References

Bagnardi, V., Zambon, A., Quatto, P., & Corrao, G. (2004). Flexible meta-regression functions for modeling aggregate dose-response data, with an application to alcohol and mortality. American Journal of Epidemiology, 159(11), 1077–1086.

Berkey, C., Anderson, J., & Hoaglin, D. (1996). Multiple-outcome meta-analysis of clinical trials. Statistics in Medicine, 15(5), 537–557.

Berkey, C., Hoaglin, D., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17(22), 2537–2550.

Berlin, J. A., Longnecker, M. P., & Greenland, S. (1993). Meta-analysis of epidemiologic dose-response data. Epidemiology, 4(3), 218–228.

Berrington, A., & Cox, D. (2003). Generalized least squares for the synthesis of correlated information. Biostatistics, 4(3), 423–431.

Biggerstaff, B., & Tweedie, R. (1997). Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statistics in Medicine, 16(7), 753–768.

Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2009). References - introduction to meta-analysis. Wiley Online Library.

Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111.

Buse, A. (1973). Goodness of fit in generalized least squares estimation. The American Statistician, 27(3), 106–108.

Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10(1), 101–129.

Colditz, G. A., Burdick, E., & Mosteller, F. (1995). Heterogeneity in meta-analysis of data from epidemiologic studies: A commentary. American Journal of Epidemiology, 142(4), 371–382.

Crippa, A., & Orsini, N. (2016). Dose-response meta-analysis of differences in means. BMC Medical Research Methodology, 16(1), 91.

Crippa, A., Discacciati, A., Bottai, M., Spiegelman, D., & Orsini, N. (2018). One-stage dose–response meta-analysis for aggregated data. Manuscript.

Crippa, A., Discacciati, A., Larsson, S. C., Wolk, A., & Orsini, N. (2014). Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: A dose-response meta-analysis. American Journal of Epidemiology, 180(8), 763–775.

Crippa, A., Khudyakov, P., Wang, M., Orsini, N., & Spiegelman, D. (2016a). A new measure of between-studies heterogeneity in meta-analysis. Statistics in Medicine, 35(21), 3661–3675.

Crippa, A., Larsson, S. C., Discacciati, A., Wolk, A., & Orsini, N. (2016b). Red and processed meat consumption and risk of bladder cancer: A dose–response meta-analysis of epidemiological studies. European Journal of Nutrition, 1–13.

Crippa, A., Thomas, I., & Orsini, N. (2018). A pointwise approach to dose-response meta-analysis of aggregated data. Submitted.

De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., & De Boor, C. (1978). A practical guide to splines (Vol. 27). Springer-Verlag New York.

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.

Di Giuseppe, D., Crippa, A., Orsini, N., & Wolk, A. (2014). Fish consumption and risk of rheumatoid arthritis: A dose-response meta-analysis. Arthritis Research & Therapy, 16(5), 446.

Draper, N. R., & Smith, H. (2014). Applied regression analysis. John Wiley & Sons.

Easton, D. F., Peto, J., & Babiker, A. G. (1991). Floating absolute risk: An alternative to relative risk in survival and case-control analysis avoiding an arbitrary reference group. Statistics in Medicine, 10(7), 1025–1035.

Gasparrini, A., Armstrong, B., & Kenward, M. (2012). Multivariate meta-analysis for non-linear and other multi-parameter associations. Statistics in Medicine, 31(29), 3821–3839.

Goldstein, H., Browne, W., & Rasbash, J. (2002). Partitioning variation in multilevel models. Understanding Statistics: Statistical Issues in Psychology, Education, and the Social Sciences, 1(4), 223–231.

Greenland, S., & Longnecker, M. P. (1992). Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. American Journal of Epidemiology, 135(11), 1301–1309.

Hagquist, C., & Stenbeck, M. (1998). Goodness of fit in regression analysis–R2 and g2 reconsidered. Quality and Quantity, 32(3), 229–245.

Haidich, A.-B. (2010). Meta-analysis in medical research. Hippokratia, 14(Suppl 1), 29.

Hamling, J., Lee, P., Weitkunat, R., & Ambühl, M. (2008). Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Statistics in Medicine, 27(7), 954–970.

Harrell, F. (2013). Regression modeling strategies. As Implemented in R Package “Rms” Version, 3(3).

Harrell Jr, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Springer.

Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72(358), 320–338.

Hedges, L. V. (1983). A random effects model for effect sizes. Psychological Bulletin, 93(2), 388.

Henderson, C. R., Kempthorne, O., Searle, S. R., & Von Krosigk, C. (1959). The estimation of environmental and genetic trends from records subject to culling. Biometrics, 15(2), 192–218.

Higgins, J. P. (2008). Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. International Journal of Epidemiology, 37(5), 1158–1160.

Higgins, J., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558.

Higgins, J., Thompson, S. G., & Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(1), 137–159.

Hill, A. B. (1965). The environment and disease: Association or causation? SAGE Publications.

Jackson, D., Riley, R., & White, I. R. (2011). Multivariate meta-analysis: Potential and promise. Statistics in Medicine, 30(20), 2481–2498.

Jackson, D., White, I. R., & Riley, R. D. (2012). Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Statistics in Medicine, 31(29), 3805–3820.

Jackson, D., White, I. R., & Thompson, S. G. (2010). Extending dersimonian and laird’s methodology to perform multivariate random effects meta-analyses. Statistics in Medicine, 29(12), 1282–1297.

Kvålseth, T. O. (1985). Cautionary note about r 2. The American Statistician, 39(4), 279–285.

Langan, D., Higgins, J., & Simmonds, M. (2017). Comparative performance of heterogeneity variance estimators in meta-analysis: A review of simulation studies. Research Synthesis Methods, 8(2), 181–198.

Larsson, S. C., & Orsini, N. (2011). Coffee consumption and risk of stroke: A dose-response meta-analysis of prospective studies. American Journal of Epidemiology, 174(9), 993–1001.

Larsson, S. C., Crippa, A., Orsini, N., Wolk, A., & Michaëlsson, K. (2015). Milk consumption and mortality from all causes, cardiovascular disease, and cancer: A systematic review and meta-analysis. Nutrients, 7(9), 7749–7763.

Larsson, S. C., Orsini, N., & Wolk, A. (2006). Milk, milk products and lactose intake and ovarian cancer risk: A meta-analysis of epidemiological studies. International Journal of Cancer, 118(2), 431–441.

Legrady, D., Dyer, A. R., Shekelle, R. B., Stamler, J., Liu, K., Paul, O., … Shryock, A. M. (1987). Coffee consumption and mortality in the chicago western electric company study. American Journal of Epidemiology, 126(5), 803–812.

Li, R., & Spiegelman, D. (2010). The sas% metadose macro. URL Http://Www. Hsph. Harvard. Edu/Donna-Spiegelman/Software/Metadose.

Liu, Q., Cook, N. R., Bergström, A., & Hsieh, C.-C. (2009). A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear dose–response data. Computational Statistics & Data Analysis, 53(12), 4157–4167.

Nilsson, L. M., Winkvist, A., Brustad, M., Jansson, J.-H., Johansson, I., Lenner, P., … Van Guelpen, B. (2012). A traditional sami diet score as a determinant of mortality in a general northern swedish population. International Journal of Circumpolar Health, 71(1), 18537.

Orsini, N., Bellocco, R., Greenland, S., & others. (2006). Generalized least squares for trend estimation of summarized dose-response data. Stata Journal, 6(1), 40.

Orsini, N., Greenland, S., & others. (2011). A procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata Journal, 11(1), 1.

Orsini, N., Li, R., Wolk, A., Khudyakov, P., & Spiegelman, D. (2011). Meta-analysis for linear and nonlinear dose-response relations: Examples, an evaluation of approximations, and software. American Journal of Epidemiology, 175(1), 66–73.

Pinheiro, J., & Bates, D. (2010). Mixed-Effects Models in S and S-PLUS. Springer Science & Business Media.

Pogue, J. M., & Yusuf, S. (1997). Cumulating evidence from randomized trials: Utilizing sequential monitoring boundaries for cumulative meta-analysis. Controlled Clinical Trials, 18(6), 580–593.

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Rice, K., Higgins, J., & Lumley, T. (2017). A re-evaluation of fixed effect (s) meta-analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society).

Ritz, J., Demidenko, E., & Spiegelman, D. (2008). Multivariate meta-analysis for data consortia, individual patient meta-analysis, and pooling projects. Journal of Statistical Planning and Inference, 138(7), 1919–1933.

Rota, M., Bellocco, R., Scotti, L., Tramacere, I., Jenab, M., Corrao, G., … Bagnardi, V. (2010). Random-effects meta-regression models for studying nonlinear dose–response relationship, with an application to alcohol and esophageal squamous cell carcinoma. Statistics in Medicine, 29(26), 2679–2687.

Royston, P. (2000). A strategy for modelling the effect of a continuous covariate in medicine and epidemiology. Statistics in Medicine, 19(14), 1831–1847.

Royston, P. (2001). Flexible parametric alternatives to the cox model, and more. Stata J, 1(1), 1–28.

Royston, P., & Altman, D. G. (1994). Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling. Applied Statistics, 429–467.

Sauerbrei, W., & Royston, P. (2011). A new strategy for meta-analysis of continuous covariates in observational studies. Statistics in Medicine, 30(28), 3341–3360.

Schmid, C. H., Lau, J., McIntosh, M. W., & Cappelleri, J. C. (1998). An empirical study of the effect of the control rate as a predictor of treatment efficacy in meta-analysis of clinical trials. Statistics in Medicine, 17(17), 1923–1942.

Shi, J. Q., & Copas, J. (2004). Meta-analysis for trend estimation. Statistics in Medicine, 23(1), 3–19.

Sidik, K., & Jonkman, J. N. (2005). Simple heterogeneity variance estimation for meta-analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(2), 367–384.

Sutton, A. J., & Abrams, K. R. (2001). Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research, 10(4), 277–303.

Sutton, A. J., & Higgins, J. (2008). Recent developments in meta-analysis. Statistics in Medicine, 27(5), 625–650.

Sutton, A. J., Cooper, N. J., Jones, D. R., Lambert, P. C., Thompson, J. R., & Abrams, K. R. (2007). Evidence-based sample size calculations based upon updated meta-analysis. Statistics in Medicine, 26(12), 2479–2500.

Takahashi, K., & Tango, T. (2010). Assignment of grouped exposure levels for trend estimation in a regression analysis of summarized data. Statistics in Medicine, 29(25), 2605–2616.

Takahashi, K., Nakao, H., & Hattori, S. (2013). Cubic spline regression of j-shaped dose-response curves with likelihood-based assignments of grouped exposure levels. J. Biom. Biostat, 4, 1–6.

Takkouche, B., Cadarso-Suárez, C., & Spiegelman, D. (1999). Evaluation of old and new tests of heterogeneity in epidemiologic meta-analysis. American Journal of Epidemiology, 150(2), 206–215.

Theil, H. (1958). Economic forecasts and policy.

Turner, E. L., Dobson, J. E., & Pocock, S. J. (2010). Categorisation of continuous risk factors in epidemiological publications: A survey of current practice. Epidemiologic Perspectives & Innovations, 7(1), 9.

Van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. Statistics in Medicine, 21(4), 589–624.

Verbeke, G. (1997). Linear mixed models for longitudinal data (pp. 63–153). Springer.

White, I. R., & others. (2011). Multivariate random-effects meta-regression: Updates to mvmeta. Stata Journal, 11(2), 255.

Whitehead, A., & Whitehead, J. (1991). A general parametric approach to the meta-analysis of randomized clinical trials. Statistics in Medicine, 10(11), 1665–1677.

Wickham, H. (2017). Tidyverse: Easily install and load the ’tidyverse’. Retrieved from https://CRAN.R-project.org/package=tidyverse

Yu, W. W., Schmid, C. H., Lichtenstein, A. H., Lau, J., & Trikalinos, T. A. (2013). Empirical evaluation of meta-analytic approaches for nutrient and health outcome dose-response data. Research Synthesis Methods, 4(3), 256–268.