mTPI design is short for modified toxicity probability interval design(Ji et al. 2010).
Suppose the probability of toxicity at dose d is pd and nd is the number of patient treated at dose d. The number of DLTs (dose limiting toxicity), xd has a binomial distribution xd∣pd∼Bin(nd,pd).
Denote the target toxicity probability as pT. There are 3 possible decisions by comparing pd and pT:
ME:pd∈(0,pT−ϵ1), escalate to the next level dose;
MS:pd∈(pT−ϵ1,pT+ϵ2), stay at the current dose;
MD:pd∈(pT+ϵ2,1), de-escalate to the lower level dose.
The mTPI design assumes the prior of pd is a Beta distribution, pd∼Beta(α,β). Usually α=β=1. The dose-finding decision rule is given by
DmTPI=argmaxi∈{E,S,D}UPM(i,d)
where UPM(i,d)=Pr(pd∈Mi∣xd)/Pr(pd∈Mi) is called the unit probability mass. In this case,
UPM(i,d)=IBeta(ci2;x+1,n−x+1)−IBeta(ci1;x+1,n−x+1)ci2−ci1
where IBeta(q;a,b)=1B(a,b)∫q0θa−1(1−θ)b−1dθ.
mTPI-2 design is an extension of mTPI by cutting the escalation interval and de-escalation interval into subintervals with the same length equal to (ϵ1+ϵ2)(Guo et al. 2017). The equivalence interval (EI) is still (pT−ϵ1,pT+ϵ2). However, the set of intervals below EI (LI) are {(pT−2ϵ1−ϵ2,pT−ϵ1),…,(pT−kϵ1−(k−1)ϵ2,0)} and the set of intervals above EI (HI) are (pT+ϵ2,pT+ϵ1+2ϵ2),…,(pT+lϵ1+(l+1)ϵ2,1)}.
Let Ai denote the set of intervals under the decision i∈{E,S,D}. The decision function of mTPI-2 design is given by
DmTPI2=argmaxi∈{E,S,D}maxj∈AiUPM(j,d)
BOIN is short for Bayesian optimal interval design. Suppose we have J prespecified doses. At the current dose level j, nj patients are treated and mj of them have experienced a toxicity. Let λ1j(nj,ϕ) and λ2j(nj,ϕ) be the prespecified lower and upper boundaries of the interval with 0≤λ1j(nj,ϕ)≤λ2(nj,ϕ)≤1 where ϕ is the target toxicity level. (Liu and Yuan 2015)
The next cohort dose assignment will be decided by the following steps:
if mj/nj∈[0,λ1j]: escalate to the next dose level j+1;
if mj/nj∈(λ1j,λ2j): stay at the dose level j;
if mj/nj∈[λ2j,1]: de-escalate to the dose level j−1.
Local BOIN
Define the three point hypothesis as:
H0j:pj=ϕH1j:pj=ϕ1H2j:pj=ϕ2
The correct decisions under H0, H1 and H2 are retainment (R), escalation (E) and de-escalation (D). Suppose Bin(x;n,p) as the CDF of a binomial distribution. The probability of making incorrect decision is given by
α(λ1,λ2)=Pr(H0)Pr(¯R∣H0)+Pr(H1)Pr(¯E∣H1)+Pr(H2)Pr(¯D∣H2)=π0{Bin(nλ1;n,ϕ)+1−Bin(nλ2;n,ϕ)}+π1(1−Bin(nλ1;n,ϕ1))+π2Bin(nλ2;n,ϕ2)=α1(λ1)+α2(λ2)+π0+π1
where
α1(λ1)=π0Bin(nλ1;n,ϕ)−π1Bin(nλ1;n,ϕ)=bj∑y=0π1(ny)ϕy1(1−ϕ1)n−y{π0π1(ϕϕ1)y(1−ϕ1−ϕ1)n−y−1}
and
α2(λ2)=π2Bin(nλ2;n,ϕ2)−π0Bin(nλ2;n,ϕ).
α1(λ1) is minimized when
nλ1=max{y:π0π1(ϕϕ1)y(1−ϕ1−ϕ1)n−y≤1}=max{y:Pr(H0∣y)Pr(H1∣y)≤1}
which leads to the solution
λ1=log(1−ϕ11−ϕ)+n−1jlog(π1π0)log(ϕ(1−ϕ1)ϕ1(1−ϕ)).
Similarly,
nλ2=max{y:Pr(H2∣y)Pr(H1∣y)≤1}
with solution
λ2=log(1−ϕ1−ϕ2)+n−1jlog(π0π2)log(ϕ2(1−ϕ)ϕ(1−ϕ2)).
Global BOIN
Define the three composite hypothesis as:
H0j:ϕ1<pj<ϕ2H1j:0≤pj≤ϕ1H2j:ϕ2≤pj≤1
In this case,
Pr(¯R∣H0)=∫f(p)Pr(¯R∣p,H0)dpPr(¯E∣H1)=∫f(p)Pr(¯E∣p,H1)dpPr(¯D∣H2)=∫f(p)Pr(¯D∣p,H2)dp
Therefore,
α(λ1,λ2)=Pr(H0)+Pr(H1)+b1∑y=0f(y){Pr(H0∣y)−Pr(H1∣y)}αg1(λ1)+b2−1∑y=0{Pr(H2∣y)−Pr(H0∣y)}αg2(λ2)
where b1=⌊nλ1⌋ and b2=⌊nλ2⌋. Stilly, we can minimize αg1(λ1) and αg2(λ2) when
nλ1=max{y:Pr(H0∣y)Pr(H1∣y)≤1},nλ2=max{y:Pr(H2∣y)Pr(H0∣y)≤1}.
Therefore, no matter we use local BOIN or global BOIN, the decision function can be defined as
DBOIN=maxi∈0,1,2Pr(Hi∣y)
Ji, Yuan, Ping Liu, Yisheng Li, and B Nebiyou Bekele. 2010. “A Modified Toxicity Probability Interval Method for Dose-Finding Trials.”Clinical Trials 7 (6): 653–63.
Liu, Suyu, and Ying Yuan. 2015. “Bayesian Optimal Interval Designs for Phase i Clinical Trials.”Journal of the Royal Statistical Society: Series C (Applied Statistics) 64 (3): 507–23.