1 格兰格因果性

1.1 介绍

考虑两个时间序列之间的因果性。 这里的因果性指的是时间顺序上的关系, 如果Xt1,Xt2,Yt有作用, 而Yt1,Yt2,Xt没有作用, 则称{Xt}{Yt}的格兰格原因, 而{Yt}不是{Xt}的格兰格原因。 如果Xt1,Xt2,Yt有作用, Yt1,Yt2,Xt也有作用, 则在没有进一步信息的情况下无法确定两个时间序列的因果性关系。

注意这种因果性与采样频率有关系, 在日数据或者月度数据中能发现的领先——滞后性质的因果关系, 到年度数据可能就以及混杂在以前变成同步的关系了。

1.2 格兰格因果性的定义

{ξt}为一个时间序列, \{ \boldsymbol{\eta}_t \}为向量时间序列, 记 \begin{aligned} \bar{\boldsymbol{\eta}}_t =& \{ \boldsymbol{\eta}_{t-1}, \boldsymbol{\eta}_{t-2}, \dots \} \end{aligned}

\text{Pred}(\xi_t | \bar{\boldsymbol{\eta}}_t)为基于 \boldsymbol{\eta}_{t-1}, \boldsymbol{\eta}_{t-2}, \dots\xi_t作的最小均方误差无偏预报, 其解为条件数学期望E(\xi_t | \boldsymbol{\eta}_{t-1}, \boldsymbol{\eta}_{t-2}, \dots), 在一定条件下可以等于\xi_t\boldsymbol{\eta}_{t-1}, \boldsymbol{\eta}_{t-2}, \dots张成的线性Hilbert空间的投影 (比如,(\xi_t, \boldsymbol{\eta}_t)为平稳正态多元时间序列), 即最优线性预测。 直观理解成基于过去的\{\boldsymbol{\eta}_{t-1}, \boldsymbol{\eta}_{t-2}, \dots \}的信息对当前的\xi_t作的最优预测。

令一步预测误差为 \varepsilon(\xi_t | \bar{\boldsymbol{\eta}}_t) = \xi_t - \text{Pred}(\xi_t | \bar{\boldsymbol{\eta}}_t) 令一步预测误差方差,或者均方误差, 为 \sigma^2(\xi_t | \bar{\boldsymbol{\eta}}_t) = \text{Var}(\varepsilon_t(\xi_t | \bar{\boldsymbol{\eta}}_t) ) = E \left[ \xi_t - \text{Pred}(\xi_t | \bar{\boldsymbol{\eta}}_t) \right]^2

考虑两个时间序列\{ X_t \}\{ Y_t \}\{(X_t, Y_t) \}宽平稳或严平稳。

  • 如果 \sigma^2(Y_t | \bar Y_t, \bar X_t) < \sigma^2(Y_t | \bar Y_t) 则称\{ X_t \}\{ Y_t \}格兰格原因, 记作X_t \Rightarrow Y_t。 这不排除\{ Y_t \}也可以是\{ X_t \}的格兰格原因。
  • 如果X_t \Rightarrow Y_t,而且Y_t \Rightarrow X_t, 则称互相有反馈关系, 记作X_t \Leftrightarrow Y_t
  • 如果 \sigma^2(Y_t | \bar Y_t, X_t, \bar X_t) < \sigma^2(Y_t | \bar Y_t, \bar X_t) 即除了过去的信息, 增加同时刻的X_t信息后对Y_t预测有改进, 则称\{X_t \}\{Y_t \}有瞬时因果性。 这时\{Y_t \}\{X_t \}也有瞬时因果性。
  • 如果X_t \Rightarrow Y_t, 则存在最小的正整数m, 使得 \sigma^2(Y_t | \bar Y_t, X_{t-m}, X_{t-m-1}, \dots) < \sigma^2(Y_t | \bar Y_t, X_{t-m-1}, X_{t-m-2}, \dots) m因果性滞后值(causality lag)。 如果m>1, 这意味着在已有Y_{t-1}, Y_{t-2}, \dotsX_{t-m}, X_{t-m-1}, \dots的条件下, 增加X_{t-1}, , X_{t-m+1}不能改进对Y_t的预测。

例1.1 \{ \varepsilon_t, \eta_t \}是相互独立的零均值白噪声列, \text{Var}(\varepsilon_t)=1, \text{Var}(\eta_t)=1, 考虑 \begin{aligned} Y_t =& X_{t-1} + \varepsilon_t \\ X_t =& \eta_t + 0.5 \eta_{t-1} \end{aligned}

L(\cdot|\cdot)表示最优线性预测,则 \begin{aligned} & L(Y_t | \bar Y_t, \bar X_t) \\ =& L(X_{t-1} | X_{t-1}, \dots, Y_{t-1}, \dots) + L(\varepsilon_t | \bar Y_t, \bar X_t) \\ =& X_{t-1} + 0 \\ =& X_{t-1} \\ \sigma(Y_t | \bar Y_t, \bar X_t) =& \text{Var}(\varepsilon_t) = 1 \end{aligned} Y_t = \eta_{t-1} + 0.5\eta_{t-2} + \varepsilon_t \begin{aligned} \gamma_Y(0) = 2.25, \gamma_Y(1) = 0.5, \gamma_Y(k) = 0, k \geq 2 \end{aligned} 所以\{Y_t \}是一个MA(1)序列, 设其方程为 Y_t = \zeta_t + b \zeta_{t-1}, \zeta_t \sim \text{WN}(0, \sigma_\zeta^2) 可以解出 \begin{aligned} \rho_Y(1) =& \frac{\gamma_Y(1)}{\gamma_Y(0)} = \frac{2}{9} \\ b =& \frac{1 - \sqrt{1 - 4 \rho_Y^2(1)}}{2 \rho_Y(1)} \approx 0.2344 \\ \sigma_\zeta^2 =& \frac{\gamma_Y(1)}{b} \approx 2.1328 \end{aligned} 于是 \begin{aligned} \sigma(Y_t | \bar Y_t) =& \sigma_\zeta^2 = 2.1328 \end{aligned} 所以 \begin{aligned} \sigma(Y_t | \bar Y_t, \bar X_t) = 1 < 2.1328 = \sigma(Y_t | \bar Y_t) \end{aligned}X_tY_t的格兰格原因。

反之, X_t是MA(1)序列, 有 \eta_t = \frac{1}{1 + 0.5 B} X_t = \sum_{j=0}^\infty (-0.5)^j X_{t-j} 其中B是推移算子(滞后算子)。 于是 \begin{aligned} L(X_t | \bar X_t) =& L(\eta_t | \bar X_t) + 0.5 L(\eta_{t-1} | \bar X_t) \\ =& 0.5 \sum_{j=0}^\infty (-0.5)^j X_{t-1-j} \\ =& - \sum_{j=1}^\infty (-0.5)^j X_{t-j} \\ \sigma(X_t | \bar X_t) =& \text{Var}(X_t - L(X_t | \bar X_t)) \\ =& \text{Var}(\eta_t) = 1 \end{aligned}\begin{aligned} L(X_t | \bar X_t, \bar Y_t) =& L(\eta_t | \bar X_t, \bar Y_t) + 0.5 L(\eta_{t-1} | \bar X_t, \bar Y_t) \\ =& 0 + 0.5 L(\sum_{j=0}^\infty (-0.5)^j X_{t-1-j} | \bar X_t, \bar Y_t) \\ =& -\sum_{j=1}^\infty (-0.5)^j X_{t-j} \\ =& L(X_t | \bar X_t) \end{aligned} 所以Y_t不是X_t的格兰格原因。

考虑瞬时因果性。 \begin{aligned} L(Y_t | \bar X_t, \bar Y_t, X_t) =& X_{t-1} + 0 (\text{注意}\varepsilon_t\text{与}\{X_s, \forall s\}\text{不相关} \\ =& L(Y_t | \bar X_t, \bar Y_t) \end{aligned} 所以X_t不是Y_t的瞬时格兰格原因。

○○○○○

例1.2 在例1.1中,如果模型改成 \begin{aligned} Y_t =& X_{t} + \varepsilon_t \\ X_t =& \eta_t + 0.5 \eta_{t-1} \end{aligned} 有怎样的结果?

这时 Y_t = \varepsilon_t + \eta_t + 0.5 \eta_{t-1} 仍有 \begin{aligned} \gamma_Y(0) = 2.25, \gamma_Y(1) = 0.5, \gamma_Y(k) = 0, k \geq 2 \end{aligned} 所以Y_t还服从MA(1)模型 Y_t = \zeta_t + b \zeta_{t-1}, b \approx 0.2344, \sigma^2_\zeta \approx 2.1328

\begin{aligned} L(Y_t | \bar Y_t, \bar X_t) =& L(X_t | \bar Y_t, \bar X_t) + 0 \\ =& L(\eta_t | \bar Y_t, \bar X_t) + 0.5 L(\eta_{t-1} | \bar Y_t, \bar X_t) \\ =& 0 + 0.5 L(\sum_{j=0}^\infty (-0.5)^j X_{t-1-j} | \bar Y_t, \bar X_t) \\ =& - \sum_{j=1}^\infty (-0.5)^j X_{t-j} \\ =& X_t - \eta_t \\ \sigma(Y_t | \bar Y_t, \bar X_t) =& \text{Var}(\varepsilon_t + \eta_t) = 2 \end{aligned} \sigma(Y_t | \bar Y_t) = \sigma^2_\zeta \approx 2.1328 > \sigma(Y_t | \bar Y_t, \bar X_t) = 2 所以X_tY_t的格兰格原因。

反之, \begin{aligned} L(X_t | \bar X_t, \bar Y_t) =& - \sum_{j=1}^\infty (-0.5)^j X_{t-j} \\ =& L(X_t | \bar X_t) \end{aligned} 所以Y_t不是X_t的格兰格原因。

考虑瞬时因果性。 \begin{aligned} L(Y_t | \bar X_t, \bar Y_t, X_t) =& X_{t} + 0 (\text{注意}\varepsilon_t\text{与}\{X_s, \forall s\}\text{不相关} \\ =& X_t \\ \sigma(Y_t | \bar X_t, \bar Y_t, X_t) =& \text{Var}(\varepsilon) \\ =& 1 < 2 = \sigma(Y_t | \bar X_t, \bar Y_t) \end{aligned} 所以X_tY_t的瞬时格兰格原因。

\begin{aligned} [aaa] \end{aligned}