Chapter 1 Phase I design
mPTI
mTPI design is short for modified toxicity probability interval design (Ji et al. 2010).
Suppose the probability of toxicity at dose dd is pdpd and ndnd is the number of patient treated at dose dd. The number of DLTs (dose limiting toxicity), xdxd has a binomial distribution xd∣pd∼Bin(nd,pd)xd∣pd∼Bin(nd,pd).
Denote the target toxicity probability as pTpT. There are 3 possible decisions by comparing pdpd and pTpT:
- ME:pd∈(0,pT−ϵ1)ME:pd∈(0,pT−ϵ1), escalate to the next level dose;
- MS:pd∈(pT−ϵ1,pT+ϵ2)MS:pd∈(pT−ϵ1,pT+ϵ2), stay at the current dose;
- MD:pd∈(pT+ϵ2,1)MD:pd∈(pT+ϵ2,1), de-escalate to the lower level dose.
The mTPI design assumes the prior of pdpd is a Beta distribution, pd∼Beta(α,β)pd∼Beta(α,β). Usually α=β=1α=β=1. The dose-finding decision rule is given by DmTPI=argmaxi∈{E,S,D}UPM(i,d)DmTPI=argmaxi∈{E,S,D}UPM(i,d) where UPM(i,d)=Pr(pd∈Mi∣xd)/Pr(pd∈Mi)UPM(i,d)=Pr(pd∈Mi∣xd)/Pr(pd∈Mi) is called the unit probability mass. In this case, UPM(i,d)=IBeta(ci2;x+1,n−x+1)−IBeta(ci1;x+1,n−x+1)ci2−ci1UPM(i,d)=IBeta(ci2;x+1,n−x+1)−IBeta(ci1;x+1,n−x+1)ci2−ci1 where IBeta(q;a,b)=1B(a,b)∫q0θa−1(1−θ)b−1dθIBeta(q;a,b)=1B(a,b)∫q0θa−1(1−θ)b−1dθ.
::include_app("https://eugenehao.shinyapps.io/mtpi/") knitr
mTPI-2
mTPI-2 design is an extension of mTPI by cutting the escalation interval and de-escalation interval into subintervals with the same length equal to (ϵ1+ϵ2)(ϵ1+ϵ2) (Guo et al. 2017). The equivalence interval (EI) is still (pT−ϵ1,pT+ϵ2)(pT−ϵ1,pT+ϵ2). However, the set of intervals below EI (LI) are {(pT−2ϵ1−ϵ2,pT−ϵ1),…,(pT−kϵ1−(k−1)ϵ2,0)}{(pT−2ϵ1−ϵ2,pT−ϵ1),…,(pT−kϵ1−(k−1)ϵ2,0)} and the set of intervals above EI (HI) are (pT+ϵ2,pT+ϵ1+2ϵ2),…,(pT+lϵ1+(l+1)ϵ2,1)}(pT+ϵ2,pT+ϵ1+2ϵ2),…,(pT+lϵ1+(l+1)ϵ2,1)}.
Let AiAi denote the set of intervals under the decision i∈{E,S,D}i∈{E,S,D}. The decision function of mTPI-2 design is given by DmTPI2=argmaxi∈{E,S,D}maxj∈AiUPM(j,d)DmTPI2=argmaxi∈{E,S,D}maxj∈AiUPM(j,d)
::include_app("https://eugenehao.shinyapps.io/mtpi-2/") knitr
BOIN
BOIN is short for Bayesian optimal interval design. Suppose we have JJ prespecified doses. At the current dose level jj, njnj patients are treated and mjmj of them have experienced a toxicity. Let λ1j(nj,ϕ)λ1j(nj,ϕ) and λ2j(nj,ϕ)λ2j(nj,ϕ) be the prespecified lower and upper boundaries of the interval with 0≤λ1j(nj,ϕ)≤λ2(nj,ϕ)≤10≤λ1j(nj,ϕ)≤λ2(nj,ϕ)≤1 where ϕϕ is the target toxicity level. (Liu and Yuan 2015)
The next cohort dose assignment will be decided by the following steps:
- if mj/nj∈[0,λ1j]mj/nj∈[0,λ1j]: escalate to the next dose level j+1j+1;
- if mj/nj∈(λ1j,λ2j)mj/nj∈(λ1j,λ2j): stay at the dose level jj;
- if mj/nj∈[λ2j,1]mj/nj∈[λ2j,1]: de-escalate to the dose level j−1j−1.
Local BOIN
Define the three point hypothesis as: H0j:pj=ϕH1j:pj=ϕ1H2j:pj=ϕ2H0j:pj=ϕH1j:pj=ϕ1H2j:pj=ϕ2
The correct decisions under H0H0, H1H1 and H2H2 are retainment (R), escalation (E) and de-escalation (D). Suppose Bin(x;n,p)Bin(x;n,p) as the CDF of a binomial distribution. The probability of making incorrect decision is given by
α(λ1,λ2)=Pr(H0)Pr(ˉR∣H0)+Pr(H1)Pr(ˉE∣H1)+Pr(H2)Pr(ˉD∣H2)=π0{Bin(nλ1;n,ϕ)+1−Bin(nλ2;n,ϕ)}+π1(1−Bin(nλ1;n,ϕ1))+π2Bin(nλ2;n,ϕ2)=α1(λ1)+α2(λ2)+π0+π1α(λ1,λ2)=Pr(H0)Pr(¯R∣H0)+Pr(H1)Pr(¯E∣H1)+Pr(H2)Pr(¯D∣H2)=π0{Bin(nλ1;n,ϕ)+1−Bin(nλ2;n,ϕ)}+π1(1−Bin(nλ1;n,ϕ1))+π2Bin(nλ2;n,ϕ2)=α1(λ1)+α2(λ2)+π0+π1 where α1(λ1)=π0Bin(nλ1;n,ϕ)−π1Bin(nλ1;n,ϕ)=bj∑y=0π1(ny)ϕy1(1−ϕ1)n−y{π0π1(ϕϕ1)y(1−ϕ1−ϕ1)n−y−1}α1(λ1)=π0Bin(nλ1;n,ϕ)−π1Bin(nλ1;n,ϕ)=bj∑y=0π1(ny)ϕy1(1−ϕ1)n−y{π0π1(ϕϕ1)y(1−ϕ1−ϕ1)n−y−1} and α2(λ2)=π2Bin(nλ2;n,ϕ2)−π0Bin(nλ2;n,ϕ).α2(λ2)=π2Bin(nλ2;n,ϕ2)−π0Bin(nλ2;n,ϕ).
α1(λ1)α1(λ1) is minimized when nλ1=max{y:π0π1(ϕϕ1)y(1−ϕ1−ϕ1)n−y≤1}=max{y:Pr(H0∣y)Pr(H1∣y)≤1}nλ1=max{y:π0π1(ϕϕ1)y(1−ϕ1−ϕ1)n−y≤1}=max{y:Pr(H0∣y)Pr(H1∣y)≤1} which leads to the solution λ1=log(1−ϕ11−ϕ)+n−1jlog(π1π0)log(ϕ(1−ϕ1)ϕ1(1−ϕ)).λ1=log(1−ϕ11−ϕ)+n−1jlog(π1π0)log(ϕ(1−ϕ1)ϕ1(1−ϕ)). Similarly, nλ2=max{y:Pr(H2∣y)Pr(H1∣y)≤1}nλ2=max{y:Pr(H2∣y)Pr(H1∣y)≤1} with solution λ2=log(1−ϕ1−ϕ2)+n−1jlog(π0π2)log(ϕ2(1−ϕ)ϕ(1−ϕ2)).λ2=log(1−ϕ1−ϕ2)+n−1jlog(π0π2)log(ϕ2(1−ϕ)ϕ(1−ϕ2)).
Global BOIN
Define the three composite hypothesis as: H0j:ϕ1<pj<ϕ2H1j:0≤pj≤ϕ1H2j:ϕ2≤pj≤1H0j:ϕ1<pj<ϕ2H1j:0≤pj≤ϕ1H2j:ϕ2≤pj≤1 In this case, Pr(ˉR∣H0)=∫f(p)Pr(ˉR∣p,H0)dpPr(ˉE∣H1)=∫f(p)Pr(ˉE∣p,H1)dpPr(ˉD∣H2)=∫f(p)Pr(ˉD∣p,H2)dpPr(¯R∣H0)=∫f(p)Pr(¯R∣p,H0)dpPr(¯E∣H1)=∫f(p)Pr(¯E∣p,H1)dpPr(¯D∣H2)=∫f(p)Pr(¯D∣p,H2)dp Therefore, α(λ1,λ2)=Pr(H0)+Pr(H1)+b1∑y=0f(y){Pr(H0∣y)−Pr(H1∣y)}⏟αg1(λ1)+b2−1∑y=0{Pr(H2∣y)−Pr(H0∣y)}⏟αg2(λ2) where b1=⌊nλ1⌋ and b2=⌊nλ2⌋. Stilly, we can minimize αg1(λ1) and αg2(λ2) when nλ1=max{y:Pr(H0∣y)Pr(H1∣y)≤1},nλ2=max{y:Pr(H2∣y)Pr(H0∣y)≤1}.
Therefore, no matter we use local BOIN or global BOIN, the decision function can be defined as DBOIN=maxi∈0,1,2Pr(Hi∣y)