Chapter 4 New Marginal Distributions (y)

Suppose we have the outcome variable: yMVNn(μ1n,τ1(k1MMT+I))

with: μN(μμ,τ1μ)

And define Ψ=k1MMT+I

Then, as a ‘trick’ to estimate the mean and variance of y, we can write:

y=μ1n+[τ1Ψ]1/2z

where zMVN(0,I) is a standard multivariate normal. Then we have:

E(y)=μμ1n+0=μμ1nVar(y)=Var(μ1n)+Var([τ1Ψ]1/2)=τ1μ1n1Tn+τ1Ψ

Now let τ1μ=k2τ1, we get:

yMVN(μμ1,τ1[k21n1Tn+Ψ])MVN(W0,τ1W1)

We now want to marginalize this over τGa(α,β), by integrating out a Gamma distribution with:

Ga(n/2+α,β+(yW0)TW11(yW0)2)

…so we get:

π(y|μμ,k1,k2)=(2π)n/2τn/2|W1|1/2exp[τ2(yW0)TW11(yW0)]τα1exp(βτ)τ

This becomes:

=(2π)n/2|W1|1/2Γ(n2+α)[(yW0)TW11(yW0)2+β](n2+α)

(For examples of the evaluation of this marginal distribution, see )

4.0.1 log version of the marginal:

This equation in log-scale gives us:

\begin{eqnarray*} \log(\pi(\boldsymbol{y} | k_1, k_2, \mu, \alpha, \beta)) &=& -\frac{N}{2} \log(2\pi) -\frac{1}{2} \log(|\boldsymbol{\mathbf{W}}_{1}|) + \log(\Gamma(N/2 + \alpha)) \\ &-& (N/2 + \alpha)\left[ \log \Big( \beta + \frac{(\mathbf{y} - \mathbf{W}_{0})^T \mathbf{W}_{1}^{-1} (\mathbf{y} - \mathbf{W}_{0})}{2}\Big) \right] \end{eqnarray*}

And the same, when written for j = 1,\dots, b nodes of a tree, would look like:

\begin{eqnarray*} \sum_{j = 1}^{b} \log(\pi(\boldsymbol{y_{j}} | N_j, k_1, k_2, \mu, \alpha, \beta)) &=& \sum_{j = 1}^{b} -\frac{N_j}{2} \log(2\pi) + -\frac{1}{2} \log(|\boldsymbol{\mathbf{W}}_{1,j}|) + \log(\Gamma(N_j/2 + \alpha)) \\ &-& (N_j/2 + \alpha)\left[ \log \Big(\beta + \frac{(\mathbf{y}_j - \mathbf{W}_{0,j})^T \mathbf{W}_{1,j}^{-1} (\mathbf{y}_j - \mathbf{W}_{0,j})}{2} \Big) \right] \end{eqnarray*}