=1,color="grey30"),
legend.text = element_text(size=18,color="grey30"),
legend.position = c(0,-0.09),
legend.direction = "horizontal",
plot.margin = margin(10,10,10,1,unit = "pt"))+
annotate("text",x=1975,y=-4,label="How to read it:\n- white means 0/empty-value\n- color gradient range on avg between 3 and 9%\n- avg calculated from 1970 to 2019",hjust = 0)+
coord_cartesian(ylim=c(1,50),clip="off")
p
#ggplotly(p)
ggsave("day23_tiles.png",
dpi=320,
width = 12,
height = 14)