Chapter 5 Exercicio aula 9

library(caret) library(MASS)

GET(“http://www.ime.usp.br/~jmsinger/MorettinSinger/inibina.xls”, write_disk(tf <- tempfile(fileext = “.xls”))) inibina <- read_excel(tf) str(inibina)

nrow(inibina) sum() inibinadifinib=inibinainibpos - inibinainibpreinibinaresposta = as.factor(inibina$resposta)

plot(inibinadifinib inibinaresposta, ylim = c(0, 400) print(inibina, n = 32)

5.1 Hmisc::describe(inibina)

summary(inibina) sd(inibina$difinib)

modLogist01 = glm(resposta ~ difinib, family = binomial, data = inibina) summary(modLogist01)

predito = predict.glm(modLogist01, type = “response”) classPred = ifelse(predito>0.5, “positiva”, “negativa”) classPred = as.factor(classPred) confusionMatrix(classPred, inibina$resposta, positive = “positiva”)

modFisher01 = lda(resposta ~ difinib, data = inibina, prior = c(0.5, 0.5)) predito = predict(modFisher01) classPred = preditoclassconfusionMatrix(classPred,inibinaresposta, positive = “positiva”)

inibinarespostamodBayes01=lda(resposta difinib,data=inibina,prior=c(0.65,0.35))predito=predict(modBayes01)classPred=preditoclass # table(classPred) confusionMatrix(classPred, inibina$resposta, positive = “positiva”)