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What’s a Q-Q plot?

Any quantile-to-quantile plot will plot on the x-axis the quantiles of one variable and on the y-axis the
quantiles of the other variable. In the case of ordinary least squares, we want to know the answer to this
question:

Are the error terms (residuals of the regression) normally distributed?

One way to answer this question is to compare the quantiles of the error terms against the quantiles of the
normal distribution. If the quantiles of the error terms are near enough to the quantiles of the corresponding
values computed from the normal distribution, then we might begin to accept the idea that the error terms
are normally distributed.

Other tests based on this idea include the Jarque-Bera test that tries to match jointly under the null hypothesis
the skewness and kurtosis of sample error terms to the normal distribution. If the data rejects the null
hypothesis at an α level of significance, then the inference of regression parameters and of the regression
itself may be called into statistical question.

Let’s read some data

The data is a data frame of Peruvian anchovie prices in USD per metric ton (Y ) and size of catch in millions
of metric tons (X). Histograms, scatterplots, and a correlation are displayed in a scatter plot matrix.
require(psych)
XY_df <- read.csv("peruvian_anchovies.csv")
pairs.panels(XY_df)
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We see a clear “kink” in the relationship where catch behavior seems to switch to a smaller slope at a higher
level of catch. This signals a possible non-normal response of price to the size of the catch.

Run a regression

Let’s now run a simple linear regression using the assumption that error terms are normally distributed.
Without the normal distributional assumption we can describe the relationship using sample slope and
intercept parameters b0 and b1 as
lm_fit <- lm(price ~ catch, data = XY_df)
summary(lm_fit)

##
## Call:
## lm(formula = price ~ catch, data = XY_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -110.00 -38.29 -19.03 34.57 142.33
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 451.989 36.794 12.284 3.72e-08 ***
## catch -29.392 5.087 -5.778 8.77e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 71.63 on 12 degrees of freedom
## Multiple R-squared: 0.7356, Adjusted R-squared: 0.7136
## F-statistic: 33.39 on 1 and 12 DF, p-value: 8.766e-05

So far everything looks singificantly different from zero. Ridiculously low p-values indicate reject of null
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hypotheses that either / or intercepts and slope parameters are zero at least at the 1% level of significance or
far less. The sign of the slope parameter is negative indicating a typical demand curve.

Let’s look at normality

The scatter plot clearly indicates that price and catch are not very normal. We can calculate also
# require(moments) will capture kurtosis
(price_skew <- skew(XY_df$price))

## [1] 0.6371672
(price_kurt <- kurtosis(XY_df$price))

## [1] 2.15725
(catch_skew <- skew(XY_df$catch))

## [1] -0.02634619
(catch_kurt <- kurtosis(XY_df$catch))

## [1] 1.626601

Price and catch have kurtosis different from 3.0, the normal distribution kurtosis. Their skewness is nearly zero,
meaning they are almost symmetric. Thick tails then may indicate non-normal variates in this relationship.

Let’s also calculate the error terms.
b0 <- lm_fit$coefficients[1]
b1 <- lm_fit$coefficients[2]
e <- XY_df$price - b0 - b1*XY_df$catch
e <- e / sd(e)
XY_df$e <- e
pairs.panels(XY_df)
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summary(XY_df)

## price catch e
## Min. :129.0 Min. : 0.500 Min. :-1.5983
## 1st Qu.:168.2 1st Qu.: 3.475 1st Qu.:-0.5564
## Median :218.0 Median : 5.840 Median :-0.2765
## Mean :270.4 Mean : 6.177 Mean : 0.0000
## 3rd Qu.:374.2 3rd Qu.: 9.605 3rd Qu.: 0.5023
## Max. :542.0 Max. :12.270 Max. : 2.0682
(e_skew <- skew(XY_df$e))

## [1] 0.4646875
(e_kurt <- kurtosis(XY_df$e))

## [1] 2.755021

By definition of e the mean is zero. We have a small skewness and a kurtosis close to 3.0, the normal
distribution kurtosis. But how close?

Eyeballing e we see a slightly right-skewed distribution with potentially thick tails: not normally distributed.
Let’s overlay a normal distribution onto the empirical e distribution.
# require(ggplot2) will capture suite of ggplot + geom calls
n <- length(XY_df$e) # number of observations
r <- order(order(XY_df$e)) # order of values, i.e. ranks without averaged ties
p <- (r - 1/2) / n # assign to ranks using Blom's method
y <- qnorm(p) # theoretical standard normal quantiles for p values
XY_df$normal_e <- y # append column of theoretical normal quantiles
plt <- ggplot(XY_df, aes(x = e, y = normal_e)) # set up canvas of x and y values
plt <- plt + geom_point() # plot points
plt <- plt + stat_quantile(colour = "red", size = 0.8, alpha = 0.5, geom = "quantile", quantiles = c(0.05, 0.95))# use quantile regression to fit median and upper and lower 95% confidence interval
plt <- plt + stat_quantile(colour = "blue", size = 0.8, alpha = 0.5, geom = "quantile", quantiles = 0.50)
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The median line is through the middle of the scatter plot of normal_e versus actual e. There are no
significant deviations from the 95% confidence lines that would have led us to believe that e is not necessarily
normal. Thus our inferences using the ordinary least squares approach assuming normal error terms should
be acceptable.

Here are more precise calculations using “quantile” regression. In these regressions, instead of using regression
of the independent variable X against the arithmetic mean of the dependent variable Y we are using a
quantile of the dependent variable Y . So, instead of using the arithemetic mean we are using quantiles of
50% (the median), 5% (lower bound) and 95% (upper bound) of the dependent variable.
# require(quantreg) brings in the lm version of quantile regression rq
rq_fit_05 <- rq(normal_e ~ e, data = XY_df, tau = 0.05) # lower 5%
rq_fit_50 <- rq(normal_e ~ e, data = XY_df, tau = 0.50) # median 50%
rq_fit_95 <- rq(normal_e ~ e, data = XY_df, tau = 0.95) # upper 95%
summary(rq_fit_05, se = "boot")

##
## Call: rq(formula = normal_e ~ e, tau = 0.05, data = XY_df)
##
## tau: [1] 0.05
##
## Coefficients:
## Value Std. Error t value Pr(>|t|)
## (Intercept) -0.24980 0.08143 -3.06756 0.00976
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## e 0.97160 0.09489 10.23931 0.00000
summary(rq_fit_50, se = "boot")

##
## Call: rq(formula = normal_e ~ e, tau = 0.5, data = XY_df)
##
## tau: [1] 0.5
##
## Coefficients:
## Value Std. Error t value Pr(>|t|)
## (Intercept) 0.01038 0.07313 0.14193 0.88949
## e 1.04847 0.12672 8.27407 0.00000
summary(rq_fit_95, se = "boot")

##
## Call: rq(formula = normal_e ~ e, tau = 0.95, data = XY_df)
##
## tau: [1] 0.95
##
## Coefficients:
## Value Std. Error t value Pr(>|t|)
## (Intercept) 0.29902 0.08256 3.62180 0.00350
## e 0.86626 0.20785 4.16765 0.00130

At the lower 5% bound, the relationship does not seem to fit normal distribution expectations to some extent.
A null hypothesis of the slope equal to 1 would seem to be probably acceptable lending credence to normally
distributed error terms. A null hypothesis of an intercept equal to zero is not. We have some little bit of
evidence of non-normality in the lower range of error terms.

At the median 50%, the relationship does seem to fit normal distribution expectations to some extent as well.
A null hypothesis of the slope equal to 1 would seem to be probably acceptable. However a null hypothesis of
an intercept equal to zero is not. But the number of standard deviations measured by the intercept 0.010138
is indeed small.

As we meander out into the 95% bound, the relationship moves positively from a zero intercept, while
maintaining a slope that is different from the lower bound and median slopes. We have some non-normality
in the upper range of the support of error terms.

Overall, we should accept the null hypothesis that the error terms are normally distributed.

One other test, the Jarque-Bera test, looks at skewness and excess kurtosis and calculates a sample test
statistic that follows a χ2 distribution with 2 degrees of freedom. Using this test we calculate
# require(tseries) will enable the Jarque-Bera test
n_sim <- length(XY_df$price)
x <- rnorm(n_sim, mean = 0, sd = sd(XY_df$e)) # under the null hypothesis e~ N(0, se^2)
jarque.bera.test(x)

##
## Jarque Bera Test
##
## data: x
## X-squared = 0.8206, df = 2, p-value = 0.6635
x <- e # alternative
jarque.bera.test(x)
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##
## Jarque Bera Test
##
## data: x
## X-squared = 0.6643, df = 2, p-value = 0.7174

The χ2 statistic with 2 degrees of freedom is 0.6643. The p-value of 71% is greater than a 1% significance
level. This indicates an acceptance of the null hypothesis that the e series is normally distributed.

The quantile regressions do indicate some marginal non-normality while the Jarque-Bera test unequivocally
does not. To tread carefully, we should err on the side of the (slim) poosibility of non-normal error terms.
More data would be helpful to resolve any further issues with heteroskedasticity in the error terms.

How to fix?

We could transform variables. We could also simply split the regression sample into two parts as indicated
by the scatter matrix. We see a switch point at a level of catch and price. The “price” we pay with this
very small sample is the power (type II error) of the regression results with such small sub-sample sizes. The
answer is to use median regression that is robust with respect to potentially non-normally distributed error
terms. We have indeed used this approach to describe the upper and lower bounds on the 95% interval that
confirms the Jarque-Bera test on the one hand, and provides a nuanced analysis of the distribution of error
terms on the other hand.
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