Chapter 4 Posteriors
4.1 Posterior for τ
- p(τ|μ1,…,μm,y,α,β,k1)
p(τ|μ1,…,μm,y,α,β,k1)∝τα−1exp{−βτ}×(τ/k1)m/2exp{−τ2k1m∑j=1(μj−μ)2}×τn/2exp{−τ2m∑j=1nj∑i=1(yij−μj)2}×(τ/k2)1/2exp{−τ2k2μ2}∝τ(n+m+1)/2+α−1exp{−τ(∑mj=1∑nji=1(yij−μj)22+β+∑mj=1(μj−μ)22k1+μ22k2)}
So τ|μ1,…,μm,y,α,β,k1,k2∼Gamma((n+m+1)/2+α,(∑mj=1∑nji=1(yij−μj)22+β+∑mj=1(μj−μ)22k1+μ22k2))
4.2 Posterior for μj
Q=(τ/k1)m∑j=1(μj−μ)2+τm∑j=1nj∑i=1(yij−μj)2Q=τ[m∑j=1njμ2j+μ2jk1−(m∑j=12μμjk1+2ˉyjnjμj)]Q∝τ[m∑j=1(nj+1k1)μ2j−2μj(μk1+ˉyjnj)]Q∝[m∑j=1(nj+1k1)(μj−μ/k1+ˉyjnjnj+1/k1)2] So for each μj
μj|μ,y,τ,k1∼N(μ/k1+ˉyjnjnj+1/k1,((nj+1k1)τ)−1)
4.3 Posterior for μ
Similarly, for μ we have:
Q=τk1m∑j=1(μj−μ)2+τk2μ2Q=τk1m∑j=1(μ2j−2μμj+μ2)+τk2μ2Q∝(τk2+τk1m)μ2−2τk1m∑j=1μμjQ∝(τk2+τk1m)μ2−2τk1μˉμmQ∝(τ(mk1+1k2))(μ−(τ/k1)ˉμmτ(mk1+1k2))2
So for μ we have that the conditional distribution:
μ|μ1,…,μm,μμ,k1,k2,τ∼N((τ/k1)ˉμmτ(mk1+1k2),(τ(mk1+1k2))−1)
4.4 A second posterior, with μj marginalised out
The following is what is used in the code.
Assuming y|τ,k1,k2∼N(0,τ−1[(k1MMT+I)+k211T])
we can do
p(μ|y,α,β,k1,k2)∝exp{−τ2(y−μ1)TΨ−1(y−μ1)}×exp{−τ2k2μ2}∝exp{−τ2(μ2(1TΨ−11+1/k2)−2μ1TΨ−1y+μ2/k2)}∝exp{−τ2[(1TΨ−11+1/k2)(μ2−2μ1TΨ−1y1TΨ−11+1/k1)}
μ|y,τ,k1,k2∼MVN(1TΨ−1y1TΨ−11+k−12,((1TΨ−11+k−12)τ)−1)