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Chapter 1

Introduction to Financial Analytics

Science alone of all the subjects contains within itself the lesson of the danger
of belief in the infallibility of the greatest teachers of the preceding generation. -
Richard Feynman

This book is designed to provide students, analysts, and practitioners (the collective “we”
and “us”) with approaches to analyze various types of financial data sets, and to make mean-
ingful decisions based on statistics obtained from the data. The book covers various areas
in the financial industry, from analyzing credit data (credit card receivables), to studying
global relations between macroeconomic events, to managing risk and return in multi-asset
portfolios. The topics in the book employ a wide range of techniques including non-linear
estimation, portfolio analytics, risk measurement, extreme value analysis, forecasting and
predictive techniques, and financial modeling.

1.1 Analytics

By its very nature the science of data analytics is disruptive. That means, among many
other things, that much attention should be paid to the scale and range of invalid, as yet
not understood, outlying, and emerging trends. This is as true within the finance domain of
knowledge as any other.

Throughout the book, we will learn the core of ideas of programming software development
to implement financial analyses (functions, objects, data structures, flow control, input and
output, debugging, logical design and abstraction) through writing code. We will learn
how to set up stochastic simulations, manage data analyses, employ numerical optimization
algorithms, diagnose their limitations, and work with and filter large data sets. Since code
is also an important form of communication among analysts, we will learn how to comment
and organize code, as well as document work product.
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8 CHAPTER 1. INTRODUCTION TO FINANCIAL ANALYTICS

1.2 Chapter Outline

Here is an outline of topics covered by chapter.

2. R Warm-Ups for Finance. R computations, data structures, financial, probability,
and statistics calculations, visualization. Documentation with R Markdown.

3. More R Warm-Ups. Functions, loops, control bootstrapping, simulation, and more
visualization.

4. Stylized Facts of Financial Markets. Data from FRED, Yahoo, and other sources.
Empirical characteristics of economic and financial time series. Boostrapping confidence
intervals.

5. Term Structure of Interest Rates. Bond pricing, forward and yield curves. Estimat-
ing Non-linear regression splines. Applications.

6. Market Risk. Quantile (i.e., Value at Risk) and coherent (i.e., Expected Shortfall)
risk measures. 7. Credit Risk. Hazard rate models, Markov transition probabilities Risk
measures, Laplace simulation with FFT.

8. Operational Risk and Extreme Finance. Generate frequency and severity of oper-
ational loss distributions. Estimating operational risk distribution parameters. Simulating
loss distributions.

9. Measuring Volatility. Measuring volatility. GARCH estimation. GARCH simulation.
Measuring Value at Risk (VaR) and Expected Shortfall (ES).

10. Portfolio Optimization. Combining risk management with portfolio allocations.
Optimizing allocations. Simulating the efficient frontier.

11. Aggregating Enterprise Risks. Enterprise risk management analytics and applica-
tion. Workflow to build an online application. Introduction to Shiny and ShinyDashboard.
Building a simple app. Using R Markdown and Shiny.

1.3 Setting Up R for Analytics

1.3.1 Why this Appendix?

The general aim of this appendix is to situate the software platform R as part of your learning
of statistics, operational research, and data analytics that accompanies nearly every domain
of knowledge, from epidemiology to financial engineering. The specific aim of this appendix
is to provide detailed instructions on how to install R an integrated development environ-
ment (IDE), RStudio, and a documentation system R Markdown on a personal computing
platform (also known as your personal computer). This will enable us to learn the statistical
concepts usually included in an analytics course with explanations and examples aimed at
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the appropriate level. This appendix purposely does not attempt to teach you about R’s
many fundamental and advanced features.

1.3.2 Some useful R resources

There are many R books useful for managing implementation of models in this course. Three
useful R books include:

1. Paul Teetor, The R Cookbook
2. Phil Spector, Data Manipulation with R
3. Norman Matloff, The Art of R Programming: A Tour of Statistical Software Design
4. John Taveras, R for Excel Users at https://www.rforexcelusers.com/book/.

The first one will serve as our R textbook. The other books are extremely valuable reference
works. You will ultimately need all three (and whatever else you can get your hands on)
in your professional work. John Taveras’s book is an excellent bridge and compendium of
Excel and R practices.

Much is available in books, e-books, and online for free. This is an extensive online user
community that links expert and novice modelers globally.

1. The standard start-up is at CRAN http://cran.r-project.org/manuals.html. A script
in the appendix can be dropped into a workspace and played with easily.

2. Julian Faraway’s https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf is a fairly
complete course on regression where you can imbibe deeply of the many ways to use R
in statistics.

3. Along econometrics lines is Grant Farnsworth’s https://cran.r-project.org/doc/
contrib/Farnsworth-EconometricsInR.pdf.

4. Winston Chang’s http://www.cookbook-r.com/ and Hadley Wickham’s example at
http://ggplot2.org/ are online graphics resources.

5. Stack Overflow is a programming user community with an R thread at http:
//stackoverflow.com/questions/tagged/r. The odds are that if you have a problem,
error, or question, it has already been asked, and answered, on this site.

6. For using R Markdown there is a short reference at https://www.rstudio.com/
wp-content/uploads/2015/03/rmarkdown-reference.pdf. Cosma Shalizi has a much
more extensive manual at http://www.stat.cmu.edu/~cshalizi/rmarkdown/.

1.3.3 Install R on your computer

Directions exist at the R website, http://cran.r-project.org/ for installing R. There are several
twotorials, including some on installation that can be helpful at http://www.twotorials.
com/.

https://www.rforexcelusers.com/book/
http://cran.r-project.org/manuals.html
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
https://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
http://www.cookbook-r.com/
http://ggplot2.org/
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
http://www.stat.cmu.edu/~cshalizi/rmarkdown/
http://cran.r-project.org/
http://www.twotorials.com/
http://www.twotorials.com/
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Here are more explicit instructions that tell you what to do.

Download the software from the CRAN website. There is only one file that you need to
obtain (a different file depending on the operating system). Running this file begins the
installation process which is straight-forward in most, if not all, systems.

• Download R from the web. Go the R home page at http://cran.r-project.org/.

• If you have Windows (95 or later), then perform these actions. Click on the link
Windows (95 and later), then click on the link called base, and finally click on the
most recent executable version. After the download is complete, double-click on the
downloaded file and follow the on screen installation instructions. If you have a 64 bit
system, use the 64 bit version of R.

• If you have Macintosh (OS X), then perform these actions. Click on the link MacOS
(System 8.6 to 9.1 and MacOS X), then click on the most recent package which
begins the download. When given a choice to unstuff or save, choose save and save
it on your desktop. Double-click on the downloaded file. Your Mac will unstuff the
downloaded file and create an R folder. Inside this folder, there are many files including
one with the R logo. You may drag a copy of this to your panel and then drag the whole
R folder to your Applications folder (located on the hard drive). After completing
this, you can drag the original downloaded file to your trash bin.

1.3.4 Install RStudio

Every software platform has a graphical user interface (“GUI” for short). One of the more
popular GUIs, and the one used exclusively in this course, is provided by RStudio at http:
//www.rstudio.com. RStudio is a freely distributed integrated development environment
(IDE) for R. It includes a console to execute code, a syntax-highlighting editor that supports
direct code execution, as well as tools for plotting, reviewing code history, debugging code,
and managing workspaces. In the following steps you will navigate to the RStudio website
where you can download R and RStudio. These steps assume you have a Windows or Mac
OSX operating system.

1. Click on https://www.rstudio.com/products/RStudio/ and navigate down to the
Download Desktop button and click.

2. Click on the Download button for the RStudio Desktop Personal License choice.

3. Navigate to the sentence: “RStudio requires R 2.11.1+. If you don’t already have R,
download it here.” If you have not downloaded R (or want to again), click on here.
You will be directed to the https://cran.rstudio.com/ website in a new browser tab.

• In the CRAN site, click on Download R for Windows, or Download R for (MAC) OS X
depending on the computer you use. This action sends you to a new webpage in the
site.

• Click on base. This action takes you to the download page itself.

http://cran.r-project.org/
http://www.rstudio.com
http://www.rstudio.com
https://www.rstudio.com/products/RStudio/
https://cran.rstudio.com/
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4. If you have Windows

• Click on Download R 3.3.2 for Windows (62 megabytes, 32/64 bit) (as of
11/8/2016; other version numbers may appear later than this date). A Windows
installer in an over 70 MB R-3.3.2-win.exe file will download through your browser.

• In the Chrome browser, the installation-executable file will reside in a tray at the
bottom of the browser. Click on the up arrow to the right of the file name and
click Open in the list box. Follow the many instructions and accept default values
throughout.

• Use the default Core and 32-Bit files if you have a Windows 32-bit Operating System.
You may want to use 64-Bit files if that is your operating system architecture. You
can check this out by going to the Control Panel, then System and Security, then
System, and look up the System Type:. It may read for example 32-bit Operating
System.

• Click Next to accept defaults. Click Next again to accept placing R in the startup
menu folder. Click Next again to use the R icon and alter and create registries. At this
point the installer extracts files, creates shortcuts, and completes the installation.

• Click Finish to finish.

4. If you have a MAC OS X

• Click on Download R 3.3.2 for MACs (62 megabytes, 32/64 bit) (as of
11/8/2016; other version numbers may appear later than this date). A Win-
dows installer in an over 70 MB R-3.3.2-win.exe file will download through your
browser.

• When given a choice to unstuff or save, choose save and save it on your desktop.
Double-click on the downloaded file. Your Mac will unstuff the downloaded file and
create an R folder. Inside this folder, there are many files including one with the R
logo.

• Inside the R folder drag a copy of R logo file to your panel and then drag the whole R
folder to your Applications folder (located on the hard drive).

5. Now go back to RStudio browser tab. Click on RStudio 1.0.44 - Windows
Vista/7/8/10 or RStudio 1.0.44 - MAC OS X to download RStudio. Executiable
files will download. Follow the directions exactly, and similarly, to the ones above.

1.3.5 Install R Markdown

Click on RStudio in your tray or start up menu. Be sure you are connected to the Internet.
A console panel will appear. At the console prompt > type
install.packages("rmarkdown")
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• This action will install the RMarkdown package. This package will enable you to con-
struct documentation for your work in the course. Assignments will be documented
using RMarkdown for submission to the learning management system.

• This extremely helpful web page, http://rmarkdown.rstudio.com/gallery.html, is a
portal to several examples of R Markdown source files that can be loaded into RStudio,
modified, and used with other content for your own work.

1.3.6 Install LaTex

R Markdown uses a text rendering system called LaTeX to render text, including mathematical
and graphical content.

1. Install the MikTeX document rendering system for Windows or MacTeX document ren-
dering system for Mac OS X.

• For Windows, navigate to the https://miktex.org/download page and go to the 64-
or 32- bit installer. Click on the appropriate Download button and follow the direc-
tions. Be very sure you select the COMPLETE installation. Frequently Asked
Questions (FAQ) can be found at https://docs.miktex.org/faq/. If you have RStudio
already running, you will have to restart your session.

• For MAC OS X, navigate to the http://www.tug.org/mactex/ page and download the
MacTeX system and follow the directions. This distribution requires Mac OS 10.5
Leopard or higher and runs on Intel or PowerPC processors. Be very sure you select
the FULL installation. Frequently Asked Questions (FAQ) can be found at https:
//docs.miktex.org/faq/. If you have RStudio already running, you will have to restart
your session. FAQ can be found at http://www.tug.org/mactex/faq/index.html.

1.3.7 R Markdown

Open RStudio and see something like this screenshot…

http://rmarkdown.rstudio.com/gallery.html
https://miktex.org/download
https://docs.miktex.org/faq/
http://www.tug.org/mactex/
https://docs.miktex.org/faq/
https://docs.miktex.org/faq/
http://www.tug.org/mactex/faq/index.html
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• You can modify the position and content of the four panes by selecting View > Panes
> Pane Options.

• Under File > New File > Rmarkdown a dialog box invites you to open document,
presentation, Shiny, and other files. Upon choosing documents you may open up a
new file. Under File > Save As save the untitle file in an appropriate directory. The
R Markdown file extension Rmd will appear in the file name in your directory.

• When creating a new Rmarkdown file, RStudio deposits a template that shows you how
to use the markdown approach. You can generate a document by clicking on knit in
the icon ribbon attached to the file name tab in the script pane. If you do not see
knit, then you might need to install and load the knitr package with the following
statements in the R console. You might need also to restart your RStudio session.

install.packages("knitr")
library(knitr)

The Rmd file contains three types of content:

1. An (optional) YAML header surrounded by --- on the top and the bottom of YAML
statements. YAML is “Yet Another Markdown (or up) Language”. Here is an example
from this document:

---
title: "Setting Up R for Analytics"
author: "Bill Foote"
date: "November 11, 2016"
output: pdf_document
---

2. Chunks of R code surrounded by “‘ (find this key usually with the ~ symbol).
3. Text mixed with text formatting like # heading and _italics_ and mathematical

formulae like $z = \frac{(\bar x-\mu_0)}{s/\sqrt{n}}$ which will render
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z = (x̄− µ0)
s/
√
n

.

When you open an .Rmd file, RStudio provides an interface where code, code output, and
text documentation are interleaved. You can run each code chunk by clicking the Run icon
(it looks like a play button at the top of the chunk), or by pressing Cmd/Ctrl + Shift +
Enter. RStudio executes the code and displays the results in the console with the code.

You can write mathematical formulae in an R Markdown document as well. For example,
here is a formula for net present value.
$$
NPV = \sum_{t=0}^{T} \frac{NCF_t}{(1+WACC)^t}
$$

This script will render

NPV =
T∑

t=0

NCFt

(1 +WACC)t

• Here are examples of common in file text formatting in R Markdown.

Text formatting
------------------------------------------------------------

*italic* or _italic_
**bold** __bold__
`code`
superscript^2^ and subscript~2~

Headings
------------------------------------------------------------

# 1st Level Header

## 2nd Level Header

### 3rd Level Header

Lists
------------------------------------------------------------

* Bulleted list item 1

* Item 2
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* Item 2a

* Item 2b

1. Numbered list item 1

1. Item 2. The numbers are incremented automatically in the output.

Links and images
------------------------------------------------------------

<http://example.com>

[linked phrase](http://example.com)

![optional caption text](path/to/img.png)

Tables
------------------------------------------------------------

First Header | Second Header
------------- | -------------
Content Cell | Content Cell
Content Cell | Content Cell

Math
------------------------------------------------------------

$\frac{\mu}{\sigma^2}$

\[\frac{\mu}{\sigma^2}]

More information can be found at the R Markdown web site.

1.3.8 jaRgon

(directly copied from Patrick Burns at http://www.burns-stat.com/documents/tutorials/
impatient-r/jargon/, and annotated a bit, for educational use only.)

• atomic vector

An object that contains only one form of data. The atomic modes are: logical, numeric,
complex and character.

• attach

http://rmarkdown.rstudio.com/
http://www.burns-stat.com/documents/tutorials/impatient-r/jargon/
http://www.burns-stat.com/documents/tutorials/impatient-r/jargon/
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The act of adding an item to the search list. You usually attach a package with the require
function, you attach saved files and objects with the attach function.

• data frame

A rectangular data object where each column may be a different type of data. Conceptually
a generalization of a matrix, but implemented entirely differently.

• factor

A data object that represents categorical data. It is possible (and often unfortunate) to
confuse a factor with a character vector.

• global environment

The first location on the search list, and the place where objects that you create reside. See
search list.

• list

A type of object with possibly multiple components where each component may be an
arbitrary object, including a list.

• matrix

A rectangular data object where all cells have the same data type. Conceptually a special-
ization of a data frame, but implemented entirely differently. This object has rows and
columns.

• package

A collection of R objects in a special format that includes help files and such. Most packages
primarily or exclusively contain functions, but some packages exclusively contain datasets.

• search list

The collection of locations that R searches for objects when it is evaluating a command.

1.4 Nomenclature

Here is a table of symbols used throughout the text.
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Symbol Name Usage
α alpha significance level
β beta regression coefficient, scale parameter
γ gamma autocorrelation
Γ Gamma Gamma function
δ delta delta
∆ Delta change
ϵ espilon 1 is element of
ε epsilon 2 error term
ξ ksi shape parameter
λ lambda hazard rate
µ mu mean of a distribution
ν nu number of degrees of freedom
π pi probability of occurrence
ρ rho correlation coefficient
σ sigma standard deviation
Σ sum sigma arithmetic sum
τ tau quantile
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Chapter 2

R Warm-ups in Finance

2.1 Learning outcomes

By the end of this chapter you should be able to:

1. Use R to store and operate (arithmetic and logic) on arrays, vectors, and matrices

2. Apply R vectors to the calculation of net present value. ## Imagine This

You work for the division president of an aerospace company that makes testing equipment for
high-tech manufacturers. Orders arrive “lumpy” at best as some quarters are big producers,
others stretch the company’s credit revolver.

The president, call her Nancy, found a new way to make money: lease equipment. This
would help finance operations and smooth cash flow. You had a follow-on idea: build a
captive finance company to finance and insure the manufactured product for customers.

“Nice ideas,” Nancy quips. “Show me how we can make money.”

For starters we want to borrow low and sell (leases) high! How? We can define three salient
factors:

1. The “money factor”

• Sets the monthly payments
• Depends on the length and frequency of payment of the lease
• Also depends on the value of money at monthly forward borrowing rates

2. Residual value of the equipment

• Uncertain based on competitors’ innovations, demand for manufacturers’ products, etc.
• Uncertain based on quality of equipment at end of lease (is there a secondary market?)

3. Portfolio of leases

• By maturity

19
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• By equipment class
• By customer segment

This simple vignette about leasing introduces us to the complexities and challenges of finan-
cial analytics. We see that cash flows evolve over time and may depend on various uncertain
factors. The time series of cash flows and their underlying factors in turn have distributions
of potential outcomes and also may be related to one another. Groups of cashflows may also
be related to one another structurally through portfolios. These are simply combinations of
sets of cashflows and, of course, their underlying and uncertain factors. Sets of cash flows and
their factors may be delineated according to customer segments, classification of equipment,
and introducing a timeing element, by their maturity.

2.1.1 Modeling process

Throughout financial analytics there is a modeling process we can deploy. Let’s begin the
modeling process by identifying leasing cash flow components and financial considerations we
might use to begin to build reasonable scenarios. In ourleasing scenario here is a concordance
of cash flow elements with models that will be illustrated throughout this book:

1. Lease payments

• Chapter 5: Term structure of interest rates
• Chapter 7: Credit risk of customers
• Chapter 4: Impact of economy on customers’ market value

2. Residual cashflow

• Chapter 8: Operational risk
• Chapter 11: Aggregating risks

3. Borrowing costs

• Chapter 5: Term structure of interest rates
• Chapter 7: Our own credit risk

4. Collateral

• Chapter 10: Portfolio optimization
• Chapter 6: Market risk

5. Regulatory issues

• Chapter 8: Operational risk

6. Shareholder tolerance for risk

• Chapter 6: Market risk
• Chapter 9: Hedging
• Chapter 11: Capital requirements
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In this first Chapter we will review some aspects of R programming to whet our appetite for
further work in finance and risk. The first steps here will prepare the way for us to tackle
the many issues encountered with financial time series, portfolios of risk and return factors,
market, credit, and operational risk measurement, the aggregation of risk and return, and
the fundamental measurement of volatility.

2.1.2 Chapter overview

In this first chapter we will

1. Introduce R and calculations, arrays, text handling, graphics
2. Review basic finance and statistics content
3. Use introductory R calculations in financial and statistical examples
4. Extend introductory calculations with further examples

2.1.3 What is R?

R is software for interacting with data along a variety of user generated paths. With R you
can create sophisticated (even interactive) graphs, you can carry out statistical and opera-
tional research analyses, and you can create and run simulations. R is also a programming
language with an extensive set of built-in functions. With increasing experience, you can
extend the language and write your own code to build your own financial analytical tools.
Advanced users can even incorporate functions written in other languages, such as C, C++,
and Fortran.

The current version of R derives from the S language. S has been around for more than
twenty years and has been with extrensive use in statistics and finance, first as S and then
as the commercially available S-PLUS. R is an open source implementation of the S language
that is now a viable alternative to S-PLUS. A core team of statisticians and many other
contributors work to update and improve R and to make versions that run well under all of
the most popular operating systems. Importantly, R is a free, high-quality statistical software
that will be useful as you learn financial analytics even though it is also a first-rate tool for
professional statisticians, operational researchers, and financial analysts and engineers.1But
see this post on a truly big data language APL: https://scottlocklin.wordpress.com/2013/
07/28/ruins-of-forgotten-empires-apl-languages/)

2.1.4 R for analytics

There are several reasons that make R an excellent choice of software for an analytics course.
Some benefits of using R include:

1(

https://scottlocklin.wordpress.com/2013/07/28/ruins-of-forgotten-empires-apl-languages/
https://scottlocklin.wordpress.com/2013/07/28/ruins-of-forgotten-empires-apl-languages/
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• R is free and available online. R is open-source and runs on UNIX, Windows, and
Macintosh operating systems.

• R has a well-documented, context-based, help system enhanced by a wide, and deep,
ranging user community globally and across several disciplines.

• R has excellent native static graphing capabilities. Interactive dynamic graphics are
evolving along with the ability to embed analytics into online applications. With R you
can build dashboards and websites to communicate results dynamically with consumers
of the analytics you generate.

• Practitioners can easily migrate to the commercially supported S-Plus program, if
commercial software is required. S and S-Plus are the immediate ancestors of the R
programming environment. Cloud computing is now available with large data imple-
mentations.

• R’s language has a powerful, easy-to-learn syntax with many built-in statistical and
operational research functions. Just as important are the extensive web-scraping, text
structuring, object class construction, and the extensible functional programming as-
pects of the language. A formal language definition is being developed. This will yield
more standardization and better control of the language in future versions.

• R is a computer programming language. For programmers it will feel more familiar
than for others, for example Excel users. R requires array thinking and object relation-
ships that are not necessarily native, but indeed are possible, in an Excel spreadsheet
environment. In many ways, the Excel style and R style of environments complement
one another.

• Even though it is not necessarily the simplest software to use, the basics are easy enough
to master, so that learning to use R need not interfere with learning the statistical,
operational research, data, and domain-specific concepts encountered in an analytics-
focused course.

There is at least one drawback.

• The primary hurdle to using R is that most existing documentation and plethora of
packages are written for an audience that is knowledgable about statistics and op-
erational research and has experience with other statistical computing programs. In
contrast, this course intends to make R accessible to you, especially those who are new
to both statistical concepts and statistical computing.

2.1.5 Hot and cold running resources

Much is available in books, e-books, and online for free. This is an extensive online comm-
Chaptery that links expert and novice modelers globally.

The standard start-up is at CRAN http://cran.r-project.org/manuals.html. A script in the
appendix can be dropped into a workspace and played with easily. Other resources include

http://cran.r-project.org/manuals.html
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• Julian Faraway’s https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf complete
course on regression where you can imbibe deeply of the many ways to use R in statis-
tics.

• Along econometrics lines is Grant Farnsworth’s https://cran.r-project.org/doc/
contrib/Farnsworth-EconometricsInR.pdf.

• Winston Chang’s http://www.cookbook-r.com/ and Hadley Wickham’s example at
http://ggplot2.org/ are terrific online graphics resources.

2.2 Tickling the Ivories

Or if you paint and draw, the 2-minute pose will warm you up. In the RStudio console panel
(in the SW pane of the IDE) play with these by typing these statements at the > symbol:
1 + (1:5)

## [1] 2 3 4 5 6

This will produce a vector from 2 to 6.

We can use alt- (hold alt and hyphen keys down simultaneously) to produce <-, and assign
data to an new object. This is a from R’s predecessor James Chamber’s S (ATT Bell Labs)
that was ported from the single keystroke← in Ken Iverson’s APL (IBM), where it is reserved
as a binary logical operator. We can now also use = to assign variables in R. But, also a
holdover from APL, we will continue to use = only for assignments within functions. [Glad
we got that over!]

Now let’s try these expressions.
x <- 1 + (1:5)
sum(x)

## [1] 20
prod(x)

## [1] 720

These actions assign the results of a calculation to a variable x and then sum and multiply
the elements. x is stored in the active workspace. You can verify that by typing ls() in the
console to list the objects in the workspace. Type in these statements as well.
ls()

## [1] "x"
length(x)

## [1] 5

https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
https://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
http://www.cookbook-r.com/
http://ggplot2.org/
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x[1:length(x)]

## [1] 2 3 4 5 6
x[6:8]

## [1] NA NA NA
x[6:8] <- 7:9
x/0

## [1] Inf Inf Inf Inf Inf Inf Inf Inf

x has length of 5 and we use that to index all of the current elements of x. Trying to access
elements 6 to 8 produces na because they do not exist yet. Appending 7 to 9 will fill the
spaces. Dividing by 0 produces inf.
(x1 <- x - 2)

## [1] 0 1 2 3 4 5 6 7
x1

## [1] 0 1 2 3 4 5 6 7
x/x1

## [1] Inf 3.000000 2.000000 1.666667 1.500000 1.400000 1.333333 1.285714

Putting parentheses around an expression is the same as printing out the result of the
expression. Element-wise division (multiplication, addition, subtraction) produces inf as
the first element.

2.2.1 Try this exercise

Suppose we have a gargleblaster machine that produces free cash flows of $10 million each
year for 8 years. The machine will be scrapped and currently you believe you can get $5
million at the end of year 8 as salvage value. The forward curve of interest rates for the next
1 to 8 years is 0.06, 0.07, 0.05, 0.09, 0.09, 0.08, 0.08, 0.08.

1. What is the value of $1 received at the end of each of the next 8 years? Use this script
to begin the modeling process. Describe each calculation.

rates <- c(0.06, 0.07, 0.05, 0.09, 0.09,
0.08, 0.08, 0.08)

t <- seq(1, 8)
(pv.1 <- sum(1/(1 + rates)^t))

2. What is the present value of salvage? Salvage would be at element 8 of an 8-element
cash flow vector, and thus would use the eighth forward rate, rate[8], and t would be
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8 as well. Eliminate the sum in the above script. Make a variable called salvage and
assign salvage value to this variable. Use this variable in place of the 1 in the above
script for pv.1. Call the new present value pv.salvage.

3. What is the present value of the gargleblaster machine? Type in these statements.
The rep function makes an 8 element cash flow vector. We change the value of the 8th
element of the cash flow vector to include salvage. Now use the pv.1 statement above
and substitute cashflow for 1. You will have your result.

cashflow <- rep(10, 8)
cashflow[8] <- cashflow[8] + salvage

Some results follow. The present value of $1 is The present value of a $1 is this mathemetical
formula.

PV =
8∑

t=1

1
(1 + r)t

This mathematical expression can be translated into R this way
rates <- c(0.06, 0.07, 0.05, 0.09, 0.09,

0.08, 0.08, 0.08)
t <- seq(1, 8)
(1/(1 + rates)^t)

## [1] 0.9433962 0.8734387 0.8638376 0.7084252 0.6499314 0.6301696 0.5834904
## [8] 0.5402689
(pv.1 <- sum(1/(1 + rates)^t))

## [1] 5.792958

We define rates as a vector using the c() concatenation function. We then define a sequence
of 8 time indices t starting with 1. The present value of a $1 is sum of the vector element-
by-element calculation of the date by date discounts 1/(1 + r)t.

The present value of salvage is the discounted salvage that is expected to occur at, and in
this illustration only at, year 8.

PVsalvage = salvage

(1 + r)8

Translated into R we have
salvage <- 5
(pv.salvage <- salvage/(1 + rates[8])^8)

## [1] 2.701344

The present value of the gargleblaster machine is the present value of cashflows from opera-
tions from year 1 to year 8 plus the present value of salvage received in year 8. Salvage by
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definition is realized at the of the life of the operational cashflows upon disposition of the
asset, here at year 8.

PVtotal =
8∑

t=1

cashflowt

(1 + r)t
+ salvage

(1 + r)8

This expression translates into R this way:
cashflow <- rep(10, 8)
cashflow[8] <- cashflow[8] + salvage
(pv.machine <- sum(cashflow/(1 + rates)^t))

## [1] 60.63092

The rep or “repeat” function creates cash flows of $10 for each of 8 years. We adjust the
year 8 cash flow to reflect salvage so that cashflow8 = 10 + salvage. The [8] indexes the
eighth element of the cashflow vector.

2.3 Building Some Character

Let’s type these expressions into the console at the > prompt:
x[length(x) + 1] <- "end"
x[length(x) + 1] <- "end"
x.char <- x[-length(x)]
x <- as.numeric(x.char[-length(x.char)])
str(x)

## num [1:8] 2 3 4 5 6 7 8 9

We have appended the string “end” to the end of x, twice.

• We use the - negative operator to eliminate it.
• By inserting a string of characters into a numeric vector we have forced R to transform

all numerical values to characters.
• To keep things straight we called the character version x.char.
• In the end we convert x.char back to numbers that we check with the str(ucture)

function.

We will use this procedure to build data tables (we will call these “data frames”) when
comparing distributions of variables such as stock returns.

Here’s a useful set of statements for coding and classifying variables. Type these statements
into the console.
set.seed(1016)
n.sim <- 10
x <- rnorm(n.sim)
y <- x/(rchisq(x^2, df = 3))^0.5
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We did a lot of R here. First, we set a random seed to reproduce the same results every time
we run this simulaton. Then, we store the number of simulations in n.sim and produced
two new variables with normal and a weirder looking distribution (almost a Student’s t
distribution). Invoking help will display help with distributions in the SE pane of the
RStudio IDE.
z <- c(x, y)
indicator <- rep(c("normal", "abnormal"),

each = length(x))
xy.df <- data.frame(Variates = z, Distributions = indicator)

Next we concatenate the two variables into a new variable z. We built into the variable
indicator the classifier to indicate which is x and which is y. But let’s visualize what we
want. (Paint in words here.) We want a column the first n.sim elements of which are x and
the second are y. We then want a column the first n.sim elements of which are indicated by
the character string “normal”, and the second n.sim elements by “abnormal”.

The rep function replicates the concatenation of “normal” and “abnormal” 10 times (the
length(x)). The each feature concatenates 10 replications of “normal” to 10 replications
of “abnormal”. We concatenate the variates into xy with the c() function.

We can see the first 5 components of the data frame components using the $ subsetting
notation as below.
str(xy.df)

## 'data.frame': 20 obs. of 2 variables:
## $ Variates : num 0.777 1.373 1.303 0.148 -1.825 ...
## $ Distributions: Factor w/ 2 levels "abnormal","normal": 2 2 2 2 2 2 2 2 2 2 ...
head(xy.df$Variates, n = 5)

## [1] 0.7773788 1.3733067 1.3025762 0.1482796 -1.8251426
head(xy.df$Distributions, n = 5)

## [1] normal normal normal normal normal
## Levels: abnormal normal

The str call returns the two vectors inside of xy. One is numeric and the other is a “factor”
with two levels. R and many of the routines in R will interpret these as zeros and ones in
developing indicator and dummy variables for regressions and filtering.

2.3.1 The plot thickens

We will want to see our handiwork, so load the ggplot2 library using install.packages("ggplot2").
2Visit Hadley Wickham’s examples at http://ggplot2.org/.)

2(

http://ggplot2.org/
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This plotting package requires data frames. A “data frame” simply put is a list of vectors
and arrays with names. An example of a data frame in Excel is just the worksheet. There
are columns with names in the first row, followed by several rows of data in each column.

Here we have defined a data frame xy.df. All of the x and y variates are put into one part
of the frame, and the distribution indicator into another. For all of this to work in a plot the
two arrays must be of the same length. Thus we use the common n.sim and length(x) to
insure this when we computed the series. We always examine the data, here using the head
and tail functions.

Type help(ggplot) into the console for details. The ggplot2 graphics package embodies
Hadley Wickham’s “grammar of graphics” we can review at http://ggplot2.org. Hadley
Wickham has a very useful presentation with numerous examples at http://ggplot2.org/
resources/2007-past-present-future.pdf.

As mentioned above, the package uses data frames to process graphics. A lot of packages
other than ggplot2, including the base stats package, require data frames.

We load the library first. The next statement sets up the blank but all too ready canvas (it
will be empty!) on which a density plot can be rendered.
library(ggplot2)
ggplot(xy.df, aes(x = Variates, fill = Distributions))

−2 −1 0 1

Variates

http://ggplot2.org
http://ggplot2.org/resources/2007-past-present-future.pdf
http://ggplot2.org/resources/2007-past-present-future.pdf
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The data frame name xy.df is first followed by the aesthetics mapping of data. The next
statement inserts a geometrical element, here a density curve, which has a transparency
parameter aesthetic alpha.

0.0

0.1

0.2

0.3

−2 −1 0 1

Variates

de
ns

ity

Distributions

abnormal

normal

2.3.2 Try this example

Zoom in with xlim and lower x-axis and upper x-axis limits using the following statement:
ggplot(xy.df, aes(x = Variates, fill = Distributions)) +

geom_density(alpha = 0.3) + xlim(-1,
6)
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Now we are getting to extreme finance by visualizing the tail of this distribution.

2.4 Arrays and You

Arrays have rows and columns and are akin to tables. All of Excel’s worksheets are organized
into cells that are tables with columns and rows. Data frames are more akin to tables in data
bases. Here are some simple matrix arrays and functions. We start by making a mistake:
(A.error <- matrix(1:11, ncol = 4))

## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 1

The matrix() function takes as input here the sequence of numbers from 1 to 11. It then
tries to put these 11 elements into a 4 column array with 3 rows. It is missing a number as
the error points out. To make a 4 column array out of 11 numbers it needs a twelth number
to complete the third row. We then type in these statements
(A.row <- matrix(1:12, ncol = 4))
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## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
(A.col <- matrix(1:12, ncol = 4, byrow = FALSE))

## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12

In A we take 12 integers in a row and specify they be organized into 4 columns, and in R
this is by row. In the next statement we see that A.col and column binding cbind() are
equivalent.
(R <- rbind(1:4, 5:8, 9:12)) # Concatenate rows

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
(C <- cbind(1:3, 4:6, 7:9, 10:12)) # concatenate columns

## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
A.col == C

## [,1] [,2] [,3] [,4]
## [1,] TRUE TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE TRUE

Using the outer product allows us to operate on matrix elements, first picking the minimum,
then the maximum of each row. The pmin and pmax compare rows element by element. If
you used min and max you would get the minimum and maximum of the whole matrix.
(A.min <- outer(3:6/4, 3:6/4, FUN = pmin)) #

## [,1] [,2] [,3] [,4]
## [1,] 0.75 0.75 0.75 0.75
## [2,] 0.75 1.00 1.00 1.00
## [3,] 0.75 1.00 1.25 1.25
## [4,] 0.75 1.00 1.25 1.50
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(A.max <- outer(3:6/4, 3:6/4, FUN = pmax)) #

## [,1] [,2] [,3] [,4]
## [1,] 0.75 1.00 1.25 1.5
## [2,] 1.00 1.00 1.25 1.5
## [3,] 1.25 1.25 1.25 1.5
## [4,] 1.50 1.50 1.50 1.5

We build a symmetrical matrix and replace the diagonal with 1. A.sym looks like a correlation
matrix. Here all we were doing is playing with shaping data.
(A.sym <- A.max - A.min - 0.5)

## [,1] [,2] [,3] [,4]
## [1,] -0.50 -0.25 0.00 0.25
## [2,] -0.25 -0.50 -0.25 0.00
## [3,] 0.00 -0.25 -0.50 -0.25
## [4,] 0.25 0.00 -0.25 -0.50
diag(A.sym) <- 1
A.sym

## [,1] [,2] [,3] [,4]
## [1,] 1.00 -0.25 0.00 0.25
## [2,] -0.25 1.00 -0.25 0.00
## [3,] 0.00 -0.25 1.00 -0.25
## [4,] 0.25 0.00 -0.25 1.00

2.4.1 Try this exercise

The inner product %*% cross-multiplies successive elements of a row with the successive
elements of a column. If there are two rows with 5 columns, there must be a matrix at least
with 1 column that has 5 rows in it.

Let’s run these statements.
n.sim <- 100
x.1 <- rgamma(n.sim, 0.5, 0.2)
x.2 <- rlnorm(n.sim, 0.15, 0.25)
hist(x.1)
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X <- cbind(x.1, x.2)

rgamma allows us to generate n.sim versions of the gamma distribution with scale param-
eter 0.5 and shape parameter 0.2. rlnorm is a popular financial return distribution with
mean 0.15 and standard deviation 0.25. We can call up ??distributions to get detailed
information. Let’s plot the histograms of each simulated random variate using hist().

The cbind function binds into matrix columns the row arrays x.1 and x.2. These might
be simulations of operational and financial losses. The X matrix could look like the “design”
matrix for a regression.

Let’s simulate a response vector, say equity, and call it y and look at its histogram.
y <- 1.5 * x.1 + 0.8 * x.2 + rnorm(n.sim,

4.2, 5.03)

Now we have a model for y:

y = Xβ + ε

where y is a 100 × 1 (rows × columns) vector, X is a 100 × 2 matrix, β is a 2 × 1 vector,
and ϵ is a 100 × 1 vector of disturbances (a.k.a., “errors”).

Multiplying out the matrix term Xβ we have



2.4. ARRAYS AND YOU 35

y = β1x1 + β2x2 + ε

where y, x1, x2, and ε are all vectors with 100 rows for simulated observations.

If we look for β to minimize the sum of squared ε we would find that the solution is

β̂ = (XTX)−1XTy.

Where β̂ is read as “beta hat”.

The result y with its hist() is
hist(y)
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The rubber meets the road here as we compute β̂.
X <- cbind(x.1, x.2)
XTX.inverse <- solve(t(X) %*% X)
(beta.hat <- XTX.inverse %*% t(X) %*%

y)

## [,1]
## x.1 1.660246
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## x.2 3.900737

The beta.hat coefficients are much different than our model for y. Why? Because of the
innovation, error, disturbance term rnorm(n.sim, 1, 2) we added to the 1.5*x.1 + 0.8
* x.2 terms.

Now for the estimated ε where we use the matrix inner product %*%. We need to be sure to
pre-multiply beta.hat with X!
e <- y - X %*% beta.hat

hist(e)
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We see that the “residuals” are almost centered at 0.

2.4.2 More about residuals

For no charge at all let’s calculate the sum of squared errors in matrix talk, along with the
number of obervations n and degrees of freedom n - k, all to get the standard error of the
regression e.se. Mathematically we are computing
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σε =

√√√√ N∑
i=1

ε2
i

n− k

(e.sse <- t(e) %*% e)

## [,1]
## [1,] 3003.548
(n <- dim(X)[1])

## [1] 100
(k <- nrow(beta.hat))

## [1] 2
(e.se <- (e.sse/(n - k))^0.5)

## [,1]
## [1,] 5.536104

The statement dim(X)[1] returns the first of two dimensions of the matrix X.

Finally, again for no charge at all, lets load library psych (use install.packages("psych")
as needed). We will use pairs.panels() for a pretty picture of our work in this try out.
First column bind cbind() the y, X, and e arrays to create a data frame for pairs.panel().
library(psych)
all <- cbind(y, X, e)

We then invoke the pairs.panels() function using the all array we just created. The
result is a scatterplot matrix with histograms of each variate down the diagonal. The lower
triangle of the matrix is populated with scatterplots. The upper triangle of the matrix has
correlations depicted with increasing font sizes for higher correlations.
pairs.panels(all)
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We will use this tool again and again to explore the multivariate relationships among our
data.

2.5 More Array Work

We show off some more array operations in the following statements.
nrow(A.min)

## [1] 4
ncol(A.min)

## [1] 4
dim(A.min)

## [1] 4 4

We calculate the number of rows and columns first. We then see that these exactly correspond
to the two element vector produced by dim. Next we enter these statements into the console.
rowSums(A.min)
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## [1] 3.00 3.75 4.25 4.50
colSums(A.min)

## [1] 3.00 3.75 4.25 4.50
apply(A.min, 1, sum)

## [1] 3.00 3.75 4.25 4.50
apply(A.min, 2, sum)

## [1] 3.00 3.75 4.25 4.50

We also calculate the sums of each row and each column. Alternatively we can use the apply
function on the first dimension (rows) and then on the second dimension (columns) of the
matrix. Some matrix multiplications follow below.
(A.inner <- A.sym %*% t(A.min[, 1:dim(A.min)[2]]))

## [,1] [,2] [,3] [,4]
## [1,] 0.750 0.7500 0.8125 0.875
## [2,] 0.375 0.5625 0.5000 0.500
## [3,] 0.375 0.5000 0.6875 0.625
## [4,] 0.750 0.9375 1.1250 1.375

Starting from the inner circle of embedded parentheses we pull every row (the [,col] piece)
for columns from the first to the second dimension of the dim() of A.min. We then transpose
(row for column) the elements of A.min and cross left multiply in an inner product this
transposed matrix with A.sym.

We have already deployed very useful matrix operation, the inverse. The R function solve()
provides the answer to the question: what two matrices, when multiplied by one another,
produces the identity matrix? The identity matrix is a matrix of all ones down the diagonal
and zeros elsewhere.
(A.inner.invert <- solve(A.inner))

## [,1] [,2] [,3] [,4]
## [1,] 4.952381e+00 -3.047619 -1.142857 -1.523810
## [2,] -2.285714e+00 6.857143 -2.285714 0.000000
## [3,] 1.268826e-16 -2.285714 6.857143 -2.285714
## [4,] -1.142857e+00 -1.142857 -3.428571 3.428571

Now we use our inverse with the original matrix we inverted.
(A.result <- A.inner %*% A.inner.invert)

## [,1] [,2] [,3] [,4]
## [1,] 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [2,] 2.220446e-16 1.000000e+00 0.000000e+00 0.000000e+00
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## [3,] 1.110223e-16 1.110223e-16 1.000000e+00 4.440892e-16
## [4,] 2.220446e-16 -4.440892e-16 -8.881784e-16 1.000000e+00

When we cross multiply A.inner with its inverse, we should, and do, get the identity matrix
that is a matrix of ones in the diagonal and zeros in the off-diagonal elements.

2.6 Summary

We covered very general data manipulation in R including arithmetical operations, vectors
and matrices, their formation and operations, and data frames. We used data frames as
inputs to plotting functions. We also built a matrix-based linear regression model and a
present value calculator.

2.7 Further Reading

This introductory chapter covers material from Teetor, chapters 1, 2, 5, 6. Present value,
salvage, and other valuation topics can be found in Brealey et al. under present value in
the index of any of several editions.

2.8 Practice Set

2.8.1 Purpose, Process, Product

These practice sets will repeat various R features in this chapter. Specifically we will practice
defining vectors, matrices (arrays), and data frames and their use in present value, growth,
future value calculations, We will build on this basic practice with the computation of ordi-
nary lease squares coefficients and plots using ggplot2. We will summarize our findings in
debrief documented with an R markdown file and output.

2.8.2 R Markdown set up

1. Open a new R Markdown pdf document file and save it with file name MYName-FIN654-PS01
to your working directory. The Rmd file extension will automatically be appended to
the file name. Create a new folder called data in this working directory and deposit
the .csv file for practice set #2 to this directory.

2. Modify the YAML header in the Rmd file to reflect the name of this practice set, your
name, and date.

3. Replace the R Markdown example in the new file with the following script.
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## Practice set 1: present value
(INSERT results here)
## Practice set 2: regression
(Insert results here)

4. Click knit in the Rstudio command bar to produce the pdf document.

2.8.3 Set A

2.8.3.1 Problem

We work for a mutual fund that is legally required to fair value the stock of unlisted companies
it owns. Your fund is about to purchase shares of InUrCorner, a U.S. based company, that
provides internet-of-things legal services.

• We sampled several companies with business plans similar to InUrCorner and find that
the average weighted average cost of capital is 18%.

• InUrCorner sales is $80 million and projected to growth at 50% per year for the next
3 years and 15% per year thereafter.

• Cost of services provided as a percent of sales is currently 75% and projected to be flat
for the foreseeable future.

• Depreciation is also constant at 5% of net fixed assets (gross fixed asset minus accu-
mulated depreciation), as are taxes (all-in) at 35% of taxable profits.

• Discussions with InUrCorner management indicate that the company will need an
increase in working capital at the rate of 15% each year and an increase in fixed assets
at the rate of 10% of sales each year. Currently working capital is $10, net fixed assets
is $90, and accumulated depreciation is $15.

2.8.3.2 Questions

1. Let’s project sales, cost, increments to net fixed assets NFA, increments to working
capital WC, depreciation, tax, and free cash flow FCF for the next 4 years. We will
use a table to report the projection.

Let’s use this code to build and display a table.
# Form table of results
table.names <- c("Sales", "Cost", "Working Capital (incr.)",

"Net Fixed Assets (incr.)", "Free Cash Flow")
# Assign projection labels
table.year <- year # Assign projection years
table.data <- rbind(sales, cost, WC.incr,

NFA.incr, FCF) # Layer projections
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rownames(table.data) <- table.names # Replace rows with projection labels
colnames(table.data) <- table.year # Replace columns with projection years
knitr::kable(table.data) # Display a readable table

2. Modify the assumptions by +/- 10% and report the results.

2.8.4 Set B

2.8.4.1 Problem

We work for a healthcare insurer and our management is interested in understanding the
relationship between input admission and outpatient rates as drivers of expenses, payroll,
and employment. We gathered a sample of 200 hospitals in a test market in this data set.
x.data <- read.csv("data/hospitals.csv")

2.8.4.2 Questions

1. Build a table that explores this data set variable by variable and relationships among
variables.

2. Investigate the influence of admission and outpatient rates on expenses and payroll.
First, form these arrays.

Next, compute the regression coefficients.

Finally, compute the regression statistics.

3. Use this code to investigate further the relationship among predicted expenses and the
drivers, admissions and outpatients.

require(reshape2)
require(ggplot2)
actual <- y
predicted <- X %*% beta.hat
residual <- actual - predicted
results <- data.frame(actual = actual,

predicted = predicted, residual = residual)
# Insert comment here
min_xy <- min(min(results$actual), min(results$predicted))
max_xy <- max(max(results$actual), max(results$predicted))
# Insert comment here
plot.melt <- melt(results, id.vars = "predicted")
# Insert comment here
plot.data <- rbind(plot.melt, data.frame(predicted = c(min_xy,
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max_xy), variable = c("actual", "actual"),
value = c(max_xy, min_xy)))

# Insert comment here
p <- ggplot(plot, aes(x = predicted,

y = value)) + geom_point(size = 2.5) +
theme_bw()

p <- p + facet_wrap(~variable, scales = "free")
p

2.8.5 Practice Set Debrief

1. List the R skills needed to complete these practice labs.

2. What are the packages used to compute and graph results. Explain each of them.

3. How well did the results begin to answer the business questions posed at the beginning
of each practice lab?

2.9 Project

2.9.1 Purpose

This project will allow us to practice various R features using live data to support a decision
regarding the provision of captive financing to customers at the beginning of this chapter.
We will focus on translating regression statistics into R, plotting results, and interpreting
ordinary least squares regression outcomes.

2.9.2 Problem

As we researched how to provide captive financing and insurance for our customers we found
that we needed to understand the relationships among lending rates and various terms and
conditions of typical equipment financing contracts.

We will focus on one question:

What is the influence of terms and conditions on the lending rate of fully com-
mitted commercial loans with maturities greater than one year?
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2.9.3 Data

The data set commloan.csv contains data from the St. Louis Federal Reserve Bank’s FRED
website we will use to get some high level insights. The quarterly data extends from the
first quarter of 2003 to the second quarter of 2016 and aggregates a survey administered by
the St. Louis Fed. There are several time series included. Each is by the time that pricing
terms Were set and by commitment, with maturities more than 365 Days from a survey of
all commercial banks. Here are the definitions.

Variable Description Units of Measure
rate Weighted-Average Ef-

fective Loan Rate
percent

prepay Percent of Value of
Loans Subject to Pre-
payment Penalty

percent

maturity Weighted-Average
Maturity/Repricing
Interval in Days

days

size Average Loan Size thousands USD
volume Total Value of Loans millions USD

2.9.4 Work Flow

1. Prepare the data.

• Visit the FRED website. Include any information on the site to enhance the interpre-
tation of results.

• Use read.csv to read the data into R. Be sure to set the project’s working directory
where the data directory resides. Use na.omit() to clean the data.

# setwd('C:/Users/Bill
# Foote/bookdown/bookdown-demo-master')
# the project directory
x.data <- read.csv("data/commloans.csv")
x.data <- na.omit(x.data)

• Assign the data to a variable called x.data. Examine the first and last 5 entries. Run
a summary of the data set.

• What anomalies appear based on these procedures?

2. Explore the data.

• Let’s plot the time series data using this code:
require(ggplot2)
require(reshape2)
# Use melt() from reshape2 to build

https://fred.stlouisfed.org/categories/32407
https://fred.stlouisfed.org/categories/32407
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# data frame with data as id and
# values of variables
x.melted <- melt(x.data[, c(1:4)], id = "date")
ggplot(data = x.melted, aes(x = date,

y = value)) + geom_point() + facet_wrap(~variable,
scales = "free_x")

• Describe the data frame that melt() produces.

• Let’s load the psych library and produce a scatterplot matrix. Interpret this explo-
ration.

3. Analyze the data.

• Let’s regress rate on the rest of the variables in x.data. To do this we form a matrix
of independent variables (predictor or explanatory variables) in the matrix X and a
separate vector y for the dependent (response) variable rate. We recall that the 1
vector will produce a constant intercept in the regression model.

y <- as.vector(x.data[, "rate"])
X <- as.matrix(cbind(1, x.data[, c("prepaypenalty",

"maturity", "size", "volume")]))
head(y)
head(X)

• Explain the code used to form y and X.

• Calculate the β̂ coefficients and interpret their meaning.

• Calculate actual and predicted rates and plot using this code.
# Insert comment here
require(reshape2)
require(ggplot2)
actual <- y
predicted <- X %*% beta.hat
residual <- actual - predicted
results <- data.frame(actual = actual,

predicted = predicted, residual = residual)
# Insert comment here
min_xy <- min(min(results$actual), min(results$predicted))
max_xy <- max(max(results$actual), max(results$predicted))
# Insert comment here
plot.melt <- melt(results, id.vars = "predicted")
# Insert comment here
plot.data <- rbind(plot.melt, data.frame(predicted = c(min_xy,

max_xy), variable = c("actual", "actual"),
value = c(max_xy, min_xy)))
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# Insert comment here
p <- ggplot(plot, aes(x = predicted,

y = value)) + geom_point(size = 2.5) +
theme_bw()

p <- p + facet_wrap(~variable, scales = "free")
p

• Insert explanatory comments into the code chunk to document the work flow for this
plot.

• Interpret the graphs of actual and residual versus predicted values of rate.

• Calculate the standard error of the residuals, Interpret its meaning.

4. Interpret and present results.

• We will produce an R Markdown document with code chunks to document and interpret
our results.

• The format will introduce the problem to be analyzed, with sections that discuss the
data to be used, and which follow the work flow we have defined.

2.9.5 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.

• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.
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• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.
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Chapter 3

R Data Modeling

3.1 Imagine This

Your project team is assigned to work with the accounts receivable team. Specifically, ac-
counts receivable is about to review a portfolio of customers from a potential acquisition.
Managers would like to query data provided through due diligence during the acquisition
process. Some of the questions include:

1. What is the income risk across applicant pools?
2. Are there differences in applicant income?
3. Does age matter?
4. Is there a pattern of family dependents across applicant pools?
5. How much income per dependent?

The analytics team will process the data, review its quality, and help accounts receivable
answer these questions.

In this chapter we will build approaches to manage such queries, including pivot tables,
lookups, and the creation of new metrics from existing data. We will expand this assort-
ment of skills into the writing of functions, such as net present value and internal rate of
return, more plotting of data, working with time series data, and fitting data to probability
distributions.

3.2 Pivot tables and Vertical Lookups

These are, mythically at least, two of the most-used Excel features. Pivot tables are the slice
and dice machine we use to partition data sets. Lookups allow us to relate one data table
to another. We will explore these tools in R, here made easier and less apt to crash on large
data sets. We start with some definitions.

49
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3.2.1 Some definitions

The pivot table is a data summarization tool that can automatically sort, count, total, or
give the average of the data stored in one table or spreadsheet, displaying the results in
a second table showing the summarized data. This tool transforms a flat table of fields
with rows of data into a table with grouped row values and column header values. The
specification of grouped row values and column headers can rotate the flat table’s data rows
into the intersection of the row and column labels.

“V” or “vertical” stands for the looking up of a value in a column. This feature allows the
analyst to find approximate and exact matches between the look up value and a table value
in a vertical column assigned to the look up value. A HLOOKUP function does the same lookup
but for a specified row instead of a column.

3.2.2 Pivot and Parry

Let’s return to the Credit Card Applicant business questions:

1. What is the income risk across applicant pools?
2. Are there differences in applicant income?
3. Does age matter?
4. Is there a pattern of dependents across applicant pools?
5. How much income per dependent?

The first step in building an analysis of the data relative to these questions is to understand
the required dimensions of the data that apply to the questions. Here we would scan the
table column names in the data base and look for

1. Card status
2. Ownership
3. Employment

CreditCard <- read.csv("data/CreditCard.csv")
str(CreditCard)

## 'data.frame': 1319 obs. of 13 variables:
## $ card : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
## $ reports : int 0 0 0 0 0 0 0 0 0 0 ...
## $ age : num 37.7 33.2 33.7 30.5 32.2 ...
## $ income : num 4.52 2.42 4.5 2.54 9.79 ...
## $ share : num 0.03327 0.00522 0.00416 0.06521 0.06705 ...
## $ expenditure: num 124.98 9.85 15 137.87 546.5 ...
## $ owner : Factor w/ 2 levels "no","yes": 2 1 2 1 2 1 1 2 2 1 ...
## $ selfemp : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ dependents : int 3 3 4 0 2 0 2 0 0 0 ...
## $ months : int 54 34 58 25 64 54 7 77 97 65 ...
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## $ majorcards : int 1 1 1 1 1 1 1 1 1 1 ...
## $ active : int 12 13 5 7 5 1 5 3 6 18 ...
## $ state : Factor w/ 3 levels "CT","NJ","NY": 3 3 3 3 3 3 3 3 3 3 ...

The str() function allows us to see all of the objects in CreditCard. Next lext look at the
data itself inside this object using head (for the beginning of the data).
head(CreditCard, 3)

## card reports age income share expenditure owner selfemp
## 1 yes 0 37.66667 4.52 0.033269910 124.983300 yes no
## 2 yes 0 33.25000 2.42 0.005216942 9.854167 no no
## 3 yes 0 33.66667 4.50 0.004155556 15.000000 yes no
## dependents months majorcards active state
## 1 3 54 1 12 NY
## 2 3 34 1 13 NY
## 3 4 58 1 5 NY

Knowing the structure and a sample of the data, we can build a summary of the data and
review the minimum, maximum, and quartiles in each of CreditCard’s columns of data.
summary(CreditCard)

## card reports age income
## no : 296 Min. : 0.0000 Min. : 0.1667 Min. : 0.210
## yes:1023 1st Qu.: 0.0000 1st Qu.:25.4167 1st Qu.: 2.244
## Median : 0.0000 Median :31.2500 Median : 2.900
## Mean : 0.4564 Mean :33.2131 Mean : 3.365
## 3rd Qu.: 0.0000 3rd Qu.:39.4167 3rd Qu.: 4.000
## Max. :14.0000 Max. :83.5000 Max. :13.500
## share expenditure owner selfemp
## Min. :0.0001091 Min. : 0.000 no :738 no :1228
## 1st Qu.:0.0023159 1st Qu.: 4.583 yes:581 yes: 91
## Median :0.0388272 Median : 101.298
## Mean :0.0687322 Mean : 185.057
## 3rd Qu.:0.0936168 3rd Qu.: 249.036
## Max. :0.9063205 Max. :3099.505
## dependents months majorcards active
## Min. :0.0000 Min. : 0.00 Min. :0.0000 Min. : 0.000
## 1st Qu.:0.0000 1st Qu.: 12.00 1st Qu.:1.0000 1st Qu.: 2.000
## Median :1.0000 Median : 30.00 Median :1.0000 Median : 6.000
## Mean :0.9939 Mean : 55.27 Mean :0.8173 Mean : 6.997
## 3rd Qu.:2.0000 3rd Qu.: 72.00 3rd Qu.:1.0000 3rd Qu.:11.000
## Max. :6.0000 Max. :540.00 Max. :1.0000 Max. :46.000
## state
## CT:442
## NJ:472
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## NY:405
##
##
##

We immediately see an age minimum of 0.2. Either this is an anomaly, or outright error, or
there is an application not quite a year old!. Let’s filter the data for ages greater than 18 to
be safe.
ccard <- CreditCard[CreditCard$age >=

18, ]

In the filter, the comma means keep data on applicants only at or in excess of 18 years of
age. When we leave the column empty, it means apply this filter across all columns. We
next review the distribution of ages of applicants to be sure our filter does the job properly.
The function hist() builds a simple frequency histogram to visualize this data.
hist(ccard$age)
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3.2.3 Try this exercise

What is the basic design of this inquiry?
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1. Business questions?
2. Dimensions?
3. Taxonomy and metrics?

To answer 1 and 2 we have business questions along the lines of indicator variables:

• Card issued (card)
• Own or rent (owner)
• Self-employed or not (selfemp)

For 3 our basic taxonomy is:

1. For each card issued…in New York
2. …and for each owner…
3. …who is employed…
4. What are the range of income, average dependents, age, and income per dependent?

Here is the basic 3 step pivot table design. We should check if we have installed the dplyr
package into the R environment.
# install.packages('dplyr') if not
# already
require(dplyr)
## 1: filter to keep three states.
pivot.table <- filter(ccard, state %in%

"NY")
## 2: set up data frame for by-group
## processing.
pivot.table <- group_by(pivot.table,

card, owner, selfemp)
## 3: calculate the three summary
## metrics
options(dplyr.width = Inf) ## to display all columns
pivot.table <- summarise(pivot.table,

income.cv = sd(income)/mean(income),
age.avg = mean(age), income.per.dependent = sum(income)/sum(dependents))

We then visualize results in a table. Here we use knitr, which is a package that powers
rmarkdown. The function kable() is short for “knitr table.”
knitr::kable(pivot.table)
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card owner selfemp income.cv age.avg income.per.dependent
no no no 0.4941859 31.91936 3.645848
no no yes 0.5652634 26.38542 2.852000
no yes no 0.3756274 36.01786 2.157589
no yes yes NaN 53.33333 Inf
yes no no 0.3298633 28.09311 5.313677
yes no yes 0.4367858 37.45238 7.062500
yes yes no 0.5519888 36.79503 3.154476
yes yes yes 0.5032180 41.91667 3.194547

3.2.4 Now to VLOOKUP

Let’s start with a different data set. We load this IBRD (World Bank) data that has

• The variable life.expectancy is the average life expectancy for each country from
2009 through 2014.

• The variable sanitation is the percentage of population with direct access to sanita-
tion facilities.

le <- read.csv("data/life_expectancy.csv",
header = TRUE, stringsAsFactors = FALSE)

sa <- read.csv("data/sanitation_.csv",
header = TRUE, stringsAsFactors = FALSE)

Always we look at the first few records.
head(le)

## country years.life.expectancy.avg
## 1 Afghanistan 46.62135
## 2 Albania 71.11807
## 3 Algeria 61.81652
## 4 Angola 41.65847
## 5 Antigua and Barbuda 69.81219
## 6 Arab World 60.93432
head(sa)

## country sanitation.avg
## 1 Afghanistan 25.39600
## 2 Albania 85.36154
## 3 Algeria 84.21538
## 4 American Samoa 61.73077
## 5 Andorra 100.00000
## 6 Angola 36.00769

The job here is to join sanitation data with life expectancy data, by country. In Excel we
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would typically use a VLOOKUP(country, sanitation, 2, FALSE) statement.

1. In this statement country is the value to be looked up, for example, “Australia”.
2. The variable sanitation is the range of the sanitation lookup table of two columns of

country and sanitation data, for example, B2:C104 in Excel.
3. The 2 is the second column of the sanitation lookup table, for example column C.
4. FALSE means don’t find an exact match.

In R we can use the merge() function.
life.sanitation <- merge(le[, c("country",

"years.life.expectancy.avg")], sa[,
c("country", "sanitation.avg")])

The whole range of countries is populated by the lookup.
head(life.sanitation, 3)

## country years.life.expectancy.avg sanitation.avg
## 1 Afghanistan 46.62135 25.39600
## 2 Albania 71.11807 85.36154
## 3 Algeria 61.81652 84.21538

3.2.5 Try this exercise

We will load yet another data set on house prices. Suppose we work for a housing developer
like Toll Brothers (NYSE: TOL) and want to allocate resources to marketing and financing
the building of luxury homes in major US metropolitan areas. We have data for one test
market.
hprice <- read.csv("data/hprice.csv")

Let’s look at the available data:
summary(hprice)

## ID Price SqFt Bedrooms
## Min. : 1.00 Min. : 69100 Min. :1450 Min. :2.000
## 1st Qu.: 32.75 1st Qu.:111325 1st Qu.:1880 1st Qu.:3.000
## Median : 64.50 Median :125950 Median :2000 Median :3.000
## Mean : 64.50 Mean :130427 Mean :2001 Mean :3.023
## 3rd Qu.: 96.25 3rd Qu.:148250 3rd Qu.:2140 3rd Qu.:3.000
## Max. :128.00 Max. :211200 Max. :2590 Max. :5.000
## Bathrooms Offers Brick Neighborhood
## Min. :2.000 Min. :1.000 No :86 East :45
## 1st Qu.:2.000 1st Qu.:2.000 Yes:42 North:44
## Median :2.000 Median :3.000 West :39
## Mean :2.445 Mean :2.578
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## 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :4.000 Max. :6.000

Our business questions include:

1. What are the most valuable (higher price) neighborhoods?
2. What housing characteristics maintain the most housing value?

First, where and what are the most valuable houses? One way to answer this is to build
a pivot table. Next we pivot the data and build metrics into the query. We will use the
mean() and standard deviation sd() functions to help answer our questions.
require(dplyr)
## 1: filter to those houses with
## fairly high prices
pivot.table <- filter(hprice, Price >

99999)
## 2: set up data frame for by-group
## processing
pivot.table <- group_by(pivot.table,

Brick, Neighborhood)
## 3: calculate the summary metrics
options(dplyr.width = Inf) ## to display all columns
pivot.table <- summarise(pivot.table,

Price.avg = mean(Price), Price.cv = sd(Price)/mean(Price),
SqFt.avg = mean(SqFt), Price.per.SqFt = mean(Price)/mean(SqFt))

Then we visualize in a table.
knitr::kable(pivot.table)

Brick Neighborhood Price.avg Price.cv SqFt.avg Price.per.SqFt
No East 121095.7 0.1251510 2019.565 59.96125
No North 115307.1 0.0939797 1958.214 58.88382
No West 148230.4 0.0912350 2073.478 71.48878
Yes East 135468.4 0.0977973 2031.053 66.69863
Yes North 118457.1 0.1308498 1857.143 63.78462
Yes West 175200.0 0.0930105 2091.250 83.77764

Based on this data set from one metropolitan area, the most valuable properties (fetching the
highest average price and price per square foot) are made of brick in the West neighborhood.
Brick or not, the West neighborhood also seems have the lowest relative variation in price.

Now for something different: functions.
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3.3 Why Functions?

We will encapsulate several operations into a reusable storage device called a function. The
usual suspects and candidates for the use of functions are:

• Data structures rack together related values into one object.
• Functions group related commands into one object.

In both cases the logic and coding is easier to understand, easier to work with, easier to
build into larger things, and less prone to breaches of plain-old stubby finger breaches of
operational safety and security.

For example, here is an Excel look-alike NPV function. We enter this into a code-chunk
in an R markdown file or directly into the console to store the function into the current R
environment. Once that is done, we now have a new function we can use like any other
function.
## Net Present Value function Inputs:
## vector of rates (rates) with 0 as
## the first rate for time 0, vector
## of cash flows (cashflows) Outputs:
## scalar net present value
NPV.1 <- function(rates, cashflows) {

NPV <- sum(cashflows/(1 + rates)^(seq_along(cashflows) -
1))

return(NPV)
}

The structure of a function has these parts:

1. A header describes the function along with inputs and outputs. Here we use comment
characters # to describe and document the function.

2. A definition names the function and identify the interface of inputs and outputs to the
programming environment. The name is like a variable and is assigned to function(),
where inputs are defined.

3. Code statements take the inputs from the definition and program the tasks, logic, and
decisions in the function’s work flow into output.

4. An output statement releases the function’s results for use in other code statements
outside of the function’s “mini-verse.” We use the formal return() function to identify
the output that the function will produce. If we did not use return(), then R will us
the last assigned variable as the output of the function.

In this example We generate data internal to the function:

• We use seq_along to generate time index of cashflows.
• We must subtract 1 from this sequence as starting cashflow is time 0.
• We generate a net present value directly in one line of code.
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Our functions get used just like the built-in ones, for example, mean(). Let’s define rates
and cashflows as vector inputs to the NPV.1() function and run this code.
rates <- c(0, 0.08, 0.06, 0.04) ## first rate is always 0.00
cashflows <- c(-100, 200, 300, 10)
NPV.1(rates, cashflows)

## [1] 361.0741

We go back to the declaration and look at the parts:
## Net Present Value function Inputs:
## vector of rates (rates) with 0 as
## the first rate for time 0, vector
## of cash flows (cashflows) Outputs:
## scalar net present value
NPV.1 <- function(rates, cashflows) {

NPV <- sum(cashflows/(1 + rates)^(seq_along(cashflows) -
1))

return(NPV)
}

Interfaces refer to these components:

• inputs or arguments
• outputs or return value
• Calls other functions sum, seq_along(), operators /, +, ^ and - .

We can also call other functions we’ve written. We use return() to explicitly say what the
output is. This is simply good documentation. Alternately, a function will return the last
evaluation.

Comments, that is, lines that begin with #, are not required by R, but are always a good and
welcome idea that provide a terse description of purpose and direction. Initial comments
should also include a listing of inputs, also called “arguments,” and outputs.

3.3.1 What should be a function?

Functions should be written for code we are going to re-run, especially if it will be re-run
with changes in inputs. They can also be code chunks we keep highlighting and hitting
return on. We often write functions for code chunkswhich are small parts of bigger analyses.

In the next redition of irr.1 we improve the code with named and default arguments.
## Internal Rate of Return (IRR)
## function Inputs: vector of cash
## flows (cashflows), scalar
## interations (maxiter) Outputs:
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## scalar net present value
IRR.1 <- function(cashflows, maxiter = 1000) {

t <- seq_along(cashflows) - 1
## rate will eventually converge to
## IRR
f <- function(rate) (sum(cashflows/(1 +

rate)^t))
## use uniroot function to solve for
## root (IRR = rate) of f = 0 c(-1,1)
## bounds solution for only positive
## or negative rates select the root
## estimate
return(uniroot(f, c(-1, 1), maxiter = maxiter)$root)

}

Here the default argument is maxiter which controls the number of iterations. At our peril
we can eliminate this argument if we want. This illustrates yet another need for functions:
we can put error and exception logic to handle somtimes fatal issues our calculations might
present.

Here are the cashflows for a 3% coupon bond bought at a hefty premium.
cashflows <- c(-150, 3, 3, 3, 3, 3, 3,

3, 103)
IRR.1(cashflows)

## [1] -0.02554088
IRR.1(cashflows, maxiter = 100)

## [1] -0.02554088

We get a negative IRR or yield to maturity on this net present value = 0 calculation.

3.3.2 Shooting trouble

Problem: We see “odd”” behavior when arguments aren’t as we expect.
NPV.1(c(0.1, 0.05), c(-10, 5, 6, 100))

## [1] 86.10434

We do get a result, but…

• What does it mean?
• What rates correspond with what cashflows?

Here the function calculates a net present value. But the analyst entered two rates for four
cash flows.
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Solution: We put sanity checks into the code.

• Let’s use the stopifnot(some logical statment) is TRUE.
## Net Present Value function Inputs:
## vector of rates (rates) with 0 as
## the first rate for time 0, vector
## of cash flows (cashflows), length
## of rates must equal length of
## cashflows Outputs: scalar net
## present value
NPV.2 <- function(rates, cashflows) {

stopifnot(length(rates) == length(cashflows))
NPV <- sum(cashflows/(1 + rates)^(seq_along(cashflows) -

1))
return(NPV)

}

Here are some thoughts about stopifnot TRUE error handling

• Arguments to stopifnot() are a series of logical expressions which should all be
TRUE.

• Execution halts, with error message, at first FALSE.
NPV.2(c(0.1, 0.05), c(-10, 5, 6, 100))

Hit (not too hard!) the Escape key on your keyboard, This will take you out of Browse[1]>
mode and back to the console prompt >.

3.3.3 What the function can see and do

Each function has its own environment. Names here will override names in the global environ-
ment. The function’s internal environment starts with the named arguments. Assignments
inside the function only change the internal environment. If a name is not defined in the
function, the function will look for this name in the environment the function gets called
from.

3.3.4 Try this …

Your company is running a 100 million pound sterling project in the EU. You must post
25% collateral in a Landesbank using only high-quality government securities. You find a
high-quality gilt fund that will pay 1.5% (coupon rate) annually for three years.

Some questions for analysis

1. How much would you pay for this collateral if the rate curve (yield to maturity of cash
flows) is (from next year on…)
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rates <- c(-0.001, 0.002, 0.01)

2. Suppose a bond dealer asks for 130% of notional collateral value for this bond. What
is the yield on this transaction (IRR)? Would you buy it?

3. What is the return on this collateral if you terminate the project in one year and
liquidate the collateral (i.e., sell it for cash) if the yield shifts down by 0.005? This is
a “parallel” shift, which is finance for: “take each rate and deduct 0.005.”

To get at these requirements we will build rates and cash flows across the 3-year time frame,
remembering our previous work.
(rates <- c(0, rates))

## [1] 0.000 -0.001 0.002 0.010
collateral.periods <- 3
collateral.rate <- 0.25
collateral.notional <- collateral.rate *

100
coupon.rate <- 0.015
cashflows <- rep(coupon.rate * collateral.notional,

collateral.periods)
cashflows[collateral.periods] <- collateral.notional +

cashflows[collateral.periods]
(cashflows <- c(0, cashflows))

## [1] 0.000 0.375 0.375 25.375

What just happened?

1. We appended a 0 to the rate schedule so we can use the NPV.2 function.
2. We then parameterized the term sheet (terms of the collateral transaction),
3. We used rep() to form coupon cash flows.
4. Then we added notional value repayment to the last cash flow.

Now we can calculate the present value of the bond using NPV.2.
(Value.0 <- NPV.2(rates, cashflows))

## [1] 25.3776

The answer is 25.378 million pounds sterling or Value.0 / collateral.notional times the
notional value.

The yield to maturity averages the forward rates across the bond cash flows. A “forward
rate” is the rate per period we would expect to earn each period. This is one interpretation
of the Internal Rate of Return (“IRR”).
cashflows.IRR <- cashflows
collateral.ask <- 130
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cashflows.IRR[1] <- -(collateral.ask/100) *
collateral.notional

## mind the negative sign!
(collateral.IRR.1 <- IRR.1(cashflows.IRR))

## [1] -0.07112366

You end up paying over 7% per annum for the privilege of owning this bond! You call up
the European Central Bank, report this overly hefty haircut on your project. You send out
a request for proposal to other bond dealers. They come back with an average asking price
of 109 (109% of notional).
cashflows.IRR <- cashflows
collateral.ask <- 109
cashflows.IRR[1] <- -(collateral.ask/100) *

collateral.notional
(collateral.IRR.1 <- IRR.1(cashflows.IRR))

## [1] -0.01415712

That’s more like it: about 140 basis points (1.41% x 100 basis points per percentage) cost
(negative sign).

Let’s unwind the project, and the collateral transaction, in 1 year. Let’s suppose the yield
curve in 1 year has parallel shifted down by 0.005.
rate.shift <- -0.005
rates.1 <- c(0, rates[-2]) + rate.shift
cashflows.1 <- c(0, cashflows[-2])
(Value.1 <- NPV.2(rates.1, cashflows.1))

## [1] 25.37541
(collateral.return.1 <- Value.1/(-cashflows.IRR[1]) -

1)

## [1] -0.0687923

This results ooks much more than a break-even return on the collateral transation:
(collateral.gainloss <- collateral.notional *

collateral.return.1) * 1e+06

## [1] -1719807
## adjust for millions of euros

That’s probably someone’s salary…(in pounds sterling).
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3.3.5 Mind the Interface!

Interfaces mark out a controlled inner environment for our code;

• They allow us to interact with the rest of the system only at the interface.
• Arguments explicitly give the function all the information the function needs to

operate and reduces the risk of confusion and error.

• There are exceptions such as true universals like π.
• Likewise, output should only be through the return value.

Let’s build (parametric) distributions next.

3.4 Making distributions

As always, let’s load some data, this time from the Bureau of Labor Statistics (BLS)
and load the export-import price index whose description and graph are at http://data.
bls.gov/timeseries/EIUIR?output_view=pct_1mth. We look up the symbols “EIUIR” and
“EIUIR100” and download a text file that we then convert to a comma separated variable
or csv file in Excel. We deposit the csv file in a directory and read it into a variable called
EIUIR.
require(xts)
require(zoo)
EIUIR <- read.csv("data/EIUIR.csv")
head(EIUIR)

## Date Value
## 1 2006-01-01 113.7
## 2 2006-02-01 112.8
## 3 2006-03-01 112.7
## 4 2006-04-01 115.1
## 5 2006-05-01 117.2
## 6 2006-06-01 117.3
xmprice <- na.omit(EIUIR) ## to clean up any missing data
str(xmprice)

## 'data.frame': 131 obs. of 2 variables:
## $ Date : Factor w/ 131 levels "2006-01-01","2006-02-01",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Value: num 114 113 113 115 117 ...

We might have to have installed separatetly the xts and zoo packages that handle time
series data explicitly. The str() function indicates that the Value column in the data
frame contains the export price series. We then compute the natural logarithm of prices and

http://data.bls.gov/timeseries/EIUIR?output_view=pct_1mth
http://data.bls.gov/timeseries/EIUIR?output_view=pct_1mth
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calculate the differences to get rates of growth from month to month. A simple plot reveals
aspects of the data series to explore.
xmprice.r <- as.zoo(na.omit((diff(log(xmprice$Value))))) ## compute rates
head(xmprice.r)

## 1 2 3 4 5
## -0.0079470617 -0.0008869180 0.0210718947 0.0180805614 0.0008528785
## 6
## 0.0076433493
plot(xmprice.r, type = "l", col = "blue",

xlab = "Date", main = "Monthly 2/2000-9/2016")
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We further transform the data exploring the absolute value of price rates. This is a first
stab at understanding the clustering of volatility in financial-economic time series, a topic
to which we will return.
xmprice.r.df <- data.frame(xmprice.r,

Date = index(xmprice.r), Rate = xmprice.r[,
1], Rate.abs <- abs(xmprice.r[,
1]))

head(xmprice.r.df)
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## xmprice.r Date Rate Rate.abs....abs.xmprice.r...1..
## 1 -0.0079470617 1 -0.0079470617 0.0079470617
## 2 -0.0008869180 2 -0.0008869180 0.0008869180
## 3 0.0210718947 3 0.0210718947 0.0210718947
## 4 0.0180805614 4 0.0180805614 0.0180805614
## 5 0.0008528785 5 0.0008528785 0.0008528785
## 6 0.0076433493 6 0.0076433493 0.0076433493
str(xmprice.r.df)

## 'data.frame': 130 obs. of 4 variables:
## $ xmprice.r : num -0.007947 -0.000887 0.021072 0.018081 0.000853 ...
## $ Date : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Rate : num -0.007947 -0.000887 0.021072 0.018081 0.000853 ...
## $ Rate.abs....abs.xmprice.r...1..: num 0.007947 0.000887 0.021072 0.018081 0.000853 ...

We can achieve a “prettier” plot with the ggplot2 package. In the ggplot statements we
use aes, “aesthetics”, to pick x (horizontal) and y (vertical) axes. The added (+) geom_line
is the geometrical method that builds the line plot.
require(ggplot2)
ggplot(xmprice.r.df, aes(x = Date, y = Rate)) +

geom_line(colour = "blue")
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Let’s try a bar graph of the absolute value of price rates. We use geom_bar to build this
picture.
require(ggplot2)
ggplot(xmprice.r.df, aes(x = Date, y = Rate.abs)) +

geom_bar(stat = "identity", colour = "green")
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3.4.1 Try this exercise

Let’s overlay returns (geom_line) and their absolute value geom_bar.

• ggplot declares the canvas using the price data frame.
• aes establishes the data series to be used to generate pictures.
• geom_bar builds a bar chart.
• geom_line overlays the bar chart with a line chart.

By examining this chart, what business questions about your Univeral Export-Import Ltd
supply chain could this help answer? Why is this helpful?
require(ggplot2)
ggplot(xmprice.r.df, aes(Date, Rate.abs)) +

geom_bar(stat = "identity", colour = "darkorange") +



3.4. MAKING DISTRIBUTIONS 67

geom_line(data = xmprice.r.df, aes(Date,
Rate), colour = "blue")
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The plot goes a long way to answering the question: When supply and demand tightens,
does price volatility cluster?

1. If we are selling, we would experience strong swings in demand and thus in revenue at
the customer fulfillment end of the chain.

2. If we are buying, we would experience strong swings in cost and input product utiliza-
tion at the procurement end of the chain.

3. For the financial implications: we would have a tough time making the earnings we
forecast to the market.

3.4.2 Picture this

We import goods as input to our manufacturing process. We might want to know the odds
that a very high export-import rate might occur. We can plot a cumulative distribution
function (cdf or CDF) call. we can build this plot using the stat_ecdf() function in
ggplot2.
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require(ggplot2)
ggplot(xmprice.r.df, aes(Rate)) + stat_ecdf(colour = "blue")
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3.4.3 Try another exercise

1. Suppose the procurement team’s delegation of authority remit states: “Procurement
may approve input invoices when there is only a 5% chance that prices will rise any
higher than the price rate associated with that tolerance. If input prices do rise higher
than the tolerable rate, you must get divisional approval.”

2. Plot a vertical line to indicate the maximum tolerable rate for procurement using the
BLS EIUR data from 2000 to the present.

• Use r.tol <- quantile(xmprice.r.df$Rate, 0.95) to find the tolerable rate.
• Use + geom_vline(xintercept = r.tol) in the CDF plot.

We can implement these requirements with the following code.
require(ggplot2)
r.tol.pct <- 0.95
r.tol <- quantile(xmprice.r.df$Rate,

r.tol.pct)
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r.tol.label <- paste("Tolerable Rate = ",
round(r.tol, 2))

ggplot(xmprice.r.df, aes(Rate)) + stat_ecdf(colour = "blue",
size = 1.5) + geom_vline(xintercept = r.tol,
colour = "red", size = 1.5) + annotate("text",
x = r.tol - 0.05, y = 0.75, label = r.tol.label,
colour = "darkred")
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This may be a little more than we bargained for originally. We used the paste and round
(to two, 2, decimal places) functions to make a label. We made much thicker lines (size =
1.5). At 2% we drew a line with geom_vline() and annotated the line with text.

Now that we have made some distributions out of live data, let’s estimate the parameters of
specific distributions that might be fit to that data.

3.5 Optimization

The optimization we will conduct here helps us to find the distribution that best fits the
data. We will use results from optimization to simulate that data to help us make decisions
prospectively.
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There are many distributions in R: ?distributions will tell you all about them.

1. If name is the name of a distribution (e.g., norm for “normal”), then

• dname = the probability density (if continuous) or probability mass function of name
(pdf or pmf), think “histogram”

• pname = the cumulative probability function (CDF), think “s-curve”
• qname = the quantile function (inverse to CDF), “think tolerance line”
• rname = draw random numbers from name (first argument always the number of

draws), think whatever you want…it’s kind of random

2. And ways to write your own (like the pareto distribution we use in finance)

3.5.1 Try this exercise

Suppose the EIUR price series is the benchmark in several import contracts you write as the
procurement officer of your organization. Your concern is with volatility. Thus you think
that you need to simulate the size of the price rates, whatever direction they go in. Draw
the histogram of the absolute value of price rates.
require(ggplot2)
r.tol <- quantile(xmprice.r.df$Rate,

0.95)
r.tol.label <- paste("Tolerable Rate = ",

round(r.tol, 2))
ggplot(xmprice.r.df, aes(Rate.abs)) +

geom_histogram(fill = "cornsilk",
colour = "grey60") + geom_density() +

geom_vline(xintercept = r.tol, colour = "red",
size = 1.5) + annotate("text",

x = 0.055, y = 30, label = r.tol.label,
colour = "darkred")
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Tolerable Rate =  0.03

0

20

40

60

0.00 0.02 0.04 0.06 0.08

Rate.abs

co
un

t

This series is right-skewed and thickly-tailed. We will use this function to pull several of the
statistics calculations together.
## r_moments function INPUTS: r vector
## OUTPUTS: list of scalars (mean, sd,
## median, skewness, kurtosis)
data_moments <- function(data) {

require(moments)
mean.r <- mean(data)
sd.r <- sd(data)
median.r <- median(data)
skewness.r <- skewness(data)
kurtosis.r <- kurtosis(data)
result <- data.frame(mean = mean.r,

std_dev = sd.r, median = median.r,
skewness = skewness.r, kurtosis = kurtosis.r)

return(result)
}

We might need to install.packages("moments") to make this function operate. We then
run these sentences.
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ans <- data_moments(xmprice.r.df$Rate.abs)
ans <- round(ans, 4)
knitr::kable(ans)

mean std_dev median skewness kurtosis
0.0109 0.0117 0.0074 2.523 12.1545

As we visually surmised, the series is right-skewed and very thickly tailed. This may indicate
that the gamma and pareto functions may help us describe these series and prepare us for
simulations, estimation, and inference. We will make liberal use of the fitdistr function
from MASS and come back to this moments function.

3.6 Estimate until morale improves…

We will try one method that works often enough in practice, Method of Moments (“MM” or,
more affectionately, “MOM”). This estimation technique finds the distribution parameters
such that the moments of the data match the moments of the distribution. Other methods
include:

• fitdistr: Let the opaque box do the job for you; look at the package MASS which uses
the “maximum likelihood” approach in the fitdistr estimating function (like lm for
regression).

• fitdistrplus: For the more adventurous analyst, this package contains several meth-
ods, including MM, to get the job done.

uppose we believe that absolute price rates somehow follow a gamma distribution. You can
look up this distribution easily enough in Wikipedia’s good article on the subject. Behind
managerial scenes, we can model the loss with gamma severity function that allows for skew-
ness and “heavy” tails. We can specify the gamma distribution with by shape, α, and scale,
β, parameters. We will find in operational loss analysis that this distribution is especially
useful for time-sensitive losses.

It turns out We can specify the shape and scale parameters using the mean, µ, and standard
deviation, σ of the random severities, X. The scale parameter is

β = σ2/µ,

and shape parameter,

α = µ2/σ2.

The distribution itself is defined as

f(x; alpha, β) = βαxα−1e−xβ

Γ(α)
,
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where, to have a complete statement,

Γ(x) =
∫ ∞

0
xt−1e−xdx.

Let’s finally implement into R.

First, we will load a cost sample and calculate moments and gamma parameters:
cost <- read.csv("data/cost.csv")
cost <- cost$x
cost.moments <- data_moments(cost)
cost.mean <- cost.moments$mean
cost.sd <- cost.moments$std_dev
(cost.shape <- cost.mean^2/cost.sd^2)

## [1] 19.06531
(cost.scale <- cost.sd^2/cost.mean)

## [1] 0.5575862
gamma.start <- c(cost.shape, cost.scale)

When performing these calculations, be sure that the function data_moments is loaded into
the workspace.

Second, we can use fitdistr from the Mass package to estimate the gamma parameters
alpha and beta.
require(MASS)
fit.gamma.cost <- fitdistr(cost, "gamma")
fit.gamma.cost

## shape rate
## 20.2998092 1.9095724
## ( 2.3729250) ( 0.2259942)

Third, we construct the ratio of estimates to the standard error of estimates. This computes
the number of standard deviations away from zero the estimates are. If they are “far”
enough away from zero, we have reason to reject the null hypothesis that the estimates are
no different from zero.
(cost.t <- fit.gamma.cost$estimate/fit.gamma.cost$sd)

## shape rate
## 8.554762 8.449652
knitr::kable(cost.t)

shape 8.554762
rate 8.449652
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Nice…but we also note that the scale parameter is fit.gamma.cost$estimate[2] /
gamma.start[2] times the moment estimates above.

3.6.1 Try this exercise

Let’s use the export-input price series rates and the t distribution instead of the gamma.

First, we calculate the moments (mean, etc.).
rate <- xmprice.r.df$Rate
rate.moments <- data_moments(rate)
(rate.mean <- rate.moments$mean)

## [1] 0.0004595748
(rate.sd <- rate.moments$std_dev)

## [1] 0.01602021

Second, we use fitdistr from the Mass package to estimate the parameters of the t distri-
bution.
fit.t.rate <- fitdistr(rate, "t", hessian = TRUE)
fit.t.rate

## m s df
## 0.001791738 0.009833018 2.888000806
## (0.001059206) (0.001131725) (0.843729312)

Third, we infer if we did a good job or not. The null hypothesis is that the parameters are no
different than zero (H0). We calculate t statistics to approximate the mapping of parameter
estimates to a dimensionless scale that will compute the number of standard deviations from
the null hypothesis that the parameters are just zero and of no further use.

## m s df
## 1.691586 8.688522 3.422900

Nice…but that location parameter is a bit low relative to moment estimate. What else can
we do? Simulate the estimated results and see if, at least, skewness and kurtosis line up with
the moments.

3.7 Summary

We used our newly found ability to write functions and built insightful pictures of distribu-
tions. We also ran nonlinear (gamma and t-distributions are indeed very nonlinear) regres-
sions using a package and the method of moments. All of this to answer critical business
questions.
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More specifically we waded into:

• Excel look alike processes: Pivot tables and VLOOKUP
• Excel look alike functions
• Graphics to get insights into distributions
• Estimating parameters of distribution
• Goodness of fit

3.8 Further Reading

Teetor’s various chapters have much to guide us in the writing of functions and the building
of expressions. Present value and internal rate of return can be found in Brealey et al. Use
of ggplot2 in this chapter relies heavily on Chang (2014).

3.9 Practice Sets

These practice sets reference materials developed in this chapter. We will explore new prob-
lems and data with models, R packages, tables, and plots worked out already in the chapter.

3.9.1 Set A

In this set we will build a data set using filters and if and diff statements. We will then
answer some questions using plots and a pivot table report. We will then review a function
to house our approach in case we would like to run the same analysis on other data sets.

3.9.1.1 Problem

Supply chain managers at our company continue to note we have a significant exposure to
heating oil prices (Heating Oil No. 2, or HO2), specifically New York Harbor. The exposure
hits the variable cost of producing several products. When HO2 is volatile, so is earnings.
Our company has missed earnings forecasts for five straight quarters. To get a handle on
Brent we download this data set and review some basic aspects of the prices.
# Read in data
HO2 <- read.csv("data/nyhh02.csv", header = T,

stringsAsFactors = F)
# stringsAsFactors sets dates as
# character type
head(HO2)
HO2 <- na.omit(HO2) ## to clean up any missing data
str(HO2) # review the structure of the data so far
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3.9.1.2 Questions

1. What is the nature of HO2 returns? We want to reflect the ups and downs of price
movements, something of prime interest to management. First, we calculate percentage
changes as log returns. Our interest is in the ups and downs. To look at that we use
if and else statements to define a new column called direction. We will build a
data frame to house this analysis.

# Construct expanded data frame
return <- as.numeric(diff(log(HO2$DHOILNYH))) *

100
size <- as.numeric(abs(return)) # size is indicator of volatility
direction <- ifelse(return > 0, "up",

ifelse(return < 0, "down", "same")) # another indicator of volatility
date <- as.Date(HO2$DATE[-1], "%m/%d/%Y") # length of DATE is length of return +1: omit 1st observation
price <- as.numeric(HO2$DHOILNYH[-1]) # length of DHOILNYH is length of return +1: omit first observation
HO2.df <- na.omit(data.frame(date = date,

price = price, return = return, size = size,
direction = direction)) # clean up data frame by omitting NAs

str(HO2.df)

We can plot with the ggplot2 package. In the ggplot statements we use aes, “aesthetics”,
to pick x (horizontal) and y (vertical) axes. Use group =1 to ensure that all data is plotted.
The added (+) geom_line is the geometrical method that builds the line plot.

Let’s try a bar graph of the absolute value of price rates. We use geom_bar to build this
picture.

Now let’s build an overlay of return on size.

2. Let’s dig deeper and compute mean, standard deviation, etc. Load the
data_moments() function. Run the function using the HO2.df$return subset
and write a knitr::kable() report.

3. Let’s pivot size and return on direction. What is the average and range of returns
by direction? How often might we view positive or negative movements in HO2?

3.9.2 Set B

We will use the data from the previous set to investigate the distribution of returns we
generated. This will entail fitting the data to some parametric distributions as well as
plotting and building supporting data frames.



3.10. PROJECT 77

3.9.2.1 Problem

We want to further characterize the distribution of up and down movements visually. Also
we would like to repeat the analysis periodically for inclusion in management reports.

3.9.2.2 Questions

1. How can we show the differences in the shape of ups and downs in HO2, especially
given our tolerance for risk? Let’s use the HO2.df data frame with ggplot2 and the
cumulative relative frequency function stat_ecdf.

2. How can we regularly, and reliably, analyze HO2 price movements? For this require-
ment, let’s write a function similar to data_moments.

Let’s test HO2_movement().

Morale: more work today (build the function) means less work tomorrow (write yet another
report).

3. Suppose we wanted to simulate future movements in HO2 returns. What distribution
might we use to run those scenarios? Here, let’s use the MASS package’s fitdistr()
function to find the optimal fit of the HO2 data to a parametric distribution.

3.9.3 Practice Set Debrief

1. List the R skills needed to complete these practice sets.

2. What are the packages used to compute and graph results. Explain each of them.

3. How well did the results begin to answer the business questions posed at the beginning
of each practice set?

3.10 Project

3.10.1 Background

Your company uses natural gas as a major input to recycle otherwise non-recoverable waste.
The only thing that prevents the operation from being a little better than break-even is
volatile natural gas prices. In its annual review, management requires information and
analysis of recycling operations with a view to making decisions about outsourcing contracts.
These contracts typically have three year tenors.

Since management will be making do or outsource decisions over a three year forward span,
analysts will build models that characterize historical movements in natural gas prices, the



78 CHAPTER 3. R DATA MODELING

volatility of those prices, and probability distributions to simulate future natural gas scenar-
ios.

3.10.2 Data

In a preliminary analysis, you gather data from FRED on daily natural gas prices. You whill
use this data to characterize historical natural gas price movements and construct provisional
probability distributions for eventual generation of forward scenarios.

3.10.3 Workflow

1. Data collection. Collect, clean, and review data definitions, and data transformations
of price into returns. Use tables and graphs to report results.

2. Analysis.

• Group prices into up, same (no movement), and down movements using percent change
in daily price as the criterion.

• Build a table of summary statistics that pivots the data and computes metrics.
• Graph the cumulative probability of an up, same, and down group of historical returns.
• Estimate Student’s t distribution parameters for up, same, and down movements in

natural gas returns.

3. Observations and Recommendations.

• Summarize the data, its characteristics, and applicability to attend to the problem
being solved for management.

• Discuss key take-aways from analytical results that are relevant to the decisions that
managers will make.

• Produce an R Markdown document with code chunks to document and interpret results.
• The format will introduce the problem to be analyzed, with sections that discuss the

data used, and which follow the work flow.

3.10.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.

• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.
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• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.

3.11 References
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Chapter 4

Macrofinancial Data Analysis

4.1 Imagine This

Your US-based company just landed a contract worth more than 20 percent of your com-
pany’s current revenue in Spain. Now that everyone has recovered from this coup, your
management wants you to

1. Retrieve and begin to analyze data about the Spanish economy
2. Compare and contrast Spanish stock market and government-issued debt value versus

the United States and several other countries
3. Begin to generate economic scenarios based on political events that may, or may not,

happen in Spain

Up to this point we had reviewed several ways to manipulate data in R. We then reviewed
some basic finance and statistics concepts in R. We also got some idea of the financial analytics
workflow.

1. What decision(s) are we making?
2. What are the key business questions we need to support this decision?
3. What data do we need?
4. What tools do we need to analyze the data?
5. How do we communicate answers to inform the decision?

4.1.1 Working an example

Let’s use this workflow to motivate our work in this chapter.

1. Let’s identify a decision at work (e.g., investment in a new machine, financing a build-
ing, acquisition of customers, hiring talent, locating manufacturing).

2. For this decision we will list three business questions you need to inform the decision
we chose.

81
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3. Now we consider data we might need to answer one of those questions and choose from
this set:

• Macroeconomic data: GDP, inflation, wages, population
• Financial data: stock market prices, bond prices, exchange rates, commodity prices

Here is the example using the scenario that started this chapter.

1. Our decision is supply a new market segment

• Product: voltage devices with supporting software
• Geography: Spain
• Customers: major buyers at Iberdrola, Repsol, and Endesa

2. We pose three business questions:

• How would the performance of these companies affect the size and timing of orders?
• How would the value of their products affect the value of our business with these

companies?
• We are a US functional currency firm (see FAS 52), so how would we manage the

repatriation of accounts receivable from Spain?

3. Some data and analysis to inform the decision could include

• Customer stock prices: volatility and correlation
• Oil prices: volatility
• USD/EUR exchange rates: volatility
• All together: correlations among these indicators

4.1.2 How we will proceed

This chapter will develop styliZed facts of the market. These continue to be learned the hard
Way: financial data is not independent, it possesses volatile volatility, and has extremes.

• Financial stock, bond, commodity…you name it…have highly interdependent relation-
ships.

• Volatility is rarely constant and often has a structure (mean reversion) and is dependent
on the past.

• Past shocks persist and may or may not dampen (rock in a pool).
• Extreme events are likely to happen with other extreme events.
• Negative returns are more likely than positive returns (left skew).

4.2 Building the Stylized Facts

Examples from the 70s, 80s, and 90s have multiple intersecting global events influ-
encing decision makers. We will load some computational help and some data from
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Brent, format dates, and create a time series object (package zoo' will be needed by
packagesfBasicsandevir‘):
library(fBasics)
library(evir)
library(qrmdata)
library(zoo)
data(OIL_Brent)
str(OIL_Brent)

## An 'xts' object on 1987-05-20/2015-12-28 containing:
## Data: num [1:7258, 1] 18.6 18.4 18.6 18.6 18.6 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr "OIL_Brent"
## Indexed by objects of class: [Date] TZ: UTC
## xts Attributes:
## NULL

We will compute rates of change for Brent oil prices next.
Brent.price <- as.zoo(OIL_Brent)
str(Brent.price)

## 'zoo' series from 1987-05-20 to 2015-12-28
## Data: num [1:7258, 1] 18.6 18.4 18.6 18.6 18.6 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr "OIL_Brent"
## Index: Date[1:7258], format: "1987-05-20" "1987-05-21" "1987-05-22" "1987-05-25" "1987-05-26" ...
Brent.return <- diff(log(Brent.price))[-1] *

100
colnames(Brent.return) <- "Brent.return"
head(Brent.return, n = 5)

## Brent.return
## 1987-05-22 0.5405419
## 1987-05-25 0.2691792
## 1987-05-26 0.1611604
## 1987-05-27 -0.1611604
## 1987-05-28 0.0000000
tail(Brent.return, n = 5)

## Brent.return
## 2015-12-21 -3.9394831
## 2015-12-22 -0.2266290
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## 2015-12-23 1.4919348
## 2015-12-24 3.9177726
## 2015-12-28 -0.3768511

Let’s look at this data with box plots and autocorrelation functions. Box plots will show
minimum to maximum with the mean in the middle of the box. Autocorrelation plots will
reveal how persistent the returns are over time.

We run these statements.
boxplot(as.vector(Brent.return), title = FALSE,

main = "Brent Daily % Change", col = "blue",
cex = 0.5, pch = 19)

skewness(Brent.return)
kurtosis(Brent.return)

This time series plot shows lots of return clustering and spikes, especially negative ones.

Performing some “eyeball econometrics” these clusters seem to occur around - The oil em-
bargo of the ’70s - The height of the new interest rate regime of Paul Volcker at the Fed -
“Black Monday” stock market crash in 1987 - Gulf I - Barings and other derivatives business
collapses in the ’90s

2. Let’s look at the likelihood of positive versus negative returns. We might want to
review skewness and kurtosis definitions and ranges to help us.

Now to look at persistence:
acf(coredata(Brent.return), main = "Brent Daily Autocorrelogram",

lag.max = 20, ylab = "", xlab = "",
col = "blue", ci.col = "red")

pacf(coredata(Brent.return), main = "Brent Daily Partial Autocorrelogram",
lag.max = 20, ylab = "", xlab = "",
col = "blue", ci.col = "red")

Confidence intervals are the red dashed lines. ACF at lag 6 means the correlation of current
Brent returns with returns 6 trading days ago, including any correlations from trading day 1
through 6. PACF is simpler: it is the raw correlation between day 0 and day 6. ACF starts
at lag 0 (today); PACF starts at lag 1 (yesterday).

3. How many trading days in a typical week or in a month? Comment on the spikes (blue
lines that grow over or under the red dashed lines).

4. How thick is that tail?

Here is a first look:
boxplot(as.vector(Brent.return), title = FALSE,

main = "Brent Daily Returns", col = "blue",
cex = 0.5, pch = 10)
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… with some basic stats to back up the eyeball econometrics in the box plot:
skewness(Brent.return)

## [1] -0.6210447
## attr(,"method")
## [1] "moment"
kurtosis(Brent.return)

## [1] 14.62226
## attr(,"method")
## [1] "excess"

• A negative skew means there are more observations less than the median than greater.
• This high a kurtosis means a pretty heavy tail, especially in negative returns. That

means they have happened more often than positive returns.
• A preponderance of negative returns frequently happening spells trouble for anyone

owning these assets.
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4.2.1 Implications

• We should recommend that management budget for the body of the distribution from
the mean and out to positive levels.

• At the same time management should build a comprehensive playbook for the strong
possibility that bad tail events frequently happen and might happen again (and why
shouldn’t they?).

3. Now for something really interesting
acf(coredata(Brent.return), main = "Brent Autocorrelogram",

lag.max = 20, ylab = "", xlab = "",
col = "blue", ci.col = "red")
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pacf(coredata(Brent.return), main = "Brent Partial Autocorrelogram",
lag.max = 20, ylab = "", xlab = "",
col = "blue", ci.col = "red")
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On average there are 5 days in the trading week and 20 in the trading month.

Some further thoughts:

• There seems to be positive weekly and negative monthly cycles.
• On a weekly basis negative rates (5 trading days ago) are followed by negative rates

(today) and vice-versa with positive rates.
• On a monthly basis negative rates (20 days ago) are followed by positive rates (today).
• There is memory in the markets: positive correlation at least weekly up to a month

ago reinforces the strong and frequently occurring negative rates (negative skew and
leptokurtotic, a.k.a. heavy tails).

• Run the PACF for 60 days to see a 40-day negative correlation as well.

4.2.2 Now for somthing really interesting…again

Let’s look just at the size of the Brent returns. The absolute value of the returns (think of
oil and countries entering and leaving the EU!) can signal contagion, herd mentality, and
simply very large margin calls (and the collateral to back it all up!). Let’s run this code:
Brent.return.abs <- abs(Brent.return)
## Trading position size matters
Brent.return.tail <- tail(Brent.return.abs[order(Brent.return.abs)],
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100)[1]
## Take just the first of the 100
## observations and pick the first
index <- which(Brent.return.abs > Brent.return.tail,

arr.ind = TRUE)
## Build an index of those sizes that
## exceed the heavy tail threshold
Brent.return.abs.tail <- timeSeries(rep(0,

length(Brent.return)), charvec = time(Brent.return))
## just a lot of zeros we will fill up
## next
Brent.return.abs.tail[index, 1] <- Brent.return.abs[index]
## A Phew! is in order

What did we do? Let’s run some plots next.
plot(Brent.return.abs, xlab = "", main = "Brent Daily Return Sizes",

col = "blue")
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We see lots of return volatility – just in the pure size along. These are correlated with
financial innovations from the ’80s and ’90s, as well as Gulf 1, Gulf 2, Great Recession, and
its 9/11 antecedents.
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acf(coredata(Brent.return.abs), main = "Brent Autocorrelogram",
lag.max = 60, ylab = "", xlab = "",
col = "blue", ci.col = "red")
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pacf(coredata(Brent.return.abs), main = "Brent Partial Autocorrelogram",
lag.max = 60, ylab = "", xlab = "",
col = "blue", ci.col = "red")
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There is Volatility Clustering galore. Strong persistent lags of absolute movements in returns
evidenced by the ACF plot. There is evidence of dampening with after shocks past trading
10 days 10 ago. Monthly volatility affects today’s performance.

Some of this volatility arises from the way Brent is traded. It is lifted through well-heads
in the North Sea. It then is scheduled for loading onto ships and loads are then bid, along
with routes to destination. It takes about five days to load crude and another five to unload.
At each partial loading and unloading, the crude is re-priced. Then there is the voyage lag
itself, where paper claims to wet crude create further pricing, and volatility.

Next we explore the relationships among financial variables.

4.3 Getting Caught in the Cross-Current

Now our job is to ask the really important questions around connectivity. Suppose we are
banking our investments in certain sectors of an economy, with its GDP, financial capability,
employment, exports and imports, and so on.

• How will we decide to contract for goods and services, segment vendors, segment
customers, based on these interactions?

• How do we construct out portfolio of business opportunities?
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• How do we identify insurgent and relational risks and build a playbook to manage
these?

• How will changes in one sector’s factors (say, finance, political will) affect factors in
another?

We will now stretch our univariate analysis a bit and look at cross-correlations to help us
get the ground truth around these relationships, and begin to answer some of these business
questions in a more specific context.

Let’s load the zoo and qrmdata libraries first and look at the EuroStoxx50 data set. Here we
can imagine we are rebuilding our brand and footprint in the European Union and United
Kingdom. Our customers might be the companies based in these countries as our target
market.

• The data: 4 stock exchange indices across Europe (and the United Kingdom)
• This will allow us to profile the forward capabilities of these companies across their

economies.
• Again we will look at returns data using the diff(log(data))[-1] formula.

require(zoo)
require(qrmdata)
require(xts)
data("EuStockMarkets")
EuStockMarkets.price <- as.zoo(EuStockMarkets)
EuStockMarkets.return <- diff(log(EuStockMarkets.price))[-1] *

100

We then plot price levels and returns.
plot(EuStockMarkets.price, xlab = " ",

main = " ")
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plot(EuStockMarkets.return, xlab = " ",
main = " ")
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We see much the same thing as Brent oil with volatility clustering and heavily weighted tails.

Let’s then look at cross-correlations among one pair of these indices to see how they are
related across time (lags) for returns and the absolute value of returns. THe function ccf
will aid us tremendously.
ccf(EuStockMarkets.return[, 1], EuStockMarkets.return[,

2], main = "Returns DAX vs. CAC",
lag.max = 20, ylab = "", xlab = "",
col = "blue", ci.col = "red")
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ccf(abs(EuStockMarkets.return[, 1]),
abs(EuStockMarkets.return[, 2]),
main = "Absolute Returns DAX vs. CAC",
lag.max = 20, ylab = "", xlab = "",
col = "blue", ci.col = "red")
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We see some small raw correlations across time with raw returns. More revealing, we see
volatility of correlation clustering using return sizes. We can conduct one more experiment:
a rolling correlation using this function:
corr.rolling <- function(x) {

dim <- ncol(x)
corr.r <- cor(x)[lower.tri(diag(dim),

diag = FALSE)]
return(corr.r)

}

We then embed our rolling correlation function, corr.rolling, into the function rollapply
(look this one up using ??rollapply at the console). The question we need to answer is:
What is the history of correlations, and from the history, the pattern of correlations in the
UK and EU stock markets? If there is a “history” with a “pattern,” then we have to manage
the risk that conducting business in one country will definitely affect business in another.
The implication is that bad things will be followed by more bad things more often than good
things. The implication compounds a similar implication across markets.
corr.returns <- rollapply(EuStockMarkets.return,

width = 250, corr.rolling, align = "right",
by.column = FALSE)

colnames(corr.returns) <- c("DAX & CAC",
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"DAX & SMI", "DAX & FTSE", "CAC & SMI",
"CAC & FTSE", "SMI & FTSE")

plot(corr.returns, xlab = "", main = "")
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Again we observe the volatility clustering from bunching up of the the absolute sizes of
returns. Economic performance is certainly subject here to the same dynamics we saw for a
single financial variable such as Brent.

Let’s redo some of the work we just did using another set of techniques. This time we are
using the “Fisher” transformation. Look up Fisher in Wikipedia and in your reference texts.

• How can the Fisher Transformation possibly help us answer our business questions?
• For three Spanish companies, Iberdrola, Endesa, and Repsol, replicate the Brent and

EU stock market experiments above with absolute sizes and tails. Here we already
have “series” covered.

First, the Fisher transformation is a smoothing routine that helps us tabilize the volitility
of a variate. It does this by pulling some of the shockiness (i.e., outliers and aberrant noise)
out of the original time series. In a phrase, it helps us see the forest (or the wood) for the
trees.

We now replicate the Brent and EU stock exchange experiments. We again load some
packages and get some data using quantmod’s getSymbols off the Madrid stock exchange to
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match our initial working example of Iberian companies on account. Then compute returns
and merge into a master file.
require(xts)
require(qrmdata)
require(quantreg)
require(quantmod)
require(matrixStats)

tickers <- c("ELE.MC", "IBE.MC", "REP.MC")
getSymbols(tickers)

## [1] "ELE.MC" "IBE.MC" "REP.MC"
REP.r <- na.omit(diff(log(REP.MC[, 4]))[-1])
IBE.r <- na.omit(diff(log(IBE.MC[, 4]))[-1])
ELE.r <- na.omit(diff(log(ELE.MC[, 4]))[-1]) # clean up missing values

ALL.r <- na.omit(merge(REP = REP.r, IBE = IBE.r,
ELE = ELE.r, all = FALSE))

Next we plot the returns and their absolute values, acf and pacf, all like we did in Brent.
Again we see

1. The persistence of returns
2. The importance of return size
3. Clustering of volatility

plot(ALL.r)
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ALL.r 2007−01−02 / 2018−01−05
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par(mfrow = c(2, 1))
acf(ALL.r)
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par(mfrow = c(2, 1))
acf(abs(ALL.r))
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par(mfrow = c(2, 1))
pacf(ALL.r)



4.3. GETTING CAUGHT IN THE CROSS-CURRENT 101

0 5 10 15 20 25 30

−
0.

05
0.

05

Lag

P
ar

tia
l A

C
F

REP.MC.Close

0 5 10 15 20 25 30

−
0.

05
0.

05

Lag

REP. & IBE.

0 5 10 15 20 25 30

−
0.

05
0.

05

Lag

REP. & ELE.

−30 −25 −20 −15 −10 −5 0

−
0.

05
0.

05

Lag

P
ar

tia
l A

C
F

IBE. & REP.

0 5 10 15 20 25 30

−
0.

05
0.

05

Lag

IBE.MC.Close

0 5 10 15 20 25 30

−
0.

05
0.

05

Lag

IBE. & ELE.

−30 −25 −20 −15 −10 −5 0

−
0.

05
0.

05

Lag

P
ar

tia
l A

C
F

ELE. & REP.

−30 −25 −20 −15 −10 −5 0

−
0.

05
0.

05

Lag

ELE. & IBE.

0 5 10 15 20 25 30

−
0.

05
0.

05

Lag

ELE.MC.Close

par(mfrow = c(2, 1))
pacf(abs(ALL.r))
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Let’s examine the correlation structure of markets where we can observe

1. The relationship between correlation and volatility
2. How quantile regression gets us to an understanding of high stress (high and low

quantile) episodes
R.corr <- apply.monthly(ALL.r, FUN = cor)
R.vols <- apply.monthly(ALL.r, FUN = colSds) ## from MatrixStats
head(R.corr, 3)

## [,1] [,2] [,3] [,4] [,5] [,6]
## 2007-01-31 1 0.3613554 -0.27540757 0.3613554 1 0.10413800
## 2007-02-28 1 0.5661814 -0.09855544 0.5661814 1 0.10760477
## 2007-03-30 1 0.4500982 -0.08874664 0.4500982 1 0.08538064
## [,7] [,8] [,9]
## 2007-01-31 -0.27540757 0.10413800 1
## 2007-02-28 -0.09855544 0.10760477 1
## 2007-03-30 -0.08874664 0.08538064 1
head(R.vols, 3)

## REP.MC.Close IBE.MC.Close ELE.MC.Close
## 2007-01-31 0.009787963 0.007892759 0.009777426
## 2007-02-28 0.009181099 0.014571945 0.007674848



4.3. GETTING CAUGHT IN THE CROSS-CURRENT 103

## 2007-03-30 0.015317331 0.012719792 0.010919155
R.corr.1 <- matrix(R.corr[1, ], nrow = 3,

ncol = 3, byrow = FALSE)
rownames(R.corr.1) <- tickers
colnames(R.corr.1) <- tickers
head(R.corr.1)

## ELE.MC IBE.MC REP.MC
## ELE.MC 1.0000000 0.3613554 -0.2754076
## IBE.MC 0.3613554 1.0000000 0.1041380
## REP.MC -0.2754076 0.1041380 1.0000000
R.corr <- R.corr[, c(2, 3, 6)]
colnames(R.corr) <- c("ELE.IBE", "ELE.REP",

"IBE.REP")
colnames(R.vols) <- c("ELE.vols", "IBE.vols",

"REP.vols")
head(R.corr, 3)

## ELE.IBE ELE.REP IBE.REP
## 2007-01-31 0.3613554 -0.27540757 0.10413800
## 2007-02-28 0.5661814 -0.09855544 0.10760477
## 2007-03-30 0.4500982 -0.08874664 0.08538064
head(R.vols, 3)

## ELE.vols IBE.vols REP.vols
## 2007-01-31 0.009787963 0.007892759 0.009777426
## 2007-02-28 0.009181099 0.014571945 0.007674848
## 2007-03-30 0.015317331 0.012719792 0.010919155
R.corr.vols <- merge(R.corr, R.vols)

plot.zoo(merge(R.corr.vols))
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merge(R.corr.vols)

ELE.vols <- as.numeric(R.corr.vols[,
"ELE.vols"])

IBE.vols <- as.numeric(R.vols[, "IBE.vols"])
REP.vols <- as.numeric(R.vols[, "REP.vols"])
length(ELE.vols)

## [1] 133
fisher <- function(r) {

0.5 * log((1 + r)/(1 - r))
}
rho.fisher <- matrix(fisher(as.numeric(R.corr.vols[,

1:3])), nrow = length(ELE.vols),
ncol = 3, byrow = FALSE)

4.3.1 On to quantiles

Here is the quantile regression part of the package. Quantile regression finds the average re-
lationship between dependent and independent variables just like ordinary least squares with
one exception. Instead of centering the regression on the arithmetic mean of the dependent
variable, quantile regression centers the regression on a specified quantile of the dependent
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variable. So instead of using the arithemetic average of the rolling correlations, we now use
the 10th quantile, or the median, which is the 50th quantile as our reference. This makes
great intuitive sense since we have already established that the series we deal with here are
thick tailed, skewed, and certainly not normally distributed.

Here is how we use the quantreg package.

1. We set taus as the quantiles of interest.
2. We run the quantile regression using the quantreg package and a call to the rq func-

tion.
3. We can overlay the quantile regression results onto the standard linear model regres-

sion.
4. We can sensitize our analysis with the range of upper and lower bounds on the param-

eter estimates of the relationship between correlation and volatility. This sensitivity
analysis is really a confidence interval based on quantile regressions.

require(quantreg)
taus <- seq(0.05, 0.95, 0.05)
fit.rq.ELE.IBE <- rq(rho.fisher[, 1] ~

ELE.vols, tau = taus)
fit.lm.ELE.IBE <- lm(rho.fisher[, 1] ~

ELE.vols)
plot(summary(fit.rq.ELE.IBE), parm = "ELE.vols")

0.2 0.4 0.6 0.8

−
20

−
10

0
10

20
30

ELE.vols



106 CHAPTER 4. MACROFINANCIAL DATA ANALYSIS

Here we build the estimations and plot the upper and lower bounds.
taus1 <- c(0.05, 0.95) ## fit the confidence interval (CI)
plot(ELE.vols, rho.fisher[, 1], xlab = "ELE.vol",

ylab = "ELE.IBE")
abline(fit.lm.ELE.IBE, col = "red")
for (i in 1:length(taus1)) {

## these lines will be the CI
abline(rq(rho.fisher[, 1] ~ ELE.vols,

tau = taus1[i]), col = "blue")
}
grid()
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Quantile regression helps us to see the upper and lower bounds. Relationships between high-
stress periods and correlation are abundant. These markets simply reflect normal buying
behaviors across many types of exchanges: buying food at Safeway or Whole Foods, buying
collateral to insure a project, selling off illiquid assets.
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4.4 Time is on our Side

Off to another important variable, the level and growth rate of Gross National Product.
Let’s start with some US Gross National Product (GNP) data from the St. Louis Fed’s open
data website (“FRED”). We access https://fred.stlouisfed.org/series/GNPC96 to download
real GNP in chained 1996 dollars. Saving this as a CSV file wwe then read the saved file
into our R workspace.
name <- "GNP"
download <- read.csv("data/GNPC96.csv")

Look at the data:
hist(download[, 2])

Histogram of download[, 2]
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summary(download[, 2])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1943 3808 6659 8035 12385 17353

We then create a raw time series object using the ts function where rownames are dates,
select some data, and calculate growth rates. This will allow us and plotting functions to use
the dates to index the data. Again we make use of the diff(log(data)) vector calculation.

https://fred.stlouisfed.org/series/GNPC96
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GNP <- ts(download[1:85, 2], start = c(1995,
1), freq = 4)

GNP.rate <- 100 * diff(log(GNP)) # In percentage terms
str(GNP)

## Time-Series [1:85] from 1995 to 2016: 1947 1945 1943 1974 2004 ...
head(GNP)

## [1] 1947.003 1945.311 1943.290 1974.312 2004.218 2037.215
head(GNP.rate)

## [1] -0.08694058 -0.10394485 1.58375702 1.50339765 1.63297193 0.55749065

Let’s plot the GNP level and rate and comment on the patterns.
plot(GNP, type = "l", main = "US GNP Level")
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plot(GNP.rate, type = "h", main = "GNP quarterly growth rates")
abline(h = 0, col = "darkgray")
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We see a phenomenon called “nonstationarity.” The probability distribution (think hist())
would seem to change over time (many versions of a hist()). This means that the standard
deviation and mean change as well (and higher moments such as skewness and kurtosis).
There is trend in the level and simply dampened sinusoidal in the rate. In a nutshell we
observe several distributions mixed together in this series. This will occur again in the term
structure of interest rates where we will use splines and their knots to get at parameterizing
the various distributions lurking just beneath the ebb and flow of the data.

4.4.1 Forecasting GNP

As always let’s look at ACF and PACF:
par(mfrow = c(2, 1)) ##stacked up and down
acf(GNP.rate)
acf(abs(GNP.rate))
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par(mfrow = c(1, 1)) ##default setting

What do we think is going on? There are several significant autocorrelations within the last
4 quarters. Partial autocorrelation also indicates some possible relationship 8 quarters back.

Let’s use R’s time series estimation and prediction tool arima. In this world we think there
is a regression that looks like this:

xt = a0 + a1xt−1...apxt−p + b1εt−1 + ...+ bqεt−q

where xt is a first, d = 1, differenced level of a variable, here GNP. There are p lags of the
rate itself and q lags of residuals. We officially call this an Autoregressive Integrated Moving
Average process of order (p, d, q), or ARIMA(p,d,q) for short.

Estimation is quick and easy.
fit.rate <- arima(GNP.rate, order = c(2,

1, 1))

The order is 2 lags of rates, 1 further difference (already differenced once when we calculated
diff(log(GNP))), and 1 lag of residuals. Let’s diagnose the results with tsdiag(). What
are the results?
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fit.rate

##
## Call:
## arima(x = GNP.rate, order = c(2, 1, 1))
##
## Coefficients:
## ar1 ar2 ma1
## 0.4062 0.0170 -1.000
## s.e. 0.1106 0.1107 0.038
##
## sigma^2 estimated as 1.182: log likelihood = -126.49, aic = 260.98

Let’s take out the moving average term and compare:
fit.rate.2 <- arima(GNP.rate, order = c(2,

0, 0))
fit.rate.2

##
## Call:
## arima(x = GNP.rate, order = c(2, 0, 0))
##
## Coefficients:
## ar1 ar2 intercept
## 0.3939 0.0049 1.0039
## s.e. 0.1092 0.1093 0.1946
##
## sigma^2 estimated as 1.168: log likelihood = -125.8, aic = 259.59

We examine the residuals next.
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Histogram of GNP.resid
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The qqnorm function plots actual quantiles against theoretical normal distributions of the
quantiles. A line through the scatterplot will reveal deviations of actual quantiles from the
normal ones. Those deviations are the key to understanding tail behavior, and thus the
potential influence of outliers, on our understanding of the data.
qqnorm(GNP.resid)
qqline(GNP.resid)
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Some ways to interpret the qq-chart include

1. The diagonal line is the normal distribution quantile line.
2. Deviations of actual quantiles from the normal quantile line mean nonnormal.
3. Especially deviations at either (or both) end of the line spell thick tails and lots more

“shape” than the normal distribution allows.

4.4.2 Residuals again

How can we begin to diagnose the GNP residuals? Let’s use the ACF and the moments
package to calculate skewness and kurtosis. We find that the series is very thick tailed
and serially correlated as evidenced by the usual statistical suspects. But no volatility
clustering.
acf(GNP.resid)
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Now let’s look at the absolute values of growth (i.e., GNP growth sizes). This will help us
understand the time series aspects of the volatility of the GNP residuals.
acf(abs(GNP.resid))
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…and compute tail statistics.
require(moments)
skewness(GNP.resid)

## [1] 0.2283692
## attr(,"method")
## [1] "moment"
kurtosis(GNP.resid)

## [1] 1.037626
## attr(,"method")
## [1] "excess"

The residuals are positively skewed and not so thick tailed, as the normal distribution has
by definition a kurtosis equal to 3.00. By the by: Where’s the forecast?
(GNP.pred <- predict(fit.rate, n.ahead = 8))

## $pred
## Qtr1 Qtr2 Qtr3 Qtr4
## 2016 1.410045 1.185815 1.084467
## 2017 1.039485 1.019489 1.010602 1.006652



116 CHAPTER 4. MACROFINANCIAL DATA ANALYSIS

## 2018 1.004896
##
## $se
## Qtr1 Qtr2 Qtr3 Qtr4
## 2016 1.093704 1.185259 1.204803
## 2017 1.209512 1.210836 1.211272 1.211437
## 2018 1.211504

Now for something really interesting, yet another rendering of the notorious Efficient Markets
Hypothesis.

4.5 Give it the Boot

Our goal is to infer the significance of a statistical relationship among variates. However, we
do not have access to, or a “formula” does not exist, that allows us to compute the sample
standard deviation of the mean estimator.

• The context is just how dependent is today’s stock return on yesterday’s?
• We want to use the distribution of real-world returns data, without needing assump-

tions about normality.
• The null hypothesis H0 is lack of dependence (i.e., an efficient market). The alternative

hypothesis H1 is that today’s returns depend on past returns, on average.

Our strategy is to change the data repeatedly, and re-estimate a relationship. The data is
sampled using the replicate function, and the sample ACF is computed. This gives us
the distribution of the coefficient of the ACF under the null hypotheses, H0: independence,
while using the empirical distribution of the returns data.

Let’s use the Repsol returns and pull the 1st autocorrelation from the sample with this
simple code,
acf(REP.r, 1)
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There is not much for us to see, barely a blip, but there is a correlation over the 95% line.
Let’s further test this idea.

• We obtain 2500 draws from the distribution of the first autocorrelation using the
replicate function.

• We operate under the null hypothesis of independence, assuming rational markets (i.e,
rational markets is a “maintained hypothesis”).

set.seed(1016)
acf.coeff.sim <- replicate(2500, acf(sample(REP.r,

size = 2500, replace = FALSE), lag = 2,
plot = FALSE)$acf[2])

summary(acf.coeff.sim)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.02038 0.02689 0.03653 0.03630 0.04568 0.08768

Here is a plot of the distribution of the sample means of the one lag correlation between
successive returns.
hist(acf.coeff.sim, probability = TRUE,

breaks = "FD", xlim = c(0.04, 0.05),
col = "steelblue", border = "white")



118 CHAPTER 4. MACROFINANCIAL DATA ANALYSIS

Histogram of acf.coeff.sim
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4.5.1 Try this exercise

We will nvestigate tolerances of 5% and 1% from both ends of the distribution of the 1-lag
acf coefficient using these statements. That was a mouthful! When we think of inference,
we first identify a parameter of interest, and its estimator. That parameter is the coefficient
of correlation between the current return and its 1-period lag. We estimate this parameter
using the history of returns. If the parameter is significantly, and probably, not equal to
zero, then we would have reason to believe there is “pattern” in the “history.”
## At 95% tolerance level
quantile(acf.coeff.sim, probs = c(0.025,

0.975))

## 2.5% 97.5%
## 0.006454092 0.064821915
## At 99% tolerance level
quantile(acf.coeff.sim, probs = c(0.005,

0.995))

## 0.5% 99.5%
## -0.004856163 0.074229547
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## And the
(t.sim <- mean(acf.coeff.sim)/sd(acf.coeff.sim))

## [1] 2.464299
(1 - pt(t.sim, df = 2))

## [1] 0.06633726

Here are some highly preliminary and provisional answers to ponder.

1. Quantile values are very narrow…
2. How narrow (feeling like rejecting the null hypothesis)?
3. Thet-stat is huge, but…
4. …no buts!, the probability that we would be wrong to reject the null hypothesis is very

small.

Here we plot the simulated density and lower and upper quantiles, along with the estimate
of the lag-1 coefficient:
plot(density(acf.coeff.sim), col = "blue")
abline(v = 0)
abline(v = quantile(acf.coeff.sim, probs = c(0.025,

0.975)), lwd = 2, col = "red")
abline(v = acf(REP.r, 1, plot = FALSE)$acf[2],

lty = 2, lwd = 4, col = "orange")
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Can we reject the null hypothesis that the coefficient = 0? Is the market “efficient”?

1. Reject the null hypothesis since there is a less than 0.02% chance that the coefficient
is zero.

2. Read [Fama(2013, p. 365-367)]https://www.nobelprize.org/nobel_prizes/economic-sciences/
laureates/2013/fama-lecture.pdf for a diagnosis.

3. If the model is correct (ACF lag-1) then the previous day’s return can predict today’s
return according to our analysis. Thus the market would seem to be inefficient.

4. This means we might be able to create a profitable trading strategy that makes use of
the little bit of correlation we found to be significant (net of the costs of trading).

4.6 Summary

We explored time series data using ACF, PACF, and CCF. We showed how to pull data
from Yahoo! and FRED. We characterized several stylized facts of financial returns and
inferred behavior using a rolling correlation regression on volatility. We then supplemented
the ordinary least square regression confidence intervals using the entire distribution of the
data with quantile regression. We also built Using bootstrapping techniques we simulated
coefficient inference to check the efficient markets hypothesis. This, along with the quantile
regression technique, allows us to examine risk tolerance from an inference point of view.

https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2013/fama-lecture.pdf
https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2013/fama-lecture.pdf
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4.7 Further Reading

In this chapter we touch on the voluminous topic of time series analysis. Ruppert et al. in
chapters 12, 13, 14, and 15 explore the basics, as in this chapter, as well as far more advanced
topics such as GARCH and cointegration. We will explore GARCH in a later chapter as
well. McNeil et al. in their chapter 1 surveys the perspective of risk, all of helps to yield
the so-called stylized fact of financial data in chapter 5 and a more formal treatment of time
series topics in chapter 4.

4.8 Practice Laboratory

4.8.1 Practice laboratory #1

4.8.1.1 Problem

4.8.1.2 Questions

4.8.2 Practice laboratory #2

4.8.2.1 Problem

4.8.2.2 Questions

4.9 Project

4.9.1 Background

4.9.2 Data

4.9.3 Workflow

4.9.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.
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• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.
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Chapter 5

Term Structure and Splines

5.1 Imagine This

Our organization is about to expand its operations into the European Union (EU). To do
that we will have to raise several hundred million dollars of collateral to back employees,
customers, and our supply chain in the EU. Negative interest rates abound in the markets as
political events and central bankers vie for control of the euro and its relationship to major
currencies. Our task is to help the Chief Financial Officer understand how the term structure
of interest rates might change and thus impact the amount and pricing of the collateral our
organization is about to raise.

We might ask ourselves:

1. What is the term structure of interest rates?
2. Why would the term structure matter to the CFO?

“Term” refers to the maturity of a debt instrument, the “loan” we get to buy a house. “Term
structure” is the schedule of interest rates posted for each maturity. The “term structure”
is also known as the “yield curve.” If the maturity on your loan (or your company’s bonds)
rises, a higher yield might just convince investors (like you or TIAA/CREF or other cash-
rich investor) to wait longer for a return of the principal they lend to you. Higher yields
mean also that you would have to price the bond at a higher coupon rate. This means more
income is paid out to lenders and bondholders than to management, staff, and shareholders.
The consequence is cash flow volatility.

Our objective is to conceive a model of bond prices that reflects the underlying dynamics of
the term structure of interest rates. Such a model requires us to formulate forward rates of
return on bonds of various maturities, and average these rates across the time to maturity
in a yield calculation. We will then need to understand how to interpolate and extrapolate
rates across maturities. With that tool in hand, we can price bonds, collateral, and build
discount rates to evaluate future expected cash flows.

To do all of this we will employ “regression splines” to interpolate and extrapolate values of

125
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forward rates from the term structure. The regression spline will reflect a financial model of
the term structure applied to the estimation of actual term structures. We will

• Start with statistical definitions and financial models of bond prices.
• Move into the working example of US Treasury STRIPs (zero-coupon bonds) and

explore the possibilities.
• Build a financially informed model of the term structure of forward empirical rates.
• Estimate the model with nonlinear least squares.
• Compare and contrast two competing model specifications.

In the end we will have these tools:

• Extensible quadratic spline model of the forward curve;
• R skills to explore data with plots and translate theoretical forward curve model into

an estimable model; and
• Applications of the tools to the problem of managing the value of collateral.

5.2 The Bond

Our analysis begins with understanding the cash flows and valuation of a simple bond. A
typical bond is a financial instrument that pays fixed cash flows for the maturity of the
bond with a repayment of the principal (notional or face value) of the bond at maturity. In
symbols,

V =
mT∑
t=0

cP

(1 + y/m)t
+ P

(1 + y/m)mT
,

where V is the present value of the bond, T is the number of years to maturity, m is the
number of periods cash flows occur per year, y is the bond yield per year, c is the coupon
rate per year, and P is the bond’s principal (notional or face value).

Using the idea of an annuity that pays (c/m)P per period for mT periods and P at maturity
period mT we get a nice formula for the present value sum of coupon payments:

V = (c/m)P
(

1
y/m

− 1
(y/m)(1 + y/m)mT

)
+ P

(1 + y/m)mT
.

From a financial engineering point of view this formulation is the same as constructing a
position that is

• long a perpetuity that pays a unit of currency starting the next compounding period
and

• short another perpetuity that starts to pay a unit of currency at the maturity of the
bond plus one compounding period.
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Our typical bond pays coupons twice a year, so m = 2. If the bond’s maturity in years is
10 years, then mT = 10 × 2 = 20 compounding periods. We will assume that there is no
accrual of interest as of the bond’s valuation date for the moment.
c <- 0.05
P <- 100
y <- c(0.04, 0.05, 0.06)
m <- 2
T <- 10
(V <- (c/m) * P * (1/(y/m) - 1/((y/m) *

(1 + (y/m))^(m * T))) + P/(1 + (y/m))^(m *
T))

## [1] 108.17572 100.00000 92.56126

5.2.1 A quick example

1. If the coupon rate is greater than the yield, why is the price greater than par value?

2. Negative interest rates abound, so set y <- c(-0.02, -0.01, 0.00, .01, .02) and
recalculate the potential bond values.

One answer might be:

The bond pays out at a rate greater than what is required in the market. Buyers pay more
than par to make up the difference.

Here are more results. We assign variables to assumptions in the question and then calculate
the
c <- 0.05
P <- 100
y <- c(-0.02, -0.01, 0, 0.01, 0.02)
m <- 2
T <- 10
(V <- (c/m) * P * (1/(y/m) - 1/((y/m) *

(1 + (y/m))^(m * T))) + P/(1 + (y/m))^(m *
T))

## [1] 177.9215 163.2689 NaN 137.9748 127.0683

Why a NAN? Because we are dividing by ‘0’! By the way, these are some hefty
premia. Check out this article on negative yields… http://www.ft.com/cms/s/0/
312f0a8c-0094-11e6-ac98-3c15a1aa2e62.html

The yield in this model is an average of the forward rates the markets used to price future
cash flows during future periods of time. How can we incorporate a changing forward rate
into a model of bond prices? Our strategy is to use the past as a guide for the future and

http://www.ft.com/cms/s/0/312f0a8c-0094-11e6-ac98-3c15a1aa2e62.html
http://www.ft.com/cms/s/0/312f0a8c-0094-11e6-ac98-3c15a1aa2e62.html
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calibrate rates to a curve of rates versus maturities. By using a regression spline model of
the term structure we can develop rates at any maturity. Then we can use the interpolated
(even extrapolated) rates as building blocks in the valuation of bonds.

5.2.2 What’s a spline?

A spline is a function that is constructed piece-wise from polynomial functions. But imagine
the polynomials are pieces of the term structure of interest rates. Each term structure
segment is marked off by a set of price and maturity pairs. Whole sections can be marked
off by a knot at a location in the term structure paired data. Knots are most commonly
placed at quantiles to put more knots where data is clustered close together. A different
polynomial function is estimated for each range and domain of data between each knot: this
is the spline. Now we will use some finance to build a polynomial regression spline out of
US Treasury zero-coupon data.

In general a polynomial is an expression that looks like this:

f(x) = a0x
0 + a1x

1 + a2x
2 + ...+ apx

p,

where the a’s are constant coefficients, and x0 = 1 and x1 = x.

• If p = 0, then we have a constant function.

• If p = 1, we have a linear function.

• If p = 2, we have a quadratic function.

• If p = 3, we have a cubic function, and so on…

In our term structure work We will be using a cubic function to build a regression spline.

5.2.3 Back to the Bond

Suppose investors give an issuer today the present value, the bond “price” PT of receiving
back the 100% of the face value of a zero-coupon bond at maturity year (or fraction thereof),
T .

The price of a zero coupon bond, quoted in terms of the percentage of face value, is this
expression for discrete compounding at rate yd

T (say, monthly you get a percentage of last
month’s balance):

PT = 100
(1 + yd(T ))T

.

Suppose, with the help of Jacob Bernoulli and Leonhardt Euler, we run this experiment:



5.2. THE BOND 129

1. Pay today at the beginning of the year P to receive $1 at the end of one year AND
interest y is compounded only once in that year. Thus at the end of the year we receive
P + yP . But by contract this amount is $1, so that

P + yP = P (1 + y) = 1

and solving for P
P = 1

(1 + y)1

where we raised (1 + y) to the first power to emphasize that one compounding period
was modeled.

2. Now suppose that we can receive interest twice a year at an annual interest rate of y.
Then at the end of the first half of the year we receive half of the interest y/2 so that
we have in our contract account

P
(

1 + y

2

)
We then can let this stay in the account this amount will also earn y/2 interest to the
end of the contract year so that

P
(

1 + y

2

)
+ y

2

[
P
(

1 + y

2

)]
= P

(
1 + y

2

)(
1 + y

2

)
= P

(
1 + y

2

)2

Setting
P
(

1 + y

2

)2
= $1

we can solve for P , the present value of receiving $1 at the end of the contract year when
we have two compounding periods or

P = $1(
1 + y

2

)2

3. We can, again with Jacob Bernoulli’s help, more generally state for m compounding
periods

P = $1(
1 + y

m

)m

4. Now let’s suppose y = 100% interest and m = 365 × 24 × 60 = 525600 compounding
periods (minute by minute compounding), then

P = $1(
1 + 1

525600

)5
25600

(m <- 365 * 24 * 60)

## [1] 525600
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(y <- 1)

## [1] 1
(P <- 1/(1 + (y/m))^m)

## [1] 0.3678798

This translates into continuous compounding (you get a percentage of the last nanosecond’s
balance at the end of this nanosecond…as the nanoseconds get ever smaller…) as

PT (θ) = 100exp(−yTT ).

This expression is the present value of receiving a cash flow of 100% of face value at maturity.
If the bond has coupons, we can consider each of the coupon payments as a mini-zero bond.
Taking the sum of the present value of each of the mini-zeros gives us the value of the bond,
now seen as a portfolio of mini-zeros.

The yield yT the rate from date 0 to date T , maturity. It covers the stream of rates for each
intermediate maturity from 0 to T . Suppose we define forward rates r(t, θ), where each t
is one of the intermediate maturity dates between time 0 and maturity T , and θ contains
all of the information we need about the shape of r across maturities. We can estimate the
forward curve from bond prices P (T ) of the T th maturity with

−∆log(P (Ti))
∆Ti

= − log(P (Ti))− log(P (Ti−1))
Ti − Ti−1

.

The ∆ stands for the difference in one price or maturity i and the previous price and maturity
i− 1. The log() function is the natural logarithm. An example will follow.

The yield is then the average of the forward rates from date 0 to date T of a zero bond. We
use the integral, which amounts to a cumulative sum, to compute this average:

yT (θ) = T−1
∫ T

0
r(t, θ)dt.

The numerator is the cumulative sum of the forward rates for each maturity up to the last
maturity T . In this expression, rdt is the forward rate across a small movement in maturity.
The denominator is the number of maturity years T .

5.2.4 An example to clarify

Load these lines of R into the RStudio console:
maturity <- c(1, 5, 10, 20, 30) # in years
price <- c(99, 98, 96, 93, 89) # in percentage of face value
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A. Now let’s experiment on these zero-coupon prices with their respective maturities:

1. Calculate the log(price)/100. Then find the forward rates using using
(forward <- -diff(log(price))/diff(maturity))

2. Compare log(price) with price.
3. What does the forward rate formula indicate? What would we use it for?

B. Find the yield-to-maturity curve and recover the bond prices using
(forward.initial <- -log(price[1]/100))
(forward.integrate <- c(forward.initial,

forward.initial + cumsum(forward *
diff(maturity))))

# a rolling integration of rates
# across maturities
(price <- 100 * exp(-forward.integrate))
# present value of receiving 100% of
# face value

1. What is the interpretation of the forward.integrate vector?
2. What happened to the first bond price?
3. Did we recover the original prices?

Some results follow.

For question A we ran the forward rates. Let’s run the natural logarithm of price:
(forward <- -diff(log(price/100))/diff(maturity))

## [1] 0.002538093 0.004123857 0.003174870 0.004396312
(-log(price/100))

## [1] 0.01005034 0.02020271 0.04082199 0.07257069 0.11653382

-log(price/100) seems to give us the yield-to-maturity directly. But do look at
-diff(log(price)) next:
(-diff(log(price/100)))

## [1] 0.01015237 0.02061929 0.03174870 0.04396312

These look like rates, because they are. They are the continuous time version of a percentage
change, or growth, rate from one maturity to another maturity. We can use these numerical
results to motivate an interpretation: interest rates are simply rates of change of present
values relative to how much time they cover in maturity.

Now let’s calculate
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(-diff(price/100)/(price[-length(price)]/100))

## [1] 0.01010101 0.02040816 0.03125000 0.04301075

These are discrete percentage changes that are similar, but not quite the same, as the con-
tinuous (using log()) version.. Note the use of the indexing of price to eliminate the last
price, since what we want to compute is:

P (Ti)− P (Ti−1)
P (Ti−1)

5.2.5 Rolling the integration

Running the code for question B we get:
forward.initial <- -log(price[1]/100)
(forward.integrate <- c(forward.initial,

forward.initial + cumsum(forward *
diff(maturity))))

## [1] 0.01005034 0.02020271 0.04082199 0.07257069 0.11653382
# a rolling integration of rates
# across maturities
(price <- 100 * exp(-forward.integrate))

## [1] 99 98 96 93 89
# present value of receiving 100% of
# face value

The rolling “integration” is an accumulative process of adding more forward rates as the
maturity advances, thus a cumulative sum or in R a cumsum() is deployed.

1. Yields are the accumulation of forward rates. Thus the use of the cumulative sum as a
discrete version of the integral. Rates add up (instead of multiply: nice feature) when
we use log and exp to do our pricing.

2. The first forward rate is just the discount rate on the 1-year maturity bond stored in
forward.initial.

3. All bond prices are recovered by inverting the process of producing forwards from
prices and converting to yields and back to prices.

5.2.6 And now some more about that bond yield

We restate the definition of the price of a zero-coupon bond. The price of a zero-coupon
bond quoted in percentage of face value is this expression for discrete compounding (say,
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monthly you get a percentage of last month’s balance):

PT = 100
(1 + yd(T ))T

This translates into continuous compounding (you get a percentage of the last nanosecond’s
balance at the end of this nanosecond…) as

PT (θ) = 100exp(−yTT ) = 100exp(
∫ T

0
r(t, θ)dt)

This is the present value of receiving a cash flow of 100% of face value at maturity. If the
bond has coupons we can consider each of the coupon payments as a mini-zero bond.

The term with the
∫
symbol is a nanosecond by nanosecond way of summing the forward

rates across the maturity of the bond. Equating the two statements and solving for yT , the
continuously compounded yield we get:

PT = 100
(1 + y(T )d)T

= 100exp(−yTT ).

Rearranging with some creative algebra: 100 drops out, and remembering that exp(−yT t) =
1/exp(yTT ), we have:

exp(yTT ) = (1 + y(T )d)T .

Then, taking logarithms of both sizes we get

exp(yTT )−T = (1 + y(T )d)T −T = (1 + y(T )d).

Using the facts that log(exp(x)) = x and log(xT ) = T log(x) (very convenient):

log(exp(yTT )−T ) = yT = log(1 + y(T )d).

We now calculate discrete and continuous time versions of the yield:
y.T.d <- 0.2499 # Usury rate in NYS; d = discrete, T = maturity in years
(y.T <- log(1 + y.T.d))

## [1] 0.2230635
(y.T.d <- exp(y.T) - 1)

## [1] 0.2499
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We note that the continuous time yield is always less than the discrete rate because there are
so many more continuous compounding periods. This result leaps back to Jacob Bernoulli’s
(17xx) derivation.

5.3 Forward Rate Parameters

Now we attend to the heretofore mysterious θ, embedded in the forward rate sequence r.
We suppose the forward rate is composed of a long-term constant, θ0; a sloping term with
parameter θ1; a more shapely, even “humped” term with parameter θ2; and so on for p
polynomial terms:

r(t, θ) = θ0 + θ1t+ θ2t
2 + ...+ θpt

p

We recall (perhaps not too painfully!) from calculus that when we integrate any variable to
a power (the antiderivative), we raise the variable to the next power (and divide the term
by that next power). Here we integrate the forward rate to get

∫ T

0
r(t, θ)dt = θ0T + θ1

T 2

2
+ θ2

T 3

3
+ ...+ θp

T p+1

p+ 1
.

This is equivalent, after a fashion, to calculating the cumulative sum of forward rates across
small increments in time dt from today at maturity t = 0 to the maturity of the term at
t = T . We then can estimate the yield curve (and then the zero-coupon bond price) using
the integrated forward rates divided by the maturity T to get the yield as

yT (θ) = θ0 + θ1
T

2
+ θ2

T 2

3
+ ...+ θp

T p

p+ 1
.

Before we go any further we will procure some term structure data to see more clearly what
we have just calculated.

5.3.1 Term Structure Data

Here is some (very old) data from US Treasury STRIPS (a.k.a. for “Separate Trading of
Registered Interest and Principal of Securities”). The data set will prices and maturities for
what are known as “zero-coupon” bonds, that is, bonds that only pay out the face value of
the bond at maturity. There is more information about STRIPS at https://www.newyorkfed.
org/aboutthefed/fedpoint/fed42.html.
# The data is in a directory called
# data that is a sub-directory of the
# directory from which this code

https://www.newyorkfed.org/aboutthefed/fedpoint/fed42.html
https://www.newyorkfed.org/aboutthefed/fedpoint/fed42.html
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# executes.
dat <- read.table("data/strips_dec95.txt",

header = TRUE)

What does the data look like? Anything else? We run this code chunk to get a preliminary
view of this data.
head(dat, n = 3)

## T price
## 1 0.1260 99.393
## 2 0.6219 96.924
## 3 1.1260 94.511
names(dat)

## [1] "T" "price"
dat <- dat[order(dat$T), ]

We read in a table of text with a header, look at the first few observations with head(), and
order the data by maturity Ti. A simple plot is in order now.
plot(dat$T, dat$price, main = "STRIPS",

xlab = "Maturity", ylab = "Price")
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5.3.2 The empirical forward curve

We estimate the empirical forward curve using:

−∆log(P (Ti))
∆Ti

= − log(P (Ti))− log(P (Ti−1))
Ti − Ti−1

,

where P is the bond price and Ti is ith maturity,
t <- seq(0, 30, length = 100)
emp <- -diff(log(dat$price))/diff(dat$T)

The equation is translated into R with the diff function. We will use vector t later when
we plot our models of the forward curve. Definitely view it from the console and check out
??seq for more information about this function.

5.3.3 Try this exercise

Let’s plot the empirical forward curves using this line of code:
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plot(dat$T[2:length(dat$T)], emp, ylim = c(0.025,
0.075), xlab = "maturity", ylab = "empirical forward rate",
type = "b", cex = 0.75, lwd = 2,
main = "US Treasury STRIPs - 1995")

Try to answer these questions before moving on:

1. What exactly will dat$T[2:length(dat$T)] do when executed?
2. What effect will ylim, lwd, xlab, ylab, type, cex, main have on the plot?
3. Is there an break in the curve? Write the plot command to zoom in on maturities from

10 to 20 years.

We get these results:

1. What exactly will dat$T[2:length(dat$T)] do when executed?
length(dat$T)

## [1] 117
head(dat$T[2:length(dat$T)])

## [1] 0.3699 0.6219 0.8740 1.1260 1.3699 1.6219

We retrieve the T vector from the dat data frame using dat$T. Then length returns the
number of maturities in the dat data frame. dat$T[2:length(dat$T)] truncates the first
observation. Why? Because we differenced the prices to get forward rates and we need to
align the forward rates with their respective maturities Ti.

5.3.4 Plot parameters

Here is the list:

• ylim zooms in the y-axis data range
• lwd changes the line width
• xlab specifies the x-axis label
• ylab specifies the y-axis label
• type specifies the line
• cex changes the scaling of text and symbols
• main specifies the plot title.

We can go to http://www.statmethods.net/advgraphs/parameters.html to find more infor-
mation and the answer to the zoom-in question.

http://www.statmethods.net/advgraphs/parameters.html
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5.3.5 The plot itself

plot(dat$T[2:length(dat$T)], emp, ylim = c(0.025,
0.075), xlab = "maturity", ylab = "empirical forward rate",
type = "b", cex = 0.75, lwd = 2,
main = "US Treasury STRIPS - 1995")
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Now the zoom in:
plot(dat$T[2:length(dat$T)], emp, xlim = c(10,

20), ylim = c(0.025, 0.075), xlab = "maturity",
ylab = "empirical forward rate",
type = "b", cex = 0.75, lwd = 2,
pin = c(3, 2), main = "US Treasury STRIPS - 1995")
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At Ti = 14 there appears to be an outlier. More importantly there is a break at Ti = 15.
This is a natural knot. Thus the possibility of a need for a spline.

5.4 Back to Our Story

Let’s add a kink in the yield curve that allows two different quadratic functions: one before
the kink, and one after the kink. Let the kink be a knot k at Ti = 15. We evaluate a knot
as 0 if the maturities Ti − k < 0, and equal T − k if T − k > 0. We write this as (T − k)+.
Let’s now drop the knot into our integral:

∫ T

0
r(t, θ)dt = θ0T + θ1

T 2

2
+ θ2

T 3

3
+ θ2

(T − 15)3
+

3

We can divide by T to get the yield. But to calculate the bond price we have to multiply
the yield by the bond maturity T , so the bond price is then:

PT (θ) = 100exp[−(θ0T + θ1
T 2

2
+ θ2

T 3

3
+ θ3

(T − 15)3
+

3
)]

After all of that setup now we move on to estimate the thetas.
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5.4.1 Gee, that’s very nonlinear of you…

Yes, the bond price is nonlinear in the θ parameters. Our statistical job now is to find a
set of θ such that the difference between the actual bond prices P and our clever model of
bond prices (long equation that ended the last slide) is very small in the sense of the sum of
squared differences (“errors”). We thus find θ that minimizes

N∑
i=0

[(P (Ti)− P (Ti, θ)]2

To find the best set of θ we will resort to a numerical search using the R function nls, for
nonlinear least squares.

5.4.2 Try this exervise as we get down to business

Back to the data: we now find the θs. The logical expression (T>k) is 1 if TRUE and 0 if FALSE.
We put the R version of the bond price into the nls function, along with a specification of
the data frame dat and starting values.

Run these statements to compute the (nonlinear) regression of the term structure:
fit.spline <- nls(price ~ 100 * exp(-theta_0 *

T - (theta_1 * T^2)/2 - (theta_2 *
T^3)/3 - (T > 15) * (theta_3 * (T -
15)^3)/3), data = dat, start = list(theta_0 = 0.047,
theta_1 = 0.0024, theta_2 = 0, theta_3 = -7e-05))

5.4.3 Just a couple of questions:

1. What are the dependent and independent variables?
2. Which parameter measures the sensitivity of forward rates to the knot?

The dependent variable is price. The independent variables are inside the exp() operator
and include powers of T, the maturities of the bonds. The theta_3 parameter exposes the
bond price to movements in maturity around the knot at T = 15 years.

Let’s look at our handiwork using kable from the knitr package:
library(knitr)
kable(summary(fit.spline)$coefficients,

digits = 4)
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Estimate Std. Error t value Pr(>|t|)
theta_0 0.0495 1e-04 536.5180 0
theta_1 0.0016 0e+00 51.5117 0
theta_2 0.0000 0e+00 -13.6152 0
theta_3 -0.0002 0e+00 -30.6419 0
(sigma <- (summary(fit.spline)$sigma)^0.5)

## [1] 0.2582649

All coefficients are significant and we have a standard error to compare with other models.

5.4.4 Build a spline

Let’s now produce a plot of our results using a sequence of maturities T. Our first task is
to parse the coefficients from the nls() spline fit and build the spline prediction. Here we
construct the forward rate spline across T maturities.
coef.spline <- summary(fit.spline)$coef[,

1]
forward.spline <- coef.spline[1] + (coef.spline[2] *

t)
+(coef.spline[3] * t^2)
+(t > k) * (coef.spline[4] * (t - 15)^2)

Second, pull the coefficients from a summary() of the fit.spline object for the plot.
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5.5 A Summary Exercise

Let’s try these tasks to bring this analysis together.

1. Compare the quadratic spline we just constructed with a pure quadratic polynomial.
Simply take the knot out of the nls formula and rerun. Remember that “quadratic”
refers to the polynomial degree p of the assumed structure of the forward rate r(t, θ).

2. Plot the data against the quadratic spline and the quadratic polynomial.

3. Interpret financially the terms in θ0, θ1, and θ2.

5.5.1 Compare

Run this code: remembering that a “cubic” term represents the integration of the “quadratic”
term in

r(t, θ) = θ0 + θ1t+ θ2t
2
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fit.quad <- nls(price ~ 100 * exp(-theta_0 *
T - (theta_1 * T^2)/2 - (theta_2 *
T^3)/3), data = dat, start = list(theta_0 = 0.047,
theta_1 = 0.0024, theta_2 = 0))

This estimate gives us one quadratic function through the cloud of zero-coupon price data.
knitr::kable(summary(fit.quad)$coefficients,

digits = 4)

Estimate Std. Error t value Pr(>|t|)
theta_0 0.0475 2e-04 239.0168 0
theta_1 0.0024 1e-04 46.5464 0
theta_2 -0.0001 0e+00 -33.0016 0

All conveniently significant.
(sigma <- (summary(fit.quad)$sigma)^0.5)

## [1] 0.4498518

The pure quadratic model produces a higher standard deviation of error than the quadratic
spline.

5.5.2 Plot

We will run this code to set up the data for a plot. First some calculations based on the
estimations we just performed.
coef.spline <- summary(fit.spline)$coef[,

1]
forward.spline <- coef.spline[1] + (coef.spline[2] *

t)
+(coef.spline[3] * t^2)
+(t > 15) * (coef.spline[4] * (t - 15)^2)
coef.quad <- summary(fit.quad)$coef[,

1]
forward.quad <- coef.quad[1] + (coef.quad[2] *

t) + (coef.quad[3] * t^2)

Here is the plot itself.
plot(t, forward.spline, type = "l", lwd = 2,

ylim = c(0.03, 0.075), xlab = "Maturity",
ylab = "Forward Rate", main = "US Treasury STRIPs Forward Curve: 1995")

lines(t, forward.quad, lty = 2, lwd = 2,
col = "red")
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points(dat$T[2:length(dat$T)], emp, pch = "*",
cex = 1.5)
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We can use “eyeball” econometrics to see what data the quadratic forward curve misses!

5.5.3 Interpret

There seem to be three components in the forward curve:

• Constant
• Slope
• Curved (affectionately called “humped”)

Our interpretation follows what we might visualize:

• θ0 is independent of maturity and thus represents the long-run average forward rate.
• θ1 helps to measure the average sensitivity of forward rates to a change in maturity.
• θ2 helps to measure the maturity risk of the forward curve for this instrument.

The pure quadratic forward curve seems to dramatically underfit the maturities higher than
15 years. Using a knot at the right maturity adds a boost to the reduction of error in this
regression. That means that predictions of future potential term structures will apt to be
more accurate than the null hypothesis of no knot.
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5.6 Just one more thing

Here is the infamous So What?!, especially after all of the work we just did.

1. Suppose we just bought a 10 year maturity zero-coupon bond to satisfy collateral
requirements for workers’ compensation in the (great) State of New York.

2. The forward rate has been estimated as:

r(t) = 0.001 + 0.002t− 0.0003(t− 7)+

3. In 6 months we then exit all business in New York State, have no employees that can
claim workers’ compensation, sell the 10 year maturity zero-coupon bond. The forward
curve is now

r(t) = 0.001 + 0.0025t− 0.0004(t− 7)+

4. How much would we gain or lose on this transaction at our exit?

5.6.1 Some bond maths to (re)consider

Let’s recall the following:

1. The forward rate is the rate of change of the yield-to-maturity
2. This means we integrate (i.e., take the cumulative sum of) forward rates to get the

yield
3. The cumulative sum would then be some maturity times the components of the yield

curve adjusted for the slope of the forward curve (the terms in t).
4. This adjustment is just one-half (1/2) of the slope term.

Here are some calculations to set up today’s yield curve and the curve 6 months out.
maturity.now <- 10
maturity.6m <- 9.5
(yield.now <- 0.001 * maturity.now +

0.002 * maturity.now^2/2 - 3e-04 *
(maturity.now > 7)^2/2)

## [1] 0.10985
(yield.6m <- 0.001 * maturity.6m + 0.0025 *

maturity.6m^2/2 - 4e-04 * (maturity.6m >
7)^2/2)

## [1] 0.1221125

Using these yields we can compute the bond prices for today and for 6 months out as well.
(bond.price.now <- exp(-yield.now))

## [1] 0.8959685
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(bond.price.6m <- exp(-yield.6m))

## [1] 0.8850488

5.6.2 Exit

Our exit transaction is long today’s version of the bond and short the 6 month version. This
translates into a 6 month return that calculates

R6m = P (T − 0.5)− P (T )
P (T )

= P (T − 0.5)
P (T )

− 1

which in R is
(return = bond.price.6m/bond.price.now -

1)

## [1] -0.01218762
2 * return ### annualized return

## [1] -0.02437524

It appears that we lost something in this exit from New York state as the return is negative.

5.7 Summary

This chapter covers the fundamentals of bond mathematics: prices, yields, forward curves.
Using this background built two models of the forward curve and then implemented these
models in R with live data. In the process We also learned something about the nonlinear
least squares method and some more R programming to visualize results.

5.8 Further Reading

Ruppert and Matteson, pp. 19-43, introduces fixed income (bonds) including yield to matu-
rity, continuous discounting, forward rates, and bond prices. From pp. 271-281 we can learn
about nonlinear regression and the use of quadratic terms in term structure estimations.
From pp. 645-664 we can learn about regression splines and their application to various ana-
lytical questions. McNeill et al. have similar bond mathematics discussions from pp. 329-337.
They use the termstr package from CRAN to illustrate term structure models.
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5.9 Practice Laboratory

5.9.1 Practice laboratory #1

5.9.1.1 Problem

5.9.1.2 Questions

5.9.2 Practice laboratory #2

5.9.2.1 Problem

5.9.2.2 Questions

5.10 Project

5.10.1 Background

5.10.2 Data

5.10.3 Workflow

5.10.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.

• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
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procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.

5.11 References
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Engineering with R Examples, Second Edition. New York: Springer.



Chapter 6

Market Risk

6.1 Imagine This

Suppose a division in our company buys electricity to make steel. We know of two very
volatile factors in this process:

1. The price of steel at the revenue end, and the other is
2. The price of electricity at the cost end.

To model the joint volatility of the power-steel spread We can use electricity and steel prices
straight from the commodity markets. We can also use stock market indexes or company
stock prices from electricity producers and transmitters and from a steel products company to
proxy for commodities. Using company proxies gives us a broader view of these commodities
than just the traded pure play in them.

In this chapter we will

1. Measure risks using historical and parametric approaches
2. Interpret results relative to business decisions
3. Visualize market risk

6.2 What is Market Risk?

Market risk for financial markets is the impact of unanticipated price changes on the value of
an organization’s position in instruments, commodities, and other contracts. In commodity
markets there is sometimes considered a more physical type of market risk called volumetric
risk that relates to the delivery of the commodity to a buyer. This risk might be triggered
by a complex contract such as a CDO or a spark spread tolling agreement in power and
energy markets. Here we will assume that volumetric changes are physical in the sense that
a electricity system operator governs a physical process such as idling an electric generation
plant.

149
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A “position” is the physical holding of an asset or commodity, such as a share of Apple stock,
or an ounce of gold. A long position means that the market participant possesses a positive
amount of the asset or commodity. A short position means that the market participant does
not possess an asset or commodity. The “position” is considered exogenous to the price
stochastic process. This implies that changes in position do not affect the liquidity of the
market relative to that position.

6.2.1 Try this exercise

Suppose you are in charge of the project to manage the contracting for electricity and steel
at your speciality steel company. Your company and industry have traditionally used tolling
agreements to manage the steel-power spread, both from a power input and a steel output
point of view.

1. Look up a tolling agreement and summarize its main components.
2. What are the input and output decisions in this kind of agreement.

Here are some results

1. In the electric power to steel tolling agreement a steel buyer supplies power to a steel
plant and receives from the plant supplier an amount of steel based on an assumed
power-to-steel transformation rate at an agreed cost.

• Prices of power and steel
• Transformation rate
• Agree cost

2. Decisions include

• Buying an amount of power (MWh)
• Selling an amount of steel (tons)
• Scheduling plant operations

Decisions will thus depend on the prices of electricity and steel, the customer and vendor
segments served, the technology that determines the steel (tons) / Power (MWh) transfor-
mation rate, start-up, idle, and shut-down timing and costs and overall plant production
costs.

6.3 History Speaks

To get the basic idea of risk measures across we develop the value at risk and expected
shortfall metrics from the historical simulated distributions of risk factors. Given these risk
factors we combine them into a portfolio and calculate their losses. Finally with the loss
distribution in hand we can compute the risk measures.
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We will use a purely, non-parametric historical simulation approach in this section. This
means that we will not need to compute means, standard deviations, correlations, or other
statistical estimators, also known as parameters.

First we need to get some data. We will use throughout these computations several libraries:

1. mvtnorm builds multivariate normal (Gaussian) simulations and
2. QRM estimates Student-t and generalized pareto distribution (GPD) simulation.
3. We will hold off on these parametric approaches till later and start with historical

simulation.
4. The psych library helps us to explore the interactions among data through scatter

plots and histograms.
5. The ggplot2 library allows us to build complex vizualizations that will aid the gener-

ation of further insights.

We read in the csv file from the working directory. This file contains dates and several risk
factors. In this setup we will use RWE stock prices will stand in for electricity price risk
factor input and THYSSEN stock prices for the steel price risk factor.
# Download the data
data.all <- read.csv("data/eurostock.csv",

stringsAsFactors = FALSE)
## This will convert string dates to
## date objects below
str(data.all) ## Check the structure and look for dates

## 'data.frame': 6147 obs. of 24 variables:
## $ X : chr "1973-01-01" "1973-01-02" "1973-01-03" "1973-01-04" ...
## $ ALLIANZ.HLDG. : num 156 156 161 162 164 ...
## $ COMMERZBANK : num 147 147 149 152 152 ...
## $ DRESDNER.BANK : num 18.4 18.4 18.8 18.9 18.9 ...
## $ BMW : num 104 109 110 111 109 ...
## $ SCHERING : num 36.9 37.4 37.8 37.9 37.4 ...
## $ BASF : num 15 15.4 15.6 15.8 15.8 ...
## $ BAYER : num 12.2 11.9 12.1 12.7 12.7 ...
## $ BAYERISCHE.VBK.: num 23.5 22.9 23.4 23.7 23.9 ...
## $ BAYER.HYPBK. : num 23.4 23.2 23.3 23.5 23.4 ...
## $ DEGUSSA : num 203 207 208 210 214 ...
## $ DEUTSCHE.BANK : num 22.3 22.5 22.9 23 23.3 ...
## $ CONTINENTAL : num 8.54 8.83 8.78 8.83 8.73 8.82 8.74 8.73 8.74 8.74 ...
## $ VOLKSWAGEN : num 134 140 145 144 140 ...
## $ DAIMLER.BENZ : num 17 17.6 17.8 17.8 17.7 ...
## $ HOECHST : num 13.8 13.8 14.2 14.3 14.2 ...
## $ SIEMENS : num 20.8 21.1 21.3 21.4 21.5 ...
## $ KARSTADT : num 360 360 362 369 368 ...
## $ LINDE : num 136 137 140 142 144 ...
## $ THYSSEN : num 67.5 68.4 67.5 71.6 71.2 ...
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## $ MANNESMANN : num 85 86.5 87.8 88.7 88.6 ...
## $ MAN : num 118 119 125 125 127 ...
## $ RWE : num 11.7 11.9 12 11.9 12 ...
## $ INDEX : num 536 545 552 556 557 ...

The next thing we must do is transform the data set into a time series object. The way we
do that is to make the dates into row names so that dates are the index for the two risk
factors. Making dates an index allows us to easily filter the data.
str(row.names <- data.all$X) ## We find that the first field X contains dates

## chr [1:6147] "1973-01-01" "1973-01-02" "1973-01-03" "1973-01-04" ...
date <- as.Date(row.names) ## convert string dates to date objects
str(date) ##Always look at structure to be sure

## Date[1:6147], format: "1973-01-01" "1973-01-02" "1973-01-03" "1973-01-04" "1973-01-05" ...
rownames(data.all) <- date
head(data.all)

## X ALLIANZ.HLDG. COMMERZBANK DRESDNER.BANK BMW
## 1973-01-01 1973-01-01 155.51 147.41 18.40 103.97
## 1973-01-02 1973-01-02 155.51 147.41 18.40 109.05
## 1973-01-03 1973-01-03 160.58 149.14 18.80 109.83
## 1973-01-04 1973-01-04 162.27 152.05 18.91 110.81
## 1973-01-05 1973-01-05 164.30 152.05 18.89 109.44
## 1973-01-08 1973-01-08 164.30 152.25 18.99 109.05
## SCHERING BASF BAYER BAYERISCHE.VBK. BAYER.HYPBK. DEGUSSA
## 1973-01-01 36.88 14.96 12.24 23.47 23.40 203.46
## 1973-01-02 37.44 15.43 11.95 22.92 23.22 206.85
## 1973-01-03 37.79 15.61 12.10 23.45 23.34 208.21
## 1973-01-04 37.86 15.85 12.71 23.66 23.49 210.11
## 1973-01-05 37.44 15.75 12.74 23.87 23.40 214.31
## 1973-01-08 37.79 15.80 12.74 24.07 23.46 216.68
## DEUTSCHE.BANK CONTINENTAL VOLKSWAGEN DAIMLER.BENZ HOECHST
## 1973-01-01 22.29 8.54 134.06 16.97 13.77
## 1973-01-02 22.50 8.83 140.00 17.59 13.77
## 1973-01-03 22.86 8.78 144.53 17.79 14.22
## 1973-01-04 23.04 8.83 144.04 17.81 14.32
## 1973-01-05 23.29 8.73 139.92 17.73 14.23
## 1973-01-08 23.18 8.82 143.77 17.70 14.19
## SIEMENS KARSTADT LINDE THYSSEN MANNESMANN MAN RWE INDEX
## 1973-01-01 20.76 359.55 135.95 67.47 84.97 117.92 11.68 536.36
## 1973-01-02 21.06 359.96 136.89 68.41 86.51 118.78 11.87 545.43
## 1973-01-03 21.29 361.99 139.59 67.47 87.75 124.95 12.03 552.46
## 1973-01-04 21.44 369.32 142.21 71.62 88.71 124.95 11.95 556.14
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## 1973-01-05 21.48 368.50 143.71 71.24 88.63 127.29 12.03 557.44
## 1973-01-08 21.48 366.88 143.77 70.77 89.01 125.34 11.91 555.51
tail(data.all) ##And always look at data

## X ALLIANZ.HLDG. COMMERZBANK DRESDNER.BANK BMW
## 1996-07-16 1996-07-16 2550 323.0 38.15 843.5
## 1996-07-17 1996-07-17 2572 331.0 38.35 845.2
## 1996-07-18 1996-07-18 2619 335.0 39.60 844.0
## 1996-07-19 1996-07-19 2678 336.8 39.50 847.5
## 1996-07-22 1996-07-22 2632 336.8 39.00 844.0
## 1996-07-23 1996-07-23 2622 337.5 39.20 844.0
## SCHERING BASF BAYER BAYERISCHE.VBK. BAYER.HYPBK. DEGUSSA
## 1996-07-16 101.0 41.00 50.45 47.45 40.20 498.0
## 1996-07-17 102.5 41.87 50.92 48.08 40.55 503.2
## 1996-07-18 101.2 41.86 52.00 49.05 41.48 507.5
## 1996-07-19 102.9 42.10 51.85 49.48 41.92 506.0
## 1996-07-22 101.8 40.70 50.60 49.40 41.40 501.0
## 1996-07-23 102.0 40.15 50.25 49.88 41.55 499.0
## DEUTSCHE.BANK CONTINENTAL VOLKSWAGEN DAIMLER.BENZ HOECHST
## 1996-07-16 72.10 23.00 531.00 78.45 49.85
## 1996-07-17 72.86 23.63 539.00 79.30 50.30
## 1996-07-18 74.30 24.11 528.50 78.00 50.50
## 1996-07-19 74.90 24.18 531.00 78.25 50.70
## 1996-07-22 73.60 24.10 522.25 77.48 49.20
## 1996-07-23 73.70 24.15 515.00 77.35 48.35
## SIEMENS KARSTADT LINDE THYSSEN MANNESMANN MAN RWE INDEX
## 1996-07-16 78.75 544.0 923 274.0 536.0 373.0 54.20 2469.79
## 1996-07-17 78.79 554.0 925 273.1 542.0 374.5 54.40 2497.19
## 1996-07-18 77.61 543.0 920 271.0 536.7 369.0 55.00 2506.22
## 1996-07-19 77.24 543.0 932 271.9 535.3 369.5 54.33 2520.19
## 1996-07-22 76.49 540.0 931 268.1 529.5 364.0 52.90 2482.40
## 1996-07-23 76.90 539.5 935 265.5 530.5 360.0 53.15 2475.07

With this machinery in hand we can subset the data by starting and ending date as well as
the choice of RWE and THYSSEN.
# Subset the data using a start and
# end date
start.date <- "1975-06-02"
end.date <- "1990-12-30"
## First column looks for filtered
## dates, second and third columns
## pull out prices
price <- data.all[start.date <= date &

date <= end.date, c("RWE", "THYSSEN")]
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## We add a check to ensure that price
## is a matrix and that ncol will work
if (!is.matrix(price)) price <- rbind(price,

deparse.level = 0L)
str(price)

## 'data.frame': 4065 obs. of 2 variables:
## $ RWE : num 8.96 9.2 9.16 9.2 9.36 9.24 9.12 9.08 9.04 8.99 ...
## $ THYSSEN: num 69.8 70.8 69.8 68.9 68.8 ...
head(price) ## show the beginning

## RWE THYSSEN
## 1975-06-02 8.96 69.82
## 1975-06-03 9.20 70.77
## 1975-06-04 9.16 69.82
## 1975-06-05 9.20 68.88
## 1975-06-06 9.36 68.79
## 1975-06-09 9.24 67.94
tail(price) ## and the end

## RWE THYSSEN
## 1990-12-21 36.36 187.5
## 1990-12-24 36.36 187.5
## 1990-12-25 36.36 187.5
## 1990-12-26 36.36 187.5
## 1990-12-27 36.28 186.5
## 1990-12-28 35.75 184.5

The code before the str, head, and tail filters the price data by start and end dates. We
could also perform this head and tail work using the following code.
(end.idx <- dim(price)[1])

## [1] 4065
(price.2 <- rbind(price[1:5, ], price[(end.idx -

4):end.idx, ]))

## RWE THYSSEN
## 1975-06-02 8.96 69.82
## 1975-06-03 9.20 70.77
## 1975-06-04 9.16 69.82
## 1975-06-05 9.20 68.88
## 1975-06-06 9.36 68.79
## 1990-12-24 36.36 187.50
## 1990-12-25 36.36 187.50
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## 1990-12-26 36.36 187.50
## 1990-12-27 36.28 186.50
## 1990-12-28 35.75 184.50

6.4 $ Try this exercise

Now let’s really explore this data. The library psych has a prefabricated scatter plot his-
togram matrix we can use. With this composite plot we can examine historical relationships
between the two risk factors as well as the shape of the risk factors themselves. We can also
use this device to look at dependent simulations. After the scatter plots, we then look at
the time series plots of the two factors.
#Use scatter plots of the two price series along with their histograms to examine the data
library(psych)
pairs.panels(price)
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price.rownames <- rownames(price)
plot(as.Date(price.rownames), price[,"THYSSEN"], type="l",

main="Thyssen stock price data", ## title
xlab="Date t", ## x-axis label
ylab=expression(Stock~price~price[t])) ## y-axis label
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plot(as.Date(price.rownames), price[,"RWE"], type="l",
main="RWE stock price data", ## title
xlab="Date t", ## x-axis label
ylab=expression(Stock~price~price[t])) ## y-axis label
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The pairs.panel plot displays a matrix of interactions between RWE and THYSSEN. Price
levels are interesting but, as we have seen, are not stable predictors. Let’s transform them
to returns next.

6.5 Now to the Matter at Hand

Now to the matter at hand: value at risk and expected shortfall. These two measures are
based on the quantiles of losses attributable to risk factors. Value at risk is the quantile at
an α level of tolerance. Expected shortfall is the mean of the distribution beyond the value
at risk threshold.

To get losses attributable to market risk factors we compute log price differences (also called
log price relatives). These can be interpreted as returns, or simply as percentage changes, in
the risk factor prices. A plot lets us examine the results.
# Here we can compute two items
# together: log price differences,
# and their range (to bound a plot)
return.range <- range(return.series <- apply(log(price),

2, diff)) ## compute log-returns and range
return.range
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## [1] -0.2275282 0.2201375
plot(return.series, xlim = return.range,

ylim = return.range, main = "Risk Factor Changes",
cex = 0.2)
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Using the returns we can now compute loss. Weights are defined as the value of the positions
in each risk factor. We can compute this as the notional times the last price. Remember we
are talking about an input, electricity, and an output, steel. We form the margin:

Margin = pricesteel × tons− pricepower × [(rateMW h/tons × tons],

where the last term is the power to steel transformation rate that converts power prices $
per MWh to $ per ton.

We convert prices to share prices and tons to equivalent values in terms of the number of
shares. The naturally short position in power is equivalent to a negative number of shares
(in the square brackets). The naturally long position in steel is equivalent to a positive
number of shares. By naturally short we mean that power is an input, incurs a cost, and
is demanded by the plant, and supplied by a third party. By naturally long we mean that
steel is an output, earns a revenue, and demanded by a third party.
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## Get last prices
price.last <- as.numeric(tail(price,

n = 1))
## Specify the positions
position.rf <- c(-30, 10)
## And compute the position weights
w <- position.rf * price.last
## Fan these across the length and
## breadth of the risk factor series
weights.rf <- matrix(w, nrow = nrow(return.series),

ncol = ncol(return.series), byrow = TRUE)
# We need to compute exp(x) - 1 for
# very small x: expm1 accomplishes
# this
loss.rf <- -rowSums(expm1(return.series) *

weights.rf)
summary(loss.rf)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -545.8825 -13.3084 0.0000 -0.2467 13.1330 475.5576

We can visualize the data using this ggplot2 routine which begins with the definition of a
data frame.
loss.rf.df <- data.frame(Loss = loss.rf,

Distribution = rep("Historical",
each = length(loss.rf)))

require(ggplot2)
ggplot(loss.rf.df, aes(x = Loss, fill = Distribution)) +

geom_density(alpha = 0.2) + xlim(-100,
100)
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The plot reveals some interesting deep and shallow outliers. The distribution is definitely
very peaked. We use the base function expm1 that computes the natural exponent of returns
all minus 1.

er − 1

Some of these returns, or percentage price changes if you will, are very close to zero. High
precision arithmetic is needed to get accurate calculations. The function expm1 does this
well.

Now we can get to estimating value at risk (VaR) and expected shortfal (ES). We set the
tolerance level α, for example, equal to 95%. This would mean that a decision maker would
not tolerate loss in more than 5% of all risk scenarios.

We define the VaR as the quantile for probability α ∈ (0, 1), as

V aRα(X) = inf{x ∈ R : F (x) ≥ α},

which means find the greatest lower bound of loss x (what the symbol inf = infimum means
in English), such that the cumulative probability of x is greater than or equal to α.

Using the V aRα definition we can also define ES as
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ESα = E[X|X ≥ V aRα],

where ES is “expected shortfall” and E is the expectation operator, also known as the
“mean.” Again, in English, the expected shortfall is the average of all losses greater than the
loss at a V aR associated with probability α, and ES ≥ V aR.

6.5.1 Try this example

1. Let’s run the following lines of code.
2. We look up the quantile function in R and see that it matches the calculation for

VaR.hist.
3. Using VaR we then calculate ES by only looking for losses greater than VaR.
4. We also look closely at the text annotations we can achieve in ggplot2.

Here is the code:

First the computations of V aR and ES:
# Simple Value at Risk
alpha.tolerance <- 0.99
(VaR.hist <- quantile(loss.rf, probs = alpha.tolerance,

names = FALSE))

## [1] 67.43459
# Just as simple Expected shortfall
(ES.hist <- mean(loss.rf[loss.rf > VaR.hist]))

## [1] 97.97649

Next we set up the text and plotting environment.
VaR.text <- paste("Value at Risk =",

round(VaR.hist, 2))
ES.text <- paste("Expected Shortfall =",

round(ES.hist, 2))
ggplot(loss.rf.df, aes(x = Loss, fill = Distribution)) +

geom_density(alpha = 0.2) + geom_vline(aes(xintercept = VaR.hist),
linetype = "dashed", size = 1, color = "blue") +
geom_vline(aes(xintercept = ES.hist),

size = 1, color = "blue") + xlim(0,
200) + annotate("text", x = 40, y = 0.03,
label = VaR.text) + annotate("text",
x = 140, y = 0.03, label = ES.text)
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Value at Risk = 67.43 Expected Shortfall = 97.98
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We see that ES is much bigger than VaR but also much less than the maximum historical
loss.

One note: VaR is computed as a pre-event indicator beyond a loss of 0 in this
example. Many applications of this metric center loss at the median loss. Thus,
loss would be computed as gross loss minus the median (50th percentile of loss).

A box plot might also help us visualize the results without resorting to a probability distri-
bution function.
ggplot(loss.rf.df, aes(x = Distribution,

y = Loss)) + geom_boxplot(outlier.size = 1.5,
outlier.shape = 21) + ylim(-250,
10)
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This box plot might look better with more than one distribution. So far we simply let history
speak for itself. We did not assume anything at all about the shape of the data. We just
used the empirical record be the shape. In what follows let’s start to put some different
shapes into the loss potential of our tolling agreement.

6.6 Carl Friedrich Gauss, I Presume…

What we just did was the classic historical simulation technique for computing tail risk mea-
sures. Historical simulation is a “nonparametric” technique, since there is no estimation of
parameters conditional on a distribution. Only history, unadorned, informs risk measure-
ment. Now we shift gears into the parametric work of Gauss: Gaussian, Generalized Pareto,
and as an exercise Gossett’s (Student’s t) distributions.

Carl Friedrich Gauss is often credited with the discovery of the normal distribution. So we
tack his name often enough to the normal distribution. This distribution has a crucial role
in quantitative risk and finance. It is often the basis for most derivative pricing models and
for simulation of risk factors in general. It does not exhibit thick tails, and definitely is
not skewed or peaked. This distribution definitely does not describe volatility clustering we
observe in most financial and commodity time series. Nevertheless, it is otherwise ubiquitous,
if only as a benchmark (like “perfect competition” or “efficient markets”).
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With just a little of math here, we can define the Gaussian (normal) distribution function.
If x is a uniformly distributed random variable, then

f(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

is the probability density function of the normally distributed x with mean µ and standard
deviation σ.

“Halfway”” between the normal Gaussian distribution and Student’s t is the chi-square, χ2,
distribution. We define χ2 as the distribution of the sum of the squared normal random
variables x with density function and k degrees of freedom for x > 0:

f(x) = x(k/2−1)e−x/2

2k/2Γ(k
2 )

and 0 otherwise. The “degrees of freedom” are the number of normal distributions used to
create a chi-square variate.

Now on to Student’s t distribution which is defined in terms of the Gaussian and chi-square
distributions as the ratio of a Gaussian random variate to the square root of a chi-squared
random variate. Student (a pseudonym for William Sealy Gossett) will have thicker tails
but also the same symmetry as the normal curve. (Lookup this curve in Wikipedia among
other references.)

Here is a quick comparison of the standard Gaussian and the Student’s t distributions.
The functions rnorm and rt generate Gaussian and Student’s t variates, respectively. The
functions qnorm and qt compute the distance from the mean (probability = 50%) for a given
probability, here stored in alpha.tolerance.
library(mvtnorm) ## Allows us to generate Gaussian and Student-t variates
library(ggplot2)
set.seed(1016)
n.sim <- 1000
z <- rnorm(n.sim)
t <- rt(n.sim, df = 5)
alpha.tolerance <- 0.95
(z.threshold <- qnorm(alpha.tolerance))

## [1] 1.644854
(t.threshold <- qt(alpha.tolerance, df = 5))

## [1] 2.015048

Now we make a data frame and plot with ggplot:
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zt.df <- data.frame(Deviations = c(z,
t), Distribution = rep(c("Gaussian",
"Student's t"), each = n.sim))

ggplot(zt.df, aes(x = Deviations, fill = Distribution)) +
geom_density(alpha = 0.3) + geom_vline(aes(xintercept = z.threshold),
color = "red", linetype = "dashed",
size = 1) + geom_vline(aes(xintercept = t.threshold),
color = "blue", linetype = "dashed",
size = 1) + xlim(-3, 3)
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The ggplots2 library allows us to control several aspects of the histogram including fill,
borders, vertical lines, colors, and line types and thickness. The plot requires a data frame
where we have indicated the type of distribution using a replication of character strings.
We see the two distributions are nearly the same in appearance. But the Student’s t tail is
indeed thicker in the tail as the blue t density overtakes the red z density. This is numerically
evident as the t.threshold is > than the z.threshold for a cumulative probability of 95%,
the 95th quantile.
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6.6.1 Try this example

Let’s zoom in on the right tail of the distribution with the xlim facet.
ggplot(zt.df, aes(x = Deviations, fill = Distribution)) +

geom_density(alpha = 0.2) + geom_vline(aes(xintercept = z.threshold),
color = "red", linetype = "dashed",
size = 1) + geom_vline(aes(xintercept = t.threshold),
color = "blue", linetype = "dashed",
size = 1) + xlim(1, 5)
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Interesting digression! But not really not too far off the mark. The thresholds are the same
with two standard risk measures, scaled for particular risk factors and positions. We have
simulated two different values at risk.

6.7 Back to the Future

Let’s remember where the returns (as changes) in each risk factor come from. Also, we will
extract the last price for use below.
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# Again computing returns as changes
# in the risk factors
return.series <- apply(log(price), 2,

diff) ## compute risk-factor changes
price.last <- as.numeric(tail(price,

n = 1)) ## reserve last price

Again to emphasize what constitutes this data, we specify the notional exposure. These are
number of shares of stock, number of $1 million contracts of futures, or volumetric contract
sizes, e.g., MMBtus or boe. All of these work for us given the that price is dimensioned
relative to the notional dimension.

So if the risk factors are oil and natural gas prices, then we should use a common volumetric
equivalent such as Btu (energy content) or boe (barrel of oil equivalent for volume). Position
weights are then calculated as position times the last available price.

First, we can set the weights directly and a little more simply than before since we do not
need to simulate historically.
## Specify the positions
position.rf <- c(-30, 10) ## As before
## And compute the position weights
## directly again as before
(w <- position.rf * price.last)

## [1] -1072.5 1845.0

Second, we estimate the mean vector and the variance-covariance matrix, the two major
inputs to the simulation of normal risk factor changes. Here we use a purely parametric
approach.
mu.hat <- colMeans(return.series) ## Mean vector mu; estimated = hat
Sigma.hat <- var(return.series) ## Variance-covariance matrix Sigma
(loss.mean <- -sum(w * mu.hat)) ## Mean loss

## [1] -0.07596846
(loss.stdev <- sqrt(t(w) %*% Sigma.hat %*%

w)) ## Standard deviation of loss

## [,1]
## [1,] 28.4431

Third, we set the level of risk tolerance α. Then let’s calculate VaR and ES:
# Compute VaR and ES and return
alpha.tolerance <- 0.95
q.alpha <- qnorm(alpha.tolerance)
(VaR.varcov <- loss.mean + loss.stdev *
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q.alpha)

## [,1]
## [1,] 46.70877
(ES.varcov <- loss.mean + loss.stdev *

dnorm(q.alpha)/(1 - alpha.tolerance))

## [,1]
## [1,] 58.59398

and plot
VaR.text <- paste("Value at Risk =",

round(VaR.varcov, 2))
ES.text <- paste("Expected Shortfall =",

round(ES.varcov, 2))
ggplot(loss.rf.df, aes(x = Loss, fill = Distribution)) +

geom_density(alpha = 0.2) + geom_vline(aes(xintercept = VaR.varcov),
colour = "red", size = 1) + geom_vline(aes(xintercept = ES.varcov),
colour = "blue", size = 1) + xlim(0,
200) + annotate("text", x = 30, y = 0.03,
label = VaR.text) + annotate("text",
x = 120, y = 0.03, label = ES.text)
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Value at Risk = 46.71 Expected Shortfall = 58.59
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6.8 Try this example

Suppose it takes less electricity to make steel than we thought above. We can model this by
changing the positions to (-20, 10). Let’s redo steps 1, 2, and 3 (this begs for a function).

First, we can set the weights directly a little more simply than before since we do not need
to simulate historically.
## Specify the positions
position.rf <- c(-20, 10) ## As before
## And compute the position weights
## directly again as before
(w <- position.rf * price.last)

## [1] -715 1845

Second, estimate the mean vector and the variance-covariance matrix, the two major inputs
to the simulation of normal risk factor changes. Here we use a purely parametric approach.
mu.hat <- colMeans(return.series) ## Mean vector mu; estimated = hat
Sigma.hat <- var(return.series) ## Variance-covariance matrix Sigma
(loss.mean <- -sum(w * mu.hat)) ## Mean loss
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## [1] -0.1976962
(loss.stdev <- sqrt(t(w) %*% Sigma.hat %*%

w)) ## Standard deviation of loss

## [,1]
## [1,] 28.53755

Third, set the level of risk tolerance α. Then calculate VaR and ES:
# Compute VaR and ES and return
alpha.tolerance <- 0.95
q.alpha <- qnorm(alpha.tolerance)
(VaR.varcov <- loss.mean + loss.stdev *

q.alpha)

## [,1]
## [1,] 46.7424
(ES.varcov <- loss.mean + loss.stdev *

dnorm(q.alpha)/(1 - alpha.tolerance))

## [,1]
## [1,] 58.66708

… and plot
VaR.text <- paste("Value at Risk =",

round(VaR.varcov, 2))
ES.text <- paste("Expected Shortfall =",

round(ES.varcov, 2))
ggplot(loss.rf.df, aes(x = Loss, fill = Distribution)) +

geom_density(alpha = 0.2) + geom_vline(aes(xintercept = VaR.varcov),
colour = "red", size = 1) + geom_vline(aes(xintercept = ES.varcov),
colour = "blue", size = 1) + xlim(0,
200) + annotate("text", x = 20, y = 0.04,
label = VaR.text) + annotate("text",
x = 100, y = 0.04, label = ES.text)
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Value at Risk = 46.74 Expected Shortfall = 58.67
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Aesthetics may overtake us here as we really shoulf change the x and y annotate coordinates
to fit on the graph properly.

So ends the story of the main method used for years and embodied in the famous 4:15
(pm, that is) risk report at JP Morgan. Also we remember the loss that we simulate here
is an operating income loss, which after taxes and other adjustments, and, say, a one-year
horizon, means a loss of additions to retained earnings. Book equity drops and so will market
capitalization on average.

6.9 Let’s Go to Extremes

All along we have been stylizing financial returns, including commodities and exchange rates,
as skewed and with thick tails. We next go on to investigate these tails further using an
extreme tail distribution called the Generalized Pareto Distribution (GPD). For very high
thresholds, such as value at risk and expected shortfall, GPD not only well describes behavior
in excess of the threshold, but the mean excess over the threshold is linear in the threshold.
From this we get more intuition around the use of expected shortfall as a coherent risk
measure. In recent years markets well exceeded all Gaussian and Student’s t thresholds.

For a random variate x, this distribution is defined for shape parameters ξ ≥ 0 as:
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g(x; ξ ≥ 0) = 1− (1 + xξ/β)−1/ξ

and when the shape parameter ξ = 0, the GPD becomes the exponential distribution depen-
dent only on the scale parameter β:

g(x; ξ = 0) = 1− exp(−x/β).

There is one reason for GPD’s notoriety. If u is an upper (very high) threshold, then the
excess of threshold function for the GPD is

e(u) = β + ξu

1− ξ
.

This simple measure is linear in thresholds. It will allow us to visualize where rare events
begin (see McNeil, Embrechts, and Frei (2015, chapter 5)). We will come back to this
property when we look at operational loss data in a few chapters.

Let’s use the QRM library to help us find the optimal fit of losses to the parameters. The
fit.GPD function will do this for us.
library(QRM)
u <- quantile(loss.rf, alpha.tolerance,

names = FALSE)
fit <- fit.GPD(loss.rf, threshold = u) ## Fit GPD to the excesses
(xi.hat <- fit$par.ests[["xi"]]) ## fitted xi

## [1] 0.1928437
(beta.hat <- fit$par.ests[["beta"]]) ## fitted beta

## [1] 15.89524

Now for the closed form (no random variate simulation!) using the McNeil, Embrechts, and
Frei (2015, chapter 5) formulae:
## Pull out the losses over the
## threshold and compute excess over
## the threshold
loss.excess <- loss.rf[loss.rf > u] -

u ## compute the excesses over u
n.relative.excess <- length(loss.excess)/length(loss.rf) ## = N_u/n
(VaR.gpd <- u + (beta.hat/xi.hat) * (((1 -

alpha.tolerance)/n.relative.excess)^(-xi.hat) -
1))

## [1] 40.40925
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(ES.gpd <- (VaR.gpd + beta.hat - xi.hat *
u)/(1 - xi.hat))

## [1] 60.11707

6.9.1 Try this example

How good a fit to the data have we found? This plot should look roughly uniform since the
GPD excess loss function is a linear function of thresholds u.
gpd.density <- pGPD(loss.excess, xi = xi.hat,

beta = beta.hat)
gpd.density.df <- data.frame(Density = gpd.density,

Distribution = rep("GPD", each = length(gpd.density))) ## This should be U[0,1]
ggplot(gpd.density.df, aes(x = Density,

fill = Distribution)) + geom_histogram()
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And it does look “uniform” enough (in a statistical sort of way as we perform eyeball
econometrics again!).
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6.10 All Together Now

Let’s graph the historical simulation, variance-covariance and GPD results together.
loss.plot <- ggplot(loss.rf.df, aes(x = Loss,

fill = Distribution)) + geom_density(alpha = 0.2)
loss.plot <- loss.plot + geom_vline(aes(xintercept = VaR.varcov),

colour = "red", linetype = "dashed",
size = 1)

loss.plot <- loss.plot + geom_vline(aes(xintercept = ES.varcov),
colour = "blue", linetype = "dashed",
size = 1)

loss.plot <- loss.plot + geom_vline(aes(xintercept = VaR.gpd),
colour = "red", size = 1)

loss.plot <- loss.plot + geom_vline(aes(xintercept = ES.gpd),
colour = "blue", size = 1)

loss.plot <- loss.plot + xlim(0, 200)
loss.plot

0.00

0.01

0.02

0.03

0 50 100 150 200

Loss

de
ns

ity Distribution

Historical

That was a lot. We will need our “mean over excess” knowledge when we get to operational
risk. Actually we will be able to apply that to these risk measures for any kind of risk. But
we will save ourselves for operational risk later. Someone might even annotate the graph…
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6.11 Summary

Filtering - Math to R translation - Graphics - Normal and GPD distributions - VaR and ES
- Loss distributions and mean over loss

6.12 Further Reading

6.13 Practice Laboratory

6.13.1 Practice laboratory #1

6.13.1.1 Problem

6.13.1.2 Questions

6.13.2 Practice laboratory #2

6.13.2.1 Problem

6.13.2.2 Questions

6.14 Project

6.14.1 Background

6.14.2 Data

6.14.3 Workflow

6.14.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.
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• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.
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Chapter 7

Credit Risk

7.1 Imagine This

Our company is trying to penetrate a new market. To do so it acquires several smaller
competitors for your products and services. As we acquire the companies , we also acquire
their customers…and now our customers’ ability to pay us.

• Not only that, but yowe have also taken your NewCo’s supply chain. Your company
also has to contend with the credit worthiness of NewCo’s vendors. If they default you
don’t get supplied, you can’t produce, you can’t fulfill your customers, they walk.

• Your CFO has handed you the job of organizing your accounts receivable, understand-
ing your customers’ paying patterns, and more importantly their defaulting patterns.

Some initial questions come to mind:

1. What are the key business questions you should ask about your customers’ paying /
defaulting patterns?

2. What systematic approach might you use to manage customer and counterparty credit
risk?

Some ideas to answer these questions can be

1. Key business questions might be

• What customers and counterparties default more often than others?
• If customer default what can we recover?
• What is the total exposure that we experience at any given point in time?
• How far can we go with customers that might default?

2. Managing credit risk

• Set up a scoring system to accept new customers and track existing customers
• Monitor transitions of customers from one rating notch to another
• Build in early warning indicators of customer and counterparty default

179
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• Build a playbook to manage the otherwise insurgent and unanticipated credit events
that can overtake your customers and counterparties

Topics we got to in the last several chapters:

• Explored stylized fact of financial market data
• Learned just how insidious volatility really is
• Acquired new tools like acf, pacf, ccf to explore time series.

In this chapter on credit risk We Will Use actual transaction and credit migration data to
examine relationships among default and explanations of credit-worthiness. We will also
simulate default probababilities using markov chains. With this technology in hand we
can then begin to Understand hazard rates and the probabality of transitioning from one
credit state to another. Then we have a first stab a predicting default and generating loss
distributions for portfolios of credit exposures, as in the the Newco example of the accounts
receivable credit portfolio.

7.2 New customers!

Not so fast! Let’s load the credit profiles of our newly acquired customers. Here is what was
collected these past few years:
firm.profile <- read.csv("data/creditfirmprofile.csv")
head(firm.profile)

## id start.year default wcTA reTA ebitTA mktcapTL sTA
## 1 1 2010 0 0.501 0.307 0.043 0.956 0.335
## 2 1 2011 0 0.550 0.320 0.050 1.060 0.330
## 3 1 2012 0 0.450 0.230 0.030 0.800 0.250
## 4 1 2013 0 0.310 0.190 0.030 0.390 0.250
## 5 1 2014 0 0.450 0.220 0.030 0.790 0.280
## 6 1 2015 0 0.460 0.220 0.030 1.290 0.320

Recorded for each of several years from 2006 through 2015 each firm’s (customer’s) indicator
as to whether they defaulted or not (1 or 0).
summary(firm.profile)

## id start.year default wcTA
## Min. : 1.0 Min. :2006 Min. :0.000 Min. :-2.2400
## 1st Qu.:192.0 1st Qu.:2009 1st Qu.:0.000 1st Qu.: 0.0300
## Median :358.0 Median :2011 Median :0.000 Median : 0.1200
## Mean :356.3 Mean :2011 Mean :0.018 Mean : 0.1426
## 3rd Qu.:521.0 3rd Qu.:2013 3rd Qu.:0.000 3rd Qu.: 0.2400
## Max. :830.0 Max. :2015 Max. :1.000 Max. : 0.7700
## reTA ebitTA mktcapTL sTA
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## Min. :-3.3100 Min. :-0.59000 Min. : 0.020 Min. :0.0400
## 1st Qu.: 0.0900 1st Qu.: 0.04000 1st Qu.: 0.620 1st Qu.:0.1700
## Median : 0.2200 Median : 0.05000 Median : 1.140 Median :0.2600
## Mean : 0.2104 Mean : 0.05181 Mean : 1.954 Mean :0.3036
## 3rd Qu.: 0.3700 3rd Qu.: 0.07000 3rd Qu.: 2.240 3rd Qu.:0.3700
## Max. : 1.6400 Max. : 0.20000 Max. :60.610 Max. :5.0100

Several risk factors can contribute to credit risk:

1. Working Capital risk is measured by the Working Capital / Total Assets ratio wcTA.
When this ratio is zero, current assets are matched by current liabilities. When positive
(negative), current assets are greater (lesser) than current liabilities. The risk is that
there are very large current assets of low quality to feed revenue cash flow. Or the risk
is that there are high current liabilities balances creating a hole in the cash conversion
cycle and thus a possibility of low than expected cash flow.

2. Internal Funding risk is measured by the Retained Earnings / Total Assets ratio reTA.
Retained Earnings measures the amount of net income plowed back into the organi-
zation. High ratios signal strong capability to fund projects with internally generated
cash flow. The risk is that if the organization faces extreme changes in the market
place, there is not enough internally generated funding to manage the change.

3. Asset Profitability risk is measured by EBIT / Total Assets ratio. This is the return
on assets used to value the organization. The risk is that

• EBIT is too low or even negative and thus the assets are not productively reaching
revenue markets or efficiently using the supply change, or both, all resulting in too low
a cash flow to sustain operations and investor expectations, and

• This metric falls short of investors minimum required returns, and thus investors’ ex-
pectations are dashed to the ground, they sell your stock, and with supply and demand
simplicity your stock price falls, along with your equity-based compensation.

4. Capital Structure risk is measured by the Market Value of Equity / Total Liabilities ra-
tio mktcapTL. If this ratio deviates from industry norms, or if too low, then shareholder
claims to cash flow, and thus control of funding for responding to market changes will
be impaired. The risk is similar to Internal Fund Risk but carries the additional market
perception that the organization is unwilling or unable to manage change.

5. Asset Efficiency risk is measured by the Sales / Total Assets ratio sTA. If too low then
the organization risks two things: being able to support sales with assets, and the
overburden of unproductive assets unable to support new projects through additions
to retained earnings or in meeting liability committments.

Let’s also load customer credit migration data. This data records the start rating, end rating
and timing for each of 830 customers as their business, and the recession, affected them.
firm.migration <- read.csv("data/creditmigration.csv")
head(firm.migration)
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## id start.date start.rating end.date end.rating time start.year end.year
## 1 1 40541 6 42366 6 1825 2010 2015
## 2 2 41412 6 42366 6 954 2013 2015
## 3 3 40174 5 40479 6 305 2009 2010
## 4 3 40479 6 40905 5 426 2010 2011
## 5 3 40905 5 42366 5 1461 2011 2015
## 6 4 40905 5 41056 6 151 2011 2012

Notice that the dates are given in number of days from January 1, 1900. Ratings are
numerical.
summary(firm.migration)

## id start.date start.rating end.date
## Min. : 1.0 Min. :39951 Min. :1.000 Min. :39960
## 1st Qu.:230.0 1st Qu.:40418 1st Qu.:3.000 1st Qu.:41170
## Median :430.0 Median :40905 Median :4.000 Median :42143
## Mean :421.8 Mean :40973 Mean :4.041 Mean :41765
## 3rd Qu.:631.0 3rd Qu.:41421 3rd Qu.:5.000 3rd Qu.:42366
## Max. :830.0 Max. :42366 Max. :8.000 Max. :42366
## NA's :1709 NA's :1709 NA's :1709 NA's :1709
## end.rating time start.year end.year
## Min. :1.000 Min. : 0.0 Min. :2009 Min. :2009
## 1st Qu.:3.000 1st Qu.: 344.0 1st Qu.:2010 1st Qu.:2012
## Median :4.000 Median : 631.0 Median :2011 Median :2015
## Mean :4.121 Mean : 791.5 Mean :2012 Mean :2014
## 3rd Qu.:5.000 3rd Qu.:1157.0 3rd Qu.:2013 3rd Qu.:2015
## Max. :8.000 Max. :2415.0 Max. :2015 Max. :2015
## NA's :1709 NA's :1709 NA's :1709 NA's :1709
firm.migration <- na.omit(firm.migration)
## firm.migration$start.rating <-
## levels(firm.migration$start.rating)
## firm.migration$end.rating <-
## levels(firm.migration$end.rating)
firm.migration$time <- as.numeric(firm.migration$time)

An interesting metric is in firm.migration$time. This field has records of the difference
between end.date and start.date in days between start ratings and end ratings.
hist(firm.migration$time)
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Let’s now merge the two credit files by starting year. This will (“inner”) join the data so we
can see what customer conditions might be consistent with a rating change and rating dwell
time. Two keys are id and start.year. The resulting data set will have records less than
or equal to (if a perfect match) the maximum number of records (rows) in any input data
set.
firm.credit <- merge(firm.profile, firm.migration,

by = c("id", "start.year"))
head(firm.credit)

## id start.year default wcTA reTA ebitTA mktcapTL sTA start.date
## 1 1 2010 0 0.501 0.307 0.043 0.956 0.335 40541
## 2 10 2014 0 0.330 0.130 0.030 0.330 0.140 42001
## 3 100 2010 0 0.170 0.240 0.080 5.590 0.270 40510
## 4 100 2013 0 0.140 0.260 0.020 2.860 0.260 41635
## 5 106 2013 0 0.040 0.140 0.060 0.410 0.320 41605
## 6 106 2013 0 0.040 0.140 0.060 0.410 0.320 41421
## start.rating end.date end.rating time end.year
## 1 6 42366 6 1825 2015
## 2 5 42366 5 365 2015
## 3 4 41635 3 1125 2013
## 4 3 42366 3 731 2015
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## 5 5 42366 5 761 2015
## 6 6 41605 5 184 2013
dim(firm.credit)

## [1] 714 14

7.2.1 Try this exercise

The shape of firm.migration$time suggests a gamma or an exponential function. But
before we go off on that goose chase, let’s look at the inner-joined data to see potential
differences in rating. Let’s reuse this code from previous work:
library(dplyr)

## 1: filter to keep one state. Not
## needed (yet...)
pvt.table <- firm.credit ## filter(firm.credit, xxx %in% 'NY')

## 2: set up data frame for by-group
## processing.
pvt.table <- group_by(pvt.table, default,

end.rating)

## 3: calculate the three summary
## metrics
options(dplyr.width = Inf) ## to display all columns
pvt.table <- summarise(pvt.table, time.avg = mean(time)/365,

ebitTA.avg = mean(ebitTA), sTA.avg = mean(sTA))

Now we display the results in a nice table
knitr::kable(pvt.table)
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default end.rating time.avg ebitTA.avg sTA.avg
0 1 3.021005 0.0491667 0.2633333
0 2 2.583007 0.0529762 0.3250000
0 3 2.468776 0.0520103 0.2904124
0 4 2.106548 0.0455495 0.2655495
0 5 1.912186 0.0501042 0.2883333
0 6 1.697821 0.0504886 0.3041477
0 7 1.672251 0.0494286 0.3308571
0 8 2.467123 0.0591667 0.3208333
1 1 2.413699 -0.0100000 0.4100000
1 2 2.497717 0.0216667 0.2683333
1 3 2.613699 0.0200000 0.2400000
1 6 2.242466 0.0350000 0.1150000
1 7 3.002740 0.0500000 0.3000000

Defaulting (default = 1)firms have very low EBIT returns on Total Assets as well as low
Sales to Total Assets… as expected. They also spent a lot of time (in 365 day years) in rating
7 – equivalent to a “C” rating at S&P.

Now let’s use the credit migration data to understand the probability of default as well as
the probabilities of being in other ratings or migrating from one rating to another.

7.3 It Depends

Most interesting examples in probability have a little dependence added in: “If it rained
yesterday, what is the probability it rains today?” We can use this idea to generate weather
patterns and probabilities for some time in the future.

• In market risk, we can use this idea to generate the persistence of consumption spend-
ing, inflation, and the impact on zero coupon bond yields.

• In credit, dependence can be seen in credit migration: if an account receivable was A
rated this year, what are the odds this receivable be A rated next year?

We will use a mathematical representation of these language statements to help us understand
the dynamics of probabalistic change we so often observe in financial variables such as credit
default.

7.3.1 Enter A.A Markov

Suppose we have a sequence of T observations, {Xt}T
1 , that are dependent. In a time series,

what happens next can depend on what happened before:

p(X1, X2, ..., XT ) = p(X1)p(X2|X1)...p(Xt|Xt−1, ..., X1)
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Here p(x|y) is probability that an event x (e.g., default) occurs whenever (the vertical bar |)
event y occurs. This is the statement of conditional probability. Event x depends in some
way on the occurrence of y.

With markov dependence each outcome only depends on the one that came before.

p(X1, X2, ..., XT ) = p(X1)
T∏

s=2
p(Xs|Xs−1)

We have already encountered this when we used the functions acf and ccf to explore very
similar dependencies in macro-financial time series data. In those cases we explored the
dependency of today’s returns on yesterday’s returns. Markov dependence is equivalent to
an AR(1) process (today = some part of yesterday plus some noise).

To generate a markov chain, we need to do three things:

1. Set up the conditional distribution.

2. Draw the initial state of the chain.

3. For every additional draw, use the previous draw to inform the new one.

Now we are a position to develop a very simple (but oftentimes useful) credit model:

• If a receivable’s issuer (a customer) last month was investment grade, this month’s
chance of also being investment grade is 80%.

• If a receivable’s issuer last month was not investment grade, this month’s chance of
being investment grade is 20%.

7.3.2 Try this exercise

• We will simulate monthly for 5 years. Here we parameterize even the years and calcu-
late the number of months in the simulation. We set up a dummy investment.grade
variable with NA entries into which we deposit 60 dependent coin tosses using the bino-
mial distribution. The probability of success (state = “Investment Grade”) is overall
80% and is composed of a long run 20% (across the 60 months) plus a short run 60%
(of the previous month). Again the similarity to an autoregressive process here with
lags at 1 month and 60 months.

Then,

1. We will run the following code.
2. We should look up rbinom(n, size, prob) (coin toss random draws) to see the syn-

tax.
3. We will interpret what happens when we set the long.run rate to 0% and the

short.run rate to 80%.



7.3. IT DEPENDS 187

N.years <- 5
N.months <- N.years * 12
investment.grade <- rep(NA, N.months)
investment.grade[1] <- 1
long.run <- 0.5
short.run <- 0
for (month in 2:N.months) {

investment.grade[month] <- rbinom(1,
1, long.run + short.run * investment.grade[month -

1])
}
hist(investment.grade)
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The for (month in 2:N.months) loop says “For each month starting at month 2, perform
the tasks in the curly brackets ({}) until, and including, N.months”

Almost evenly ditributed probabilities occur. We plot the results.

plot(investment.grade, main = "Investment Grade",
xlab = "Month", ylab = "IG?", ty = "s")
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Now to look at a scenario with long-run = 0.0, and short-run = 0.80
N.years <- 5
N.months <- N.years * 12
investment.grade <- rep(NA, N.months)
investment.grade[1] <- 1
long.run <- 0 ## changed from base scenario 0.5
short.run <- 0.8 ## changed from base scenario 0.0
for (month in 2:N.months) {

investment.grade[month] <- rbinom(1,
1, long.run + short.run * investment.grade[month -

1])
}
hist(investment.grade)
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Histogram of investment.grade
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The result is much different now with more probability concentrated in lower end of invest-
ment grade scale. The next plot the up and down transitions between investment grade and
not-investment grade using lines to connect up to down transitions. Now this looks more
like a bull and bear graph.
plot(investment.grade, main = "Investment Grade",

xlab = "Month", ylab = "IG?", ty = "l")
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And we see how different these transitions are from a simple coin toss credit model (inde-
pendence, not dependence). We could just set the long.run rate to 50% (a truly unbiased
coin) and rerun, or simply run the following.
toss.grade <- rbinom(N.months, 1, 0.5)
plot(toss.grade, main = "Investment Grades (yawn!)",

xlab = "Month", ylab = "IG?", ty = "l")
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In our crude credit model transitions are represented as a matrix: Qij is P (Xt = j|Xt−1 = i)
where, i is the start state (“Investment Grade”), and j is the end state (“not-Investment
Grade”). Here is a transition matrix to encapsulate this data.
(transition.matrix <- matrix(c(0.8, 0.2,

0.2, 0.8), nrow = 2))

## [,1] [,2]
## [1,] 0.8 0.2
## [2,] 0.2 0.8

This function will nicely simulate this and more general random Markov chains.
rmarkovchain <- function(n.sim, transition.matrix,

start = sample(1:nrow(transition.matrix),
1)) {

result <- rep(NA, n.sim)
result[1] <- start
for (t in 2:n.sim) result[t] <- sample(ncol(transition.matrix),

1, prob = transition.matrix[result[t -
1], ])

return(result)
}
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7.3.3 Try this next exercise

Let’s run a 1000 trial markov chain with the 2-state transition.matrix and save to a
variable called ‘markov.sim’. Then we will use the table function to calculate how many 1’s
and 2’ are simulated.

Many trials (and tribulations…) follow from this code.
markov.sim <- rmarkovchain(1000, transition.matrix)
head(markov.sim)

## [1] 2 1 1 1 1 2

Then we tabulate the contingency table.
ones <- which(markov.sim[-1000] == 1)
twos <- which(markov.sim[-1000] == 2)
state.one <- signif(table(markov.sim[ones +

1])/length(ones), 3)
state.two <- signif(table(markov.sim[twos +

1])/length(twos), 3)
(transition.matrix.sim <- rbind(state.one,

state.two))

## 1 2
## state.one 0.817 0.183
## state.two 0.220 0.780

The result is pretty close to transition.matrix. The Law of large numbers would say we
converge to these values. The function which() sets up two indexes to find where the 1’s
and 2’s are in markov.sim. The function signif() with 3 means use 3 significant digits.
The the function table() tabulates the number of one states and two states simulated.

Next let’s develop an approach to estimating transition probabilities using observed (or these
could be simulated… if we are not very sure of future trends) rates of credit migration from
one rating to another.

7.4 Generating Some Hazards

Let’s set up a more realistic situation. Suppose we have annual hazard rates λ for each of 4
in-house credit ratings for a portfolio of accounts receivable. We can use a pivot table to get
these rates. Suppose that we know the number of accounts that transition from one rating
(start state) to another rating (end state) in a unit of time (here a year). We define the
hazard rate λ as the number of accounts that migrate from one rating to another rating (per
year) divided by the number of all the accounts that year at that starting rating.

Next we suppose we have N ratings which in Markov-speak are states of being in a credit
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rating. Transition probabilities are summarized by a N row × N column “generator” matrix
Λ = [λij]. Here the row index is i = 1...N starting credit rating states and the column index
is j = 1...N ending credit rating states for a customer.

Over any small (and getting ever smaller…) time step of duration dt the probability of a
transition from rating i to j is given approximately by λijdt. The probability of moving to
any other rating from the starting rating is Σi ̸=jλij so that staying at rating i is given by
1− Σi ̸=jλij all along the diagonal of the matrix.

A little more formally, and usefully, we can define for transitions from a starting state rating
i to an ending state rating j over an interval of time s = [0, t], the hazard rate for i ̸= j,

λij = Nij∫ t
0 Yi(s)ds

where Nij is the number of accounts that made the transition from one rating i to another,
different rating j, and Yi is the number of accounts rated in the starting state rating i at the
beginning of the time interval (t, t+ dt).

The int sign is again (remember the term structure of interest rates) the cumulative sum of
the product of the number of accounts times the time an account is in a transition from one
credit rating state to another. Using this formula, the math to generate ratings migration
probabilities is fairly straightforward with a couple of kinks.

The probability of transitions is P = exp(Λ). We can think of probabilities as discounts.
They range from 0 to 1 like the present value of $1. λijdt is just like a forward interest rate
in form as it is the change in probability (present value) from one date to another dt. We
will use the expm package to calculate the matrix exponent.

First suppose we already know the hazard rates for each starting state rating. We will
assign the D.rating hazard rate as a 0 throughout as this is the last state, that is, there is
no transition from this rating to another rating. Then create a λ matrix by concatenating
the rows of hazard rates, and see that the diagonals are zero.

By definition, if an account stays in a rating, the diagonal must be the negative of the row
sum of this matrix, where we use the apply function on the first, the row, dimension of the
matrix. We put the negative row sum into the diagonal and now we have a proper hazard,
or also called generator, matrix.

Now, for the last step here, we raise the hazard matrix to the exponent power. The result is
the probability transition matrix.
require(Matrix)
rating.names <- c("A1", "A2", "A3", "B1",

"B2", "B3", "C", "D")
lambda <- structure(c(-0.08179, 0.00663,

6e-04, 0.00035, 0.00029, 0, 0.000815871122518043,
0, 0.07493, -0.093, 0.02029, 0.002,
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0.00088, 0.00076, 0, 0, 0.00515,
0.08159, -0.08697, 0.04178, 0.00441,
0.00229, 0.00408, 0, 0.00114404022385915,
0.00361106546371299, 0.0615488360753306,
-0.110345216529572, 0.0534942615312562,
0.00343192628444715, 0.0057110978576263,
0, 0.000572020111929575, 0.000585578183304809,
0.00321930968833733, 0.0588046608464803,
-0.176844582534647, 0.0531948574089309,
0.0138698090828067, 0, 0, 0.000487981819420674,
0.0012004205617529, 0.00615719390039617,
0.108360170794083, -0.190567240072496,
0.134618735215477, 0, 0, 9.75963638841349e-05,
0.000109129141977537, 0.000622637585433321,
0.00666228898191469, 0.102671794676377,
-0.828109189355814, 0, 0, 0, 0, 0.000622637585433321,
0.00274329546314134, 0.0282180605610099,
0.669014320464795, 0), dim = c(8,
8), dimnames = list(rating.names,
rating.names))

# write.csv(lambda,'data/lambdahat.csv')
# # To save this work lambda <-
# read.csv('data/lambdahat.csv')
rownames(lambda) <- c("A1", "A2", "A3",

"B1", "B2", "B3", "C", "D")
colnames(lambda) <- c("A1", "A2", "A3",

"B1", "B2", "B3", "C", "D")
apply(lambda, 1, sum)

## A1 A2 A3 B1 B2
## 6.060336e-06 2.221830e-06 -2.304533e-06 -8.086612e-06 -4.565764e-06
## B3 C D
## -6.011417e-07 6.443874e-07 0.000000e+00
dimnames(lambda) <- list(rating.names,

rating.names)
lambda.diag <- -apply(lambda, 1, sum) ## this the is rate of staying in a state
diag(lambda) <- lambda.diag ## this pops lambda.diag into the diagonal of lambda
apply(lambda, 1, sum) ## should add up to zero

## A1 A2 A3 B1 B2 B3 C
## 0.0817900 0.0930000 0.0869700 0.1103452 0.1768446 0.1905672 0.8281092
## D
## 0.0000000
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P <- expm(lambda)
apply(P, 1, sum) ## Should be ones

## A1 A2 A3 B1 B2 B3 C D
## 1.085734 1.097323 1.092018 1.118836 1.195059 1.238993 1.844956 1.000000

We behold the generator matrix and its associated transition probabilities:
signif(lambda, 6)

## A1 A2 A3 B1 B2
## A1 -6.06034e-06 7.49300e-02 5.15000e-03 1.14404e-03 5.72020e-04
## A2 6.63000e-03 -2.22183e-06 8.15900e-02 3.61107e-03 5.85578e-04
## A3 6.00000e-04 2.02900e-02 2.30453e-06 6.15488e-02 3.21931e-03
## B1 3.50000e-04 2.00000e-03 4.17800e-02 8.08661e-06 5.88047e-02
## B2 2.90000e-04 8.80000e-04 4.41000e-03 5.34943e-02 4.56576e-06
## B3 0.00000e+00 7.60000e-04 2.29000e-03 3.43193e-03 5.31949e-02
## C 8.15871e-04 0.00000e+00 4.08000e-03 5.71110e-03 1.38698e-02
## D 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00
## B3 C D
## A1 0.00000e+00 0.00000e+00 0.000000000
## A2 4.87982e-04 9.75964e-05 0.000000000
## A3 1.20042e-03 1.09129e-04 0.000000000
## B1 6.15719e-03 6.22638e-04 0.000622638
## B2 1.08360e-01 6.66229e-03 0.002743300
## B3 6.01142e-07 1.02672e-01 0.028218100
## C 1.34619e-01 -6.44387e-07 0.669014000
## D 0.00000e+00 0.00000e+00 0.000000000
signif(P, 4)

## 8 x 8 Matrix of class "dgeMatrix"
## A1 A2 A3 B1 B2 B3 C
## A1 1.000e+00 0.0750100 0.008240 0.001518 0.0006474 6.084e-05 8.586e-06
## A2 6.658e-03 1.0010000 0.081750 0.006152 0.0008909 6.040e-04 1.352e-04
## A3 6.794e-04 0.0203900 1.002000 0.061750 0.0050820 1.650e-03 2.206e-04
## B1 3.796e-04 0.0024710 0.042060 1.003000 0.0591600 9.455e-03 1.251e-03
## B2 3.089e-04 0.0010410 0.005727 0.053960 1.0050000 1.094e-01 1.228e-02
## B3 5.404e-05 0.0008185 0.002756 0.005259 0.0542200 1.010e+00 1.032e-01
## C 8.228e-04 0.0001392 0.004417 0.006528 0.0176900 1.358e-01 1.007e+00
## D 0.000e+00 0.0000000 0.000000 0.000000 0.0000000 0.000e+00 0.000e+00
## D
## A1 3.617e-06
## A2 5.139e-05
## A3 1.065e-04
## B1 1.164e-03
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## B2 7.781e-03
## B3 6.283e-02
## C 6.725e-01
## D 1.000e+00

The last row of P are all zeros until the last entry, the diagonal entry. It means if you are in
“D” it is certain you stay in “D”.

Digging in we look at the non-defaulting rating distributions with thresholds for the “C”
rating.

First, we order the transition probabilities from worst (D) to best (A). Then take out the
worst (D).
(P.reverse <- P[4:1, 4:1]) ## Reorder from worst to best

## 4 x 4 Matrix of class "dgeMatrix"
## B1 A3 A2 A1
## B1 1.002899527 0.042057508 0.002470551 0.0003795657
## A3 0.061752300 1.002134622 0.020393062 0.0006794168
## A2 0.006152205 0.081749969 1.001081413 0.0066579619
## A1 0.001518019 0.008239507 0.075010753 1.0002449919
(P.reverse <- P.reverse[-1, ]) ## Eliminate the D state transitions

## 3 x 4 Matrix of class "dgeMatrix"
## B1 A3 A2 A1
## A3 0.061752300 1.002134622 0.02039306 0.0006794168
## A2 0.006152205 0.081749969 1.00108141 0.0066579619
## A1 0.001518019 0.008239507 0.07501075 1.0002449919

h Second, we compute cumulative probabilities for the C rating in the first row now. Then
compute cumulative probabilities.
(C.probs <- P.reverse[1, ])

## B1 A3 A2 A1
## 0.0617523000 1.0021346225 0.0203930620 0.0006794168
(C.cumprobs <- pmin(0.999, pmax(0.001,

cumsum(C.probs))))

## [1] 0.0617523 0.9990000 0.9990000 0.9990000

Third, let’s interpret our results through an exercise.
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7.4.1 Try this exercise

Now that we have gone this far let’s run the following and answer some questions about
what we did.
rating.df <- 16 ## Thinking that there are 3 non-defaulting ratings being spliced together using cumulative sums to estimate hazards
(thresholds <- qt(C.cumprobs, rating.df))
threshold.plot <- data.frame(Deviation = seq(from = -5,

to = 15, length = 100), Density = dt(seq(from = -5,
to = 5, length = 100), df = rating.df))

require(ggplot2)
ggplot(threshold.plot, aes(x = Deviation,

y = Density)) + geom_line(colour = "blue",
size = 1.5) + geom_vline(xintercept = thresholds,
colour = "red", size = 0.75) + geom_hline(yintercept = 0)

Here are the standard deviations for each transition from C to B to A:
rating.df <- 16 ## Thinking that there are 3 non-defaulting ratings being spliced together
(thresholds <- qt(C.cumprobs, rating.df))

## [1] -1.625890 3.686155 3.686155 3.686155

We compute thresholds using a fairly thick-tailed quantiles of Gossett’ Student’s t-
distribution (only 2 degrees of freedom). These thresholds are what we have been seeking:
they tell us when a customer’s credit is suspect, needs to be further examined, or mitigated.

Here is the plot, where we first define a data frame suited to the task.
threshold.plot <- data.frame(Deviation = seq(from = -5,

to = 15, length = 100), Density = dt(seq(from = -5,
to = 5, length = 100), df = rating.df))

require(ggplot2)
ggplot(threshold.plot, aes(x = Deviation,

y = Density)) + geom_line(colour = "blue",
size = 1.5) + geom_vline(xintercept = thresholds,
colour = "red", size = 0.75) + geom_hline(yintercept = 0)
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rating.df <- 16 ## Thinking that there are 3 non-defaulting ratings being spliced together
(thresholds <- qt(C.cumprobs, rating.df))
threshold.plot <- data.frame(Deviation = seq(from = -5,

to = 5, length = 100), Density = dt(seq(from = -5,
to = 5, length = 100), df = rating.df))

require(ggplot2)
ggplot(threshold.plot, aes(x = Deviation,

y = Density)) + geom_line(colour = "blue",
size = 1.5) + geom_vline(xintercept = thresholds,
colour = "red", size = 1.5) + geom_hline(yintercept = 0)

Again the t-distribution standard deviation thresholds:

## [1] -1.625890 3.686155 3.686155 3.686155

## [1] -1.625890 3.686155 3.686155 3.686155
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The dt in the plot is the Student’s t density function from -5 to +5 for 100 ticks.

Now that this works for one rating let’s plot all of the ratings row by row using apply with
the cusum function (on the first dimension). We will use the Student’s t distribution to
generate thresholds.
## Being sure we transpose this next
## result
cumprobs <- t(apply(P.reverse, 1, function(v) {

pmin(0.999, pmax(0.001, cumsum(v)))
}))
## v holds the values of of the
## elements of each row (remember this
## is 'row-wise') we are accumulating
## a sum
rating.df <- 16
thresholds <- qt(cumprobs, rating.df) ##Use Student's t
plot.parm <- par(mfrow = c(1, 3)) ## Building a 1 row, 3 column panel
for (j in 1:nrow(thresholds)) {

plot(seq(from = -5, to = 5, length = 100),
dnorm(seq(from = -5, to = 5,

length = 100)), type = "l",
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xlab = "Deviation", ylab = "Density",
main = paste(rownames(thresholds)[j],

"Rating"))
abline(v = thresholds[j, ], col = 1:length(thresholds[j,

]))
}
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par(plot.parm)

The A ratings have a much lower loss threshold as we would expect than C or B.

7.5 Now for the Future

Decision makers now want to use this model to look into the future. Using the hazard rates
to develop policies for our accounts receivable, and ultimately customer and counterparty
(e.g., vendors) relationships. Let’s build a rating event simulation to dig into how these rates
might occur in the wild future.

Let’s use transaction data to estimate an eight rating hazard rate to simulate the data we
might have seen in the first place.
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## Number of rating categories
n.cat <- dim(lambda)[1]
## Sum of migration rates from each
## non-default rating
(rates.sum <- -diag(lambda)[-n.cat])

## A1 A2 A3 B1 B2
## 6.060336e-06 2.221830e-06 -2.304533e-06 -8.086612e-06 -4.565764e-06
## B3 C
## -6.011417e-07 6.443874e-07
## Names of non-default ratings
names.nondf <- names(rates.sum)
## probabilities of transition (off
## diagonal)
(transition.probs <- lambda[-n.cat, ]/rates.sum)

## A1 A2 A3 B1 B2 B3
## A1 -1.00000 12364.0014 849.7879 188.7751 94.38753 0.0000
## A2 2984.02625 -1.0000 36721.9761 1625.2661 263.55666 219.6306
## A3 -260.35648 -8804.3884 -1.0000 -26707.7307 -1396.94691 -520.8955
## B1 -43.28141 -247.3224 -5166.5643 -1.0000 -7271.85403 -761.4059
## B2 -63.51620 -192.7388 -965.8843 -11716.3871 -1.00000 -23733.1944
## B3 0.00000 -1264.2609 -3809.4178 -5709.0135 -88489.70993 -1.0000
## C 1266.11897 0.0000 6331.5948 8862.8328 21524.02249 208909.6300
## C D
## A1 0.00000 0.0000
## A2 43.92611 0.0000
## A3 -47.35413 0.0000
## B1 -76.99610 -76.9961
## B2 -1459.18375 -600.8404
## B3 -170794.65519 -46940.7780
## C -1.00000 1038217.5553
## matrix rows sum to zero
apply(transition.probs, 1, sum)

## A1 A2 A3 B1 B2 B3
## 13495.95 41857.38 -37738.67 -13645.42 -38732.75 -317008.84
## C
## 1285110.75

A last row would have been the D rating absorbing row of 3 zeros and a 1.

Let’s create a miniverse of 20 years of rating migration data. This will help us understand
the many possibilities for accounts receivable transitions, even through we do not have the
direct data to do so. Within the 20 years we allow for up to 5 transitions per account. All
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of this is deposited into a data frame that will have as columns (fields in a database) an
ID, a start time for the transition state, and end time for the state, followed by the starting
transition and the ending transition. These fields will allow us to compute how long an
account dwells in a transition state (that is, a rating).

We generate a random portfolio of 100 accounts and calculate how long it takes for them
to transition from one credit rating (transition start state) to another (transition end state).
We also build into the simulation fractions of accounts in each of the non-defaulting notches.
These fractions serve as the first step in estimating the probability of being in a rating notch.
set.seed(1016)
n.firms <- 100
fractions <- c(0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1) ## equal number of transitions of each rating
initial.ratings <- sample(names.nondf,

size = n.firms, replace = TRUE, prob = fractions)
table(initial.ratings)

## initial.ratings
## A1 A2 A3 B1 B2 B3 C
## 14 18 11 10 21 13 13

The table function tells us how many firms out of a 100 are in each non-default rating on
average over the simulation.

Now we set up parameters for 20 years of data across the 100 firms. This will help us
understand the many possibilities for accounts receivable transitions, even through we might
not have enough direct data to do so. Within the 20 years we allow for up to 5 transitions
per account. All of this is deposited into a data frame that will have as columns (fields in a
database) an ID, a start time for the transition state, and end time for the state, followed
by the starting transition and the ending transition. These fields will allow us to compute
how long an account dwells in a transition state (that is, a rating).

We begin the simulation of events by creating an outer loop of firms, 100 in all in our simu-
lated accounts receivable portfolio. We are allowing no more than 5 credit rating transitions
as well.
n.years <- 10
max.row <- n.firms * 5
output.Transitions <- data.frame(id = numeric(max.row),

start.time = numeric(max.row), end.time = numeric(max.row),
start.rating = rep("", max.row),
end.rating = rep("", max.row), stringsAsFactors = FALSE)

The for loop simulates start and end times for each rating for each firm (up to so many
transitions across so many years). Within the loop we calculate how long the firm is in each
rating, until it isn’t. It is this time in transition (the “spell” or “dwell time”) that is really
the core of the simulation and our understanding of hazard rate methodology. We will model
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this dwell time as an exponential function using rexp() to sample a time increment. Other
functions we could use might be the Weibull or double-exponential for this purpose. At the
end of this routine we write the results to file.
count <- 0
for (i in 1:n.firms) {

end.time <- 0
end.rating <- initial.ratings[i]
while ((end.time < n.years) & (end.rating !=

"D") & !is.na(end.time)) {
count <- count + 1
start.time <- end.time
start.rating <- end.rating
end.time <- start.time + rexp(n = 1,

rate = rates.sum[start.rating])
if ((end.time <= n.years) & !is.na(end.time)) {

pvals <- transition.probs[start.rating,
names.nondf != start.rating]

end.rating <- sample(names(pvals),
size = 1, prob = pvals)

}
if ((end.time > n.years) & !is.na(end.time)) {

end.time <- n.years
}
output.Transitions[count, ] <- list(i,

start.time, end.time, start.rating,
end.rating)

}
}
write.csv(output.Transitions, "data/creditmigration.csv")

We configure all of the columns of our output data framw. We also compute the time in a
rating state and add to the original output.Transitions data frame.
## output.Transitions <-
## output.Transitions[1:count,]
output.Transitions <- read.csv("data/creditmigration.csv")
output.Transitions$start.rating <- as.factor(output.Transitions$start.rating)
output.Transitions$end.rating <- as.factor(output.Transitions$end.rating)
## output.Transitions$time <-
## output.Transitions$end.time-output.Transitions$start.time
transition.Events <- output.Transitions

And then we look at the output.
head(output.Transitions)
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## id start.date start.rating end.date end.rating time start.year end.year
## 1 1 40541 6 42366 6 1825 2010 2015
## 2 2 41412 6 42366 6 954 2013 2015
## 3 3 40174 5 40479 6 305 2009 2010
## 4 3 40479 6 40905 5 426 2010 2011
## 5 3 40905 5 42366 5 1461 2011 2015
## 6 4 40905 5 41056 6 151 2011 2012

Let’s inspect our handiwork further
head(transition.Events, n = 5)

## id start.date start.rating end.date end.rating time start.year end.year
## 1 1 40541 6 42366 6 1825 2010 2015
## 2 2 41412 6 42366 6 954 2013 2015
## 3 3 40174 5 40479 6 305 2009 2010
## 4 3 40479 6 40905 5 426 2010 2011
## 5 3 40905 5 42366 5 1461 2011 2015
summary(transition.Events)

## id start.date start.rating end.date
## Min. : 1.0 Min. :39951 3 : 351 Min. :39960
## 1st Qu.:230.0 1st Qu.:40418 4 : 348 1st Qu.:41170
## Median :430.0 Median :40905 5 : 212 Median :42143
## Mean :421.8 Mean :40973 6 : 189 Mean :41765
## 3rd Qu.:631.0 3rd Qu.:41421 2 : 179 3rd Qu.:42366
## Max. :830.0 Max. :42366 (Other): 94 Max. :42366
## NA's :1709 NA's :1709 NA's :1709 NA's :1709
## end.rating time start.year end.year
## 3 : 333 Min. : 0.0 Min. :2009 Min. :2009
## 4 : 332 1st Qu.: 344.0 1st Qu.:2010 1st Qu.:2012
## 5 : 209 Median : 631.0 Median :2011 Median :2015
## 6 : 190 Mean : 791.5 Mean :2012 Mean :2014
## 2 : 177 3rd Qu.:1157.0 3rd Qu.:2013 3rd Qu.:2015
## (Other): 132 Max. :2415.0 Max. :2015 Max. :2015
## NA's :1709 NA's :1709 NA's :1709 NA's :1709
dim(transition.Events)

## [1] 3082 8

We may want to save this simulated data to our working directory.
summary(transition.Events)

## id start.date start.rating end.date
## Min. : 1.0 Min. :39951 3 : 351 Min. :39960
## 1st Qu.:230.0 1st Qu.:40418 4 : 348 1st Qu.:41170
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## Median :430.0 Median :40905 5 : 212 Median :42143
## Mean :421.8 Mean :40973 6 : 189 Mean :41765
## 3rd Qu.:631.0 3rd Qu.:41421 2 : 179 3rd Qu.:42366
## Max. :830.0 Max. :42366 (Other): 94 Max. :42366
## NA's :1709 NA's :1709 NA's :1709 NA's :1709
## end.rating time start.year end.year
## 3 : 333 Min. : 0.0 Min. :2009 Min. :2009
## 4 : 332 1st Qu.: 344.0 1st Qu.:2010 1st Qu.:2012
## 5 : 209 Median : 631.0 Median :2011 Median :2015
## 6 : 190 Mean : 791.5 Mean :2012 Mean :2014
## 2 : 177 3rd Qu.:1157.0 3rd Qu.:2013 3rd Qu.:2015
## (Other): 132 Max. :2415.0 Max. :2015 Max. :2015
## NA's :1709 NA's :1709 NA's :1709 NA's :1709
dim(transition.Events)

## [1] 3082 8
## write.csv(transition.Events,'data/transitionevents.csv')
## to save this work

7.6 Build We Must

Now let’s go through the work flow to build a hazard rate estimation model from data.
Even though this is simulated data, we can use this resampling approach to examine the
components of the hazard rate structure across this rating system.

Our first step is to tabulate the count of transitions from ratings to one another and to self
with enough columns to fill the ending state ratings. Let’s recall the notation of the hazard
rate calculation:

λij = Nij∫ t
0 Yi(s)ds

Now we begin to estimate:
(Nij.table <- table(transition.Events$start.rating,

transition.Events$end.rating))

##
## 1 2 3 4 5 6 7 8
## 1 17 2 1 0 0 0 0 0
## 2 9 146 24 0 0 0 0 0
## 3 0 29 271 49 2 0 0 0
## 4 0 0 35 251 51 8 3 0
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## 5 0 0 2 32 125 50 3 0
## 6 0 0 0 0 28 116 40 5
## 7 0 0 0 0 2 14 33 12
## 8 0 0 0 0 1 2 3 7
(RiskSet <- by(transition.Events$time,

transition.Events$start.rating, sum))

## transition.Events$start.rating: 1
## [1] 25683
## --------------------------------------------------------
## transition.Events$start.rating: 2
## [1] 172285
## --------------------------------------------------------
## transition.Events$start.rating: 3
## [1] 318679
## --------------------------------------------------------
## transition.Events$start.rating: 4
## [1] 279219
## --------------------------------------------------------
## transition.Events$start.rating: 5
## [1] 129886
## --------------------------------------------------------
## transition.Events$start.rating: 6
## [1] 120696
## --------------------------------------------------------
## transition.Events$start.rating: 7
## [1] 29737
## --------------------------------------------------------
## transition.Events$start.rating: 8
## [1] 10577
I.levels <- levels(transition.Events$start.rating)
J.levels <- levels(transition.Events$end.rating)
(Ni.matrix <- matrix(nrow = length(I.levels),

ncol = length(J.levels), as.numeric(RiskSet),
byrow = FALSE))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 25683 25683 25683 25683 25683 25683 25683 25683
## [2,] 172285 172285 172285 172285 172285 172285 172285 172285
## [3,] 318679 318679 318679 318679 318679 318679 318679 318679
## [4,] 279219 279219 279219 279219 279219 279219 279219 279219
## [5,] 129886 129886 129886 129886 129886 129886 129886 129886
## [6,] 120696 120696 120696 120696 120696 120696 120696 120696
## [7,] 29737 29737 29737 29737 29737 29737 29737 29737
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## [8,] 10577 10577 10577 10577 10577 10577 10577 10577

The Nij.table tabulates the count of transitions from start to end. The Ni.matrix gives
us the row sums of transition times (“spell” or “dwelling time”) for each starting state.

Now we can estimate a simple hazard rate matrix. This looks just like the formula now.
(lambda.hat <- Nij.table/Ni.matrix)

##
## 1 2 3 4 5
## 1 6.619164e-04 7.787252e-05 3.893626e-05 0.000000e+00 0.000000e+00
## 2 5.223902e-05 8.474330e-04 1.393041e-04 0.000000e+00 0.000000e+00
## 3 0.000000e+00 9.100066e-05 8.503855e-04 1.537597e-04 6.275908e-06
## 4 0.000000e+00 0.000000e+00 1.253496e-04 8.989360e-04 1.826523e-04
## 5 0.000000e+00 0.000000e+00 1.539812e-05 2.463699e-04 9.623824e-04
## 6 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.319878e-04
## 7 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 6.725628e-05
## 8 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 9.454477e-05
##
## 6 7 8
## 1 0.000000e+00 0.000000e+00 0.000000e+00
## 2 0.000000e+00 0.000000e+00 0.000000e+00
## 3 0.000000e+00 0.000000e+00 0.000000e+00
## 4 2.865135e-05 1.074425e-05 0.000000e+00
## 5 3.849530e-04 2.309718e-05 0.000000e+00
## 6 9.610923e-04 3.314111e-04 4.142639e-05
## 7 4.707940e-04 1.109729e-03 4.035377e-04
## 8 1.890895e-04 2.836343e-04 6.618134e-04

hThe diagonal of a generator matrix is the negative of the sum of off-diagonal elements row
by row.
## Add default row and correct
## diagonal
lambda.hat <- lambda.hat[-8, ]
lambda.hat.diag <- rep(0, dim(lambda.hat)[2])
lambda.hat <- rbind(lambda.hat, lambda.hat.diag)
diag(lambda.hat) <- lambda.hat.diag
rowsums <- apply(lambda.hat, 1, sum)
diag(lambda.hat) <- -rowsums
## check for valid generator
apply(lambda.hat, 1, sum)

## 1 2 3 4
## 0.000000e+00 0.000000e+00 -2.371692e-20 8.470329e-21
## 5 6 7 lambda.hat.diag
## -5.082198e-20 -4.065758e-20 0.000000e+00 0.000000e+00
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lambda.hat

## 1 2 3 4
## 1 -1.168088e-04 7.787252e-05 3.893626e-05 0.0000000000
## 2 5.223902e-05 -1.915431e-04 1.393041e-04 0.0000000000
## 3 0.000000e+00 9.100066e-05 -2.510363e-04 0.0001537597
## 4 0.000000e+00 0.000000e+00 1.253496e-04 -0.0003473976
## 5 0.000000e+00 0.000000e+00 1.539812e-05 0.0002463699
## 6 0.000000e+00 0.000000e+00 0.000000e+00 0.0000000000
## 7 0.000000e+00 0.000000e+00 0.000000e+00 0.0000000000
## lambda.hat.diag 0.000000e+00 0.000000e+00 0.000000e+00 0.0000000000
## 5 6 7 8
## 1 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## 2 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## 3 6.275908e-06 0.000000e+00 0.000000e+00 0.000000e+00
## 4 1.826523e-04 2.865135e-05 1.074425e-05 0.000000e+00
## 5 -6.698181e-04 3.849530e-04 2.309718e-05 0.000000e+00
## 6 2.319878e-04 -6.048253e-04 3.314111e-04 4.142639e-05
## 7 6.725628e-05 4.707940e-04 -9.415879e-04 4.035377e-04
## lambda.hat.diag 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
dim(lambda.hat)

## [1] 8 8

That last statement calculates the row sums of the lambda.hat matrix. If the sums are zero,
then we correctly placed the diagonals.

Now we generate the transition matrix using the matrix exponent function. Verify how close
the simulation is (or not) to the original transition probabilities using P - P.hat.
## The matrix exponential Annual
## transition probabilities
(P.hat <- as.matrix(expm(lambda.hat)))

## 1 2 3 4
## 1 9.998832e-01 7.786229e-05 3.893452e-05 2.992989e-09
## 2 5.223097e-05 9.998085e-01 1.392743e-04 1.070695e-08
## 3 2.376450e-09 9.098053e-05 9.997490e-01 1.537145e-04
## 4 9.929226e-14 5.701991e-09 1.253135e-04 9.996527e-01
## 5 1.220226e-14 7.008280e-10 1.540647e-05 2.462458e-04
## 6 7.075944e-19 5.418359e-14 1.786430e-09 2.856297e-08
## 7 2.051897e-19 1.571320e-14 5.181150e-10 8.284062e-09
## lambda.hat.diag 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## 5 6 7 8
## 1 1.223315e-10 4.427252e-14 1.166200e-14 1.635000e-18
## 2 4.376216e-10 1.583824e-13 4.172013e-14 5.849220e-18
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## 3 6.287056e-06 3.411128e-09 8.985134e-10 1.679627e-13
## 4 1.825635e-04 2.867537e-05 1.074419e-05 2.761640e-09
## 5 9.993305e-01 3.847167e-04 2.314364e-05 1.263689e-08
## 6 2.318511e-04 9.993955e-01 3.311577e-04 4.148070e-05
## 7 6.725669e-05 4.704430e-04 9.990589e-01 4.033575e-04
## lambda.hat.diag 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00

Most of our accounts will most probably stay in their initial ratings.

7.6.1 What does that mean?

Now let’s replot the non-defaulting state distributions with thresholds using the simulation
of the transition probabilities.
P.reverse <- P.hat[8:1, 8:1] ## Use P.hat now
P.reverse <- P.reverse[-1, ] ##without D state transitions
## select the C rating transition
## probabilities
C.probs <- P.reverse[1, ]
C.cumprobs <- cumsum(C.probs)
thresholds <- qnorm(C.cumprobs)

plot(seq(from = -5, to = 5, length = 100),
dt(seq(from = -5, to = 5, length = 100),

df = 16), type = "l", xlab = "X",
ylab = "density")

abline(v = thresholds, col = 1:length(thresholds))
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We look at all of the ratings row by row using apply with the cusum function.
cum.probs <- t(apply(P.reverse, 1, function(v) {

pmin(0.99999, pmax(1e-05, cumsum(v)))
}))
thresholds <- qt(cum.probs, 16) ##Use Student-t with 16 degrees of freedom
opa <- par(mfrow = c(2, 4))
for (j in 1:nrow(thresholds)) {

plot(seq(from = -8, to = 8, length = 100),
dt(seq(from = -8, to = 8, length = 100),

16), type = "l", xlab = "Deviation",
ylab = "Density", main = paste("Rating ",

rownames(thresholds)[j]))
abline(v = thresholds[j, ], col = 1:length(thresholds[j,

]))
}
par(opa)
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cum.probs is adjusted for 0 and 1 as these might produce NaNs and stop the action. Notice
the use of pmin and pmax to perform element by element (parallel minimum and maximum)
operations.

This just goes to show it is hard to be rated C. It is the riskiest of all.

7.7 Now for the Finale

We will now use a technique that will can be used with any risk category. The question on
the table is: how can we generate a loss distribution for credit risk with so much variation
across ratings?

• A loss distribution is composed of two elements, frequency and severity.
• Frequency asks the question how often and related to that question, how likely.
• Severity asks how big a loss.

For operational risk frequency will be modeled by a Poisson distribution with an average
arrival rate of any loss above a threshold. Severity will be modeled using Beta, Gamma,
Exponential, Weibull, Normal, Log-Normal, Student-t, or extreme value distributions. For
credit risk we can model some further components: loss given default (i.e., recovery) and
exposure at default for severity, and probability of default for frequency. By the way our
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transition probabilities are counting distirubtion and have as their basis the Poisson distir-
bution. We have used both dwelling times AND the computation of hazards with dependent
structures to model the transition probabilities.

Let’s look at our top 20 customers by revenue and suppose we have these exposures. Prob-
abilities of default are derived from the transition probabilities we just calculated.
## Specify portfolio characteristics
n.accounts <- 20
exposure.accounts <- c(5, 5, 5, 5, 10,

10, 10, 10, 20, 20, 20, 20, 30, 30,
30, 30, 40, 40, 40, 40)

probability.accounts <- c(rep(0.1, 10),
rep(0.05, 10))

7.8 Enter Laplace

A hugely useful tool for finance and risk is the Laplace transform. Let’s formally define this
as the integral (again think cumulative sum).

L(f(t)) =
∫ ∞

0
e−stf(t)dt = f(s)

where f(t) is a monotonic, piecewise differentiable function, say the cash flow from an asset,
or a cumulative density function . To make this “real” for us we can calculate (or look up
on a standard table of transforms)

L{1} =
∫ ∞

0
e−st1dt = 1

s

If 1 is a cash flow today t = 0, then L{1} can be interpreted as the present value of $1 at s
rate of return in perpetuity. Laplace transforms are thus to a financial economist a present
value calculation. They map the time series of cash flows, returns, exposures, into rates of
return.

In our context we are trying to meld receivables account exposures, the rate of recovery if
a default occurs, and the probability of default we worked so hard to calculate using the
Markov chain probabilities.

For our purposes we need to calculate for m exposures the Laplace transform of the sum of
losses convolved with probabilities of default:

m∑
0

(pdi × lgdi × Si)
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where pd is the probability of default, lgd is the loss given default, and S is exposure in
monetary units. In what follows lgd is typically one minus the recovery rate in the event of
default. Here we assume perfect recovery, even our attorney’s fees.

This function effectively computes the cumulative loss given the probability of default, raw
account exposures, and the loss given default.
laplace.transform <- function(t, pd,

exposure, lgd = rep(1, length(exposure))) {
output <- rep(NA, length(t))
for (i in 1:length(t)) output[i] <- exp(sum(log(1 -

pd * (1 - exp(-exposure * lgd *
t[i])))))

output
}

7.8.1 It’s technical…

We can evaluate the Laplace Transform at s = i (where i = sqrt−1, the imaginary number) to
produce the loss distribution’s characteristic function. The loss distribution’s characteristic
function encapsulates all of the information about loss: means, standard deviations, skewness,
kurtosis, quantiles,…, all of it. When we use the characteristic function we can then calculate
the Fast Fourier Transform of the loss distribution characteristic function to recover the loss
distribution itself. - This is a fast alternative to Monte Carlo simulation. - Note below that
we must divide the FFT output by the number of exposures (plus 1 to get the factor of 2
necessary for efficient operation of the FFT).
N <- sum(exposure.accounts) + 1 ## Exposure sum as a multiple of two
t <- 2 * pi * (0:(N - 1))/N ## Setting up a grid of t's
loss.transform <- laplace.transform(-t *

(0+1i), probability.accounts, exposure.accounts) ## 1i is the imaginary number
loss.fft <- round(Re(fft(loss.transform)),

digits = 20) ## Back to Real numbers
sum(loss.fft)

## [1] 421
loss.probs <- loss.fft/N
loss.probs.1 <- loss.probs[(0:20) * 5 +

1]
loss.q <- quantile(loss.probs.1, 0.99)
loss.es <- loss.probs.1[loss.probs.1 >

loss.q]
barplot(loss.probs.1, names.arg = paste((0:20) *

5))
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(VaR <- loss.q * N)

## 99%
## 79.42721
(ES <- loss.es * N)

## [1] 87.89076

We can use this same technique when we try to aggregate across all exposures in the or-
ganization. The last two statements using the quantile function calculate the amount of
capital we need to cover at least a 1% loss on this portfolio of accounts receivable. The
barplot provides a rough and ready histogram of the loss distribution.

7.9 Summary

We covered a lot of credit risk maths: A. Markov, transition probabilities, hazard rates, M.
Laplace. We just built a rating model that produced data driven risk thresholds. We used
these probabilities to generate an aggregate credit loss distribution.



7.10. FURTHER READING 215

7.10 Further Reading

Much of the R code in generating hazard-based transition probabilities derives from <

7.11 Practice Laboratory

7.11.1 Practice laboratory #1

7.11.1.1 Problem

7.11.1.2 Questions

7.11.2 Practice laboratory #2

7.11.2.1 Problem

7.11.2.2 Questions

7.12 Project

7.12.1 Background

7.12.2 Data

7.12.3 Workflow

7.12.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.

• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.



216 CHAPTER 7. CREDIT RISK

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.

7.13 References



Chapter 8

Operational Risk and Extreme
Finance

8.1 Imagine This

Remember that company we just acquired? Not only is customer creditworthiness apt to
cost us another $80 million, but our walk-through of distribution, call-center, and production
facilities had a raft of negatively impacting issues with health and safety, environmental, and
intellectual property all located in places rife with fraud and corruption.

Not only that, but recent (5 years ago!) hurricane damage has still not been rectified. Our
major insurance carrier has also just pulled out of underwriting your fire-related losses. To
seemingly top it all off, three VP’s of regional manufacturing have just been indicted for
padding vendor accounts for kickbacks. To add insult to injury, employee turnover rates are
over 40%.

Previously we studied the stylized facts of financial variables, market risk, and credit risk.
A common theme runs through this data and outcomes: thick tails, high Value at Risk and
Expected Shortfall. Rare events can have strong and persistent effects. Then there is the
probability of contagion that allows one bad market to infect other markets.

Now we need to consider more formally the impact of extreme, but rare events on financial
performance. To do this we will start off with modeling potential loss in two dimensions,
frequency of loss and severity. Frequency of losses, modeled with a Poisson process. The
Poisson process is at the heart of Markov credit risks. Each transition probability stems from
an average hazard rate of defaults in a unit of time and a segment of borrowers. Here we
will use a simplified sampling of frequencies of events drawn from a Poisson process similar
to the one we used in credit risk measurement.

Severity is defined as currency based loss. In credit this is the unrecoverable face value,
accrued interest, and administrative expenses of a defaulted credit instrument such as a
loan. In operational risk this loss could be the value of customers lost due to a cyber
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breach, or suppliers failing to deliver critical goods and services resulting in unmet demand,
or reputation with investors leading to a flight of capital. We will typically use gamma
or generalized Pareto distributions to help us model severity. In some equity markets, the
log-normal distribution is prevailing practice.

• Mean Excess Loss from reliability and vulnerability analysis
• Historical data
• VaR and ES again

8.2 What is Operational Risk?

This is a third major category of risk that includes everything from the possibility of process
failure, to fraud, to natural (and our own homemade) disaster, errors, omissions, in other
words, having lots of really bad days.

In a nutshell we measure operational risk using frequency and severity. Again there
is analogy to credit risk where the frequency is the probability of default and severity is
recoverable exposure. Here we think of the probability of loss as how often a loss could
occur, its likelihood. Infused into likelihood are opinions about “how often,” “how fast,”
“how long” (before detection, response, correction), “how remote” (or “imminent”), among
other potential suspects.

On the other hand We think of severity as the monetary loss itself. This loss is beyond
a threshold, and thus the focus on “extreme” value methods of dealing with distributions.
The “extreme” will be the tail of the distribution where probably but rare events with large
magnitudes roam.

In typical experience in most organizations, there is no good time series or cross-sections of
data on which to rely for measurements of operational risk. For example, the emerging and
immanent risks of botnets wreaking havoc in our computer operating systems have really
only a little loss data available for analysis. The problem with this data is that only certain
aspects of the data are disclosed, they are supremely idiosyncratic, that is, applicable to
highly specialized environments, and often seem far to much an estimate of enterprise-wide
loss. Where we do have some data, we have established ways of working with severity
distributions that make will sense of the shape of the data.

8.2.1 A working example

Suppose management, after much discussion and challenge by subject matter experts, deter-
mines that

1. The median loss due to a vulnerability of a known cyber breach is $60 million

2. With an average (or median) frequency of 25%,

3. All in a 12 month cycle.
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4. Management also thinks that the variation in their estimates is about $20 million.

We sometimes call this the “volatility of the estimate” as it expresses the degree of managerial
uncertainty about the size of the loss.

1. How would we quantify this risk?
2. How would we manage this risk?

Here are some steps management might take to measure and mitigate this operational risk:

1. Develop a cyber risk taxonomy, For example look at NIST and ISO for guidance.
2. Develop clear definitions of frequency and severity in terms of how often and how much.

Calibrate to a metric like operational income.
3. Develop range of operational scenarios and score their frequency and severity of impact

on operating income.
4. Aggregate and report ranges of median and quantile potential loss.
5. Develop mitigation scenarios and their value. Subtract this value from potential loss

and call it retained risk.
6. Given the organization’s risk tolerance, determine if more mitigation needs to be done.

This last step puts a “value” on operational risk scenarios using a rate of error that, if
exceeded, would put the organization at ongoing risk that management is not willing to
tolerate. This “significance level” in data analytics is often called “alpha” or α. An α = 5%
indicates that management, in a time frame such as one year, is not willing to be wrong
more than 1 in 20 times about its experience of operational risk. Management believes that
they are 95% (1 − α) confident in their measurement and management of risk. It is this
sort of thinking that is at the heart of statistically based confidence intervals and hypothesis
testing.

8.3 How Much?

Managers can use several probability distributions to express their preferences for risk of loss.
A popular distribution is the gamma severity function. This function allows for skewness and
“heavy”” tails. Skewness means that loss is attenuated and spread away from the mean or
median, stretching occurrences further into the tail of the loss distribution.

The gamma disstribution is fully specified by shape, α, and scale, β, parameters. The shape
parameter is a dimensionless number that affects the size and skewness of the tails. The scale
parameter is a measure of central tendency “scaled” by the standard deviation of the loss
distribution. Risk specialists find this distribution to be especially useful for time-sensitive
losses.

We can specify the α shape and β scale parameters using the mean, µ, and standard deviation,
σ of the random severities, X as

β = µ/σ2,
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and

α = µβ

and this is the same as

α = µ2/σ2

Here β will have dimension of LOSS−1, while α is dimensionless. The probability that a
loss will be exactly x, conditional on α and β is

f(x|alpha, β) = βαxα−1e−xβ

Γ(α)

Where

Γ(x) =
∫ ∞

0
xt−1e−xdx

Enough of the math, although very useful for term structure interpolations, and transforming
beasts of expressions into something tractable. Let’s finally implement into R.
set.seed(1004)
n.sim <- 1000
mu <- 60 ## the mean
sigma <- 20 ## management's view of how certain they think their estimates are
sigma.sq <- sigma^2
beta <- mu/sigma.sq
alpha <- beta * mu
severity <- rgamma(n.sim, alpha, beta)
summary(severity)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.54 45.44 57.48 60.30 73.47 152.23

The distribution is dispersed from a low of 15 to a high of over 120 million dollars. We might
check with management that this low and high (and intermediate levels) are reasonable.
Let’s graph the distribution. Here we form a data frame in gamma.sev to create factor
values for the ggplot fill.
require(ggplot2)
gamma.sev <- data.frame(Severity = severity,

Distribution = rep("Gamma", each = n.sim))
ggplot(gamma.sev, aes(x = Severity, fill = Distribution)) +

geom_density(alpha = 0.3)
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8.3.1 Severity thresholds

We can add thresholds based on value at risk (VaR) and expected shortfall ES. Here we
calculate VaR.sev as the quantile for a confidence level of 1− α.
alpha.tolerance <- 0.05
(VaR.sev <- quantile(severity, 1 - alpha.tolerance))
(ES.sev <- mean(gamma.sev$Severity[gamma.sev$Severity >

VaR.sev]))

Plot them onto the distribution using the geom_vline feature in ggplot2. What is the
relationship between VaR and ES?
ggplot(gamma.sev, aes(x = Severity, fill = Distribution)) +

geom_density(alpha = 0.3) + geom_vline(xintercept = VaR.sev,
color = "red") + geom_vline(xintercept = ES.sev,
color = "blue")

Here are the results of these two exercises.
alpha.tolerance <- 0.95
(VaR.sev <- quantile(severity, alpha.tolerance))
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## 95%
## 98.05779
(ES.sev <- mean(gamma.sev$Severity[gamma.sev$Severity >

VaR.sev]))

## [1] 110.2134
ggplot(gamma.sev, aes(x = Severity, fill = Distribution)) +

geom_density(alpha = 0.3) + geom_vline(xintercept = VaR.sev,
color = "red") + geom_vline(xintercept = ES.sev,
color = "blue")
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What is the relationship between Var and ES? As it should be, the VaR is less than the
ES. For this risk of potential cyber breach vulnerability, management might think of setting
aside capital proportional to ES.sev - quantile(severity, 0.50)), that is, the difference
between the expected shortfall and the median potential loss. The modifier “proportional”
needs some further specification. We have to consider the likelihood of such a risk event.
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8.4 How Often?

We usually model the frequency of a loss event with a poisson distribution. This is a very
basic counting distribution defined by the rate of arrival of an event, λ in a unit of time.
This rate is jus what we struggled to estimate for credit rating transitions.

Again for completeness sake and as a reference, we define the probability of exactly x risk
events arriving at a rate of λ as

Probability[x|λ] = λxe−λ

x!

Management might try to estimate the count of events in a unit of time using hazard rate
models (same λ as in credit migration transitions). Here we simulate management’s view with
λ = 0.25. Our interpretation of this rating is that management believes that a vulnerability
event will happen in the next 12 months once every 3 months (that is once every four
months).

We simulate by using n.sim trials drawn with the rpois() function conditional on λ = 0.25.
n.sim <- 1000
lambda <- 0.25
frequency <- rpois(n.sim, lambda)
summary(frequency)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 0.000 0.241 0.000 3.000

summary is not very informative so we also plot this distribution using this code:
poisson.freq <- data.frame(Frequency = frequency,

Distribution = rep("Poisson", each = n.sim))
ggplot(poisson.freq, aes(x = frequency,

fill = Distribution)) + geom_density(alpha = 0.3)
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This shows a smooth version of the discrete event count: more likely zero, then one event,
then two , then three events, all of which devides the 12 months into four, 3-month event
intervals.

8.5 How Much Potential Loss?

Now we get to the nub of the matter, how much potentially can we lose? This means we
need to combine frequency with severity. We need to “convolve” the frequency and severity
distributions together to form one loss distribution. “To convolve” means that for each
simulated cyber dollar loss scenario we see whether the scenario occurs at all using the many
poisson frequency scenarios.

This convolution can be accomplished in the following code:
loss <- rpois(n.sim, severity * lambda)
summary(loss)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.00 10.00 14.00 15.02 19.00 44.00

Some notes are in order:
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1. This code takes each of the gamma distributed severities (n.sim of them) asks how often
one of them will occur (lambda).

2. It then simulates the frequency of these risk events scaled by the gamma severities of
the loss size.

3. The result is a convolution of all n.sim of the severities with all n.sim of the frequencies.
We are literally combining each scenario with every other scenario.

Let’s visualize our handiwork and frame up the data. Then calculate the risk measures for
the potential loss as
loss.rf <- data.frame(Loss = loss, Distribution = rep("Potential Loss",

each = n.sim))
(VaR.loss.rf <- quantile(loss.rf$Loss,

1 - alpha.tolerance))

## 5%
## 6
(ES.loss.rf <- mean(loss.rf$Loss[loss.rf$Loss >

VaR.loss.rf]))

## [1] 15.65462

Again VaR is a quantile and ES is the mean of a filter on the convolved losses in excess of the
VaR quantile.

8.5.1 Try this exercise

1. Plot the loss function and risk measures with
ggplot(loss.rf, aes(x = Loss, fill = Distribution)) +

geom_density(alpha = 0.3) + geom_vline(xintercept = VaR.loss.rf,
color = "red") + geom_vline(xintercept = ES.loss.rf,
color = "blue")

2. What would you advise management about how much capital might be needed to
underwrite these losses?

Some results using this code:
ggplot(loss.rf, aes(x = Loss, fill = Distribution)) +

geom_density(alpha = 0.3) + geom_vline(xintercept = VaR.loss.rf,
color = "red") + geom_vline(xintercept = ES.loss.rf,
color = "blue")
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Management should consider different risk tolerances first. Then the organization can decide
on the difference between the VaR (or ES) and the median loss.
loss.rf <- data.frame(Loss = loss, Distribution = rep("Potential Loss",

each = n.sim))
(VaR.loss.rf <- quantile(loss.rf$Loss,

1 - alpha.tolerance))

## 5%
## 6
(ES.loss.rf <- mean(loss.rf$Loss[loss.rf$Loss >

VaR.loss.rf]))

## [1] 15.65462
(Reserve.loss.rf <- ES.loss.rf - quantile(loss.rf$Loss,

0.5))

## 50%
## 1.654623

If this were a bank, then managers would have calculated the capital requirement (almost a
la Basle III).
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8.6 We Have History

Now suppose we have some history of losses. In this context, we use an extreme tail distri-
bution called the Generalized Pareto Distribution (GPD) to estimate historical loss param-
eters. This distribution models the the tails of any other distribution. We would have split
a poisson-gamma loss distribution into two parts, a body, and a tail. The tail would begin
at a specified threshold.

The GPD is especially well-known for a single property: for very high thresholds, GPD not
only well describes the behavior in excess of the threshold, but the mean excess over the
threshold is linear in the threshold. From this property we get more intuition around the
use of Expected Shortfall as a coherent risk measure. In recent years we well exceeded all
Gaussian and Student’s t thresholds in distressed markets.

For a random variate x, the GPD distribution is defined for The scale parameter β and shape
parameter ξ ≥ 0 as:

g(x; ξ ≥ 0) = 1− (1 + xξ/β)−1/ξ

and when the shape parameter ξ = 0, the GPD becomes the exponential distribution depen-
dent only on the scale parameter β:

g(x; ξ = 0) = 1− exp(−x/β)

Now for the infamous property. If u is an upper (very high) threshold, then the excess of
threshold function for the GPD is

e(u) = β + ξu

1− ξ

This simple measure is linear in thresholds. It will allow us to visualize where rare events
begin (See McNeil, Embrechts, Frei (2015, Chapter 5)). We will use as a threshold the
exceedance that begins to make the excesses linear.

8.7 Fire Losses

Now to get to some data. The first thing we do is load the well researched Danish fire claims
data set in millions of Danish Kroner collected from 1980 to 1990 as a time series object. Then
we will plot the Mean Excesses (of thresholds). These are simply the mean of e(u), a function
of the parameters of the GPD.1We will follow very closely the code and methodology used
by McNeil et al. currently on the qrmtutorial site at http://www.qrmtutorial.org/r-code)

1(

http://www.qrmtutorial.org/r-code
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library(QRM)
## Load Danish fire loss data and look
## at structure and content
data(danish)
str(danish)

## Time Series:
## Name: object
## Data Matrix:
## Dimension: 2167 1
## Column Names: FIRE.LOSSES
## Row Names: 1980-01-03 ... 1990-12-31
## Positions:
## Start: 1980-01-03
## End: 1990-12-31
## With:
## Format: %Y-%m-%d
## FinCenter: GMT
## Units: FIRE.LOSSES
## Title: Time Series Object
## Documentation: Wed Mar 21 09:48:58 2012
head(danish, n = 3)

## GMT
## FIRE.LOSSES
## 1980-01-03 1.683748
## 1980-01-04 2.093704
## 1980-01-05 1.732581
tail(danish, n = 3)

## GMT
## FIRE.LOSSES
## 1990-12-30 4.867987
## 1990-12-30 1.072607
## 1990-12-31 4.125413
## Set Danish to a numeric series
## object if a time series
if (is.timeSeries(danish)) danish <- series(danish)
danish <- as.numeric(danish)

We review the dataset.
summary(danish)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
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## 1.000 1.321 1.778 3.385 2.967 263.250

Our next task is to sort out the losses and rank order unique losses with this function.
n.danish <- length(danish)
## Sort and rank order unique losses
rank.series <- function(x, na.last = TRUE) {

ranks <- sort.list(sort.list(x, na.last = na.last))
if (is.na(na.last))

x <- x[!is.na(x)]
for (i in unique(x[duplicated(x)])) {

which <- x == i & !is.na(x)
ranks[which] <- max(ranks[which])

}
ranks

}

Now we use the rank.series function to create the mean excess function point by point
through the sorted series of loss data. In the end we want to cumulatively sum data in a
series of successive thresholds.
danish.sorted <- sort(danish) ## From low to high
## Create sequence of high to low of
## indices for successive thresholds
n.excess <- unique(floor(length(danish.sorted) -

rank.series(danish.sorted)))
points <- unique(danish.sorted) ## Just the unique losses
n.points <- length(points)
## Take out last index and the last
## data point
n.excess <- n.excess[-n.points]
points <- points[-n.points]
## Compute cumulative sum series of
## losses
excess <- cumsum(rev(danish.sorted))[n.excess] -

n.excess * points
excess.mean <- excess/n.excess ## Finally the mean excess loss series

So much happened here. Let’s spell this out again:

1. Sort the data
2. Construct indices for successive thresholds
3. With just unique losses throw out the last data point, and its index
4. Now for the whole point of this exercise: calculate the cumulative sum of losses

by threshold (the [n.excess] operator) in excess of the cumulative threshold
n.excess*points

5. Then take the average to get the mean excess loss series.
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8.7.1 Try this exercise

1. Build a data frame with components Excess.Mean, Thresholds, and type of
Distribution.

library(ggplot2)
omit.points <- 3
excess.mean.df <- data.frame(Excess.Mean = excess.mean[1:(n.points -

omit.points)], Thresholds = points[1:(n.points -
omit.points)], Distribution = rep("GPD",
each = length(excess.mean[1:(n.points -

omit.points)])))

2. plot the mean excess series against the sorted points. In this case we will omit the last
3 mean excess data points.

## Mean Excess Plot
ggplot(excess.mean.df, aes(x = Thresholds,

y = Excess.Mean)) + geom_line() +
geom_point(size = 1, shape = 22,

colour = "red", fill = "pink") +
geom_vline(xintercept = 40) + geom_vline(xintercept = 60)

## Plot density
ggplot(excess.mean.df, aes(x = Excess.Mean,

fill = Distribution)) + geom_density() +
xlim(0, 75)

Some results using this code:
library(ggplot2)
omit.points <- 3
excess.mean.df <- data.frame(Excess.Mean = excess.mean[1:(n.points -

omit.points)], Thresholds = points[1:(n.points -
omit.points)], Distribution = rep("GPD",
each = length(excess.mean[1:(n.points -

omit.points)])))

We can interpret this data by using the [1:(n.points - omit.points)] throughout to
subset the mean excess series, the thresholds, and an indicator of the type of distribution.
## Mean Excess Plot
ggplot(excess.mean.df, aes(x = Thresholds,

y = Excess.Mean)) + geom_line() +
geom_point(size = 1, shape = 22,

colour = "red", fill = "pink") +
geom_vline(xintercept = 40) + geom_vline(xintercept = 60)
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This plot shows that the mean of any excess over each and every point grows linearly with
each threshold. As the mean excesses get larger, they also become more sparse, almost like
outliers. They are the rare events we might want to mitigate. We might look at the vertical
lines at 40 and 60 million kroner to possibly design retention and limits for a contract to
insure against experiencing loss in this region.
## Plot density
ggplot(excess.mean.df, aes(x = Excess.Mean,

fill = Distribution)) + geom_density() +
xlim(0, 75)
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This density plot confirms the pattern of the mean excess plot. The mean excess distribution
is understood by engineers as the mean residual life of a physical component. In insurance
on the other hand, if the random variable X is a model of insurance losses, like the danish
data set, then the conditional mean E(X−u|X > u) is the expected claim payment per loss
given that the loss has exceeded the deductible of u. In this interpretation, the conditional
mean E(X − t|X > t) is called the mean excess loss function.

8.8 Estimating the Extremes

Now we borrow some Generalized Pareto Distribution code from our previous work in market
risk and apply it to the danish data set.
## library(QRM)
alpha.tolerance <- 0.95
u <- quantile(danish, alpha.tolerance,

names = FALSE)
fit.danish <- fit.GPD(danish, threshold = u) ## Fit GPD to the excesses
(xi.hat.danish <- fit.danish$par.ses[["xi"]]) ## fitted xi

## [1] 0.1351274
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(beta.hat.danish <- fit.danish$par.ses[["beta"]]) ## fitted beta

## [1] 1.117815

Let’s put these estimates to good use. Here are the closed form calculations for value at
risk and expected shortfall (no random variate simulation!) using McNeil, Embrechts, Frey
(2015, chapter 5) formulae:
## Pull out the losses over the
## threshold and compute excess over
## the threshold
loss.excess <- danish[danish > u] - u ## compute the excesses over u
n.relative.excess <- length(loss.excess)/length(danish) ## = N_u/n
(VaR.gpd <- u + (beta.hat.danish/xi.hat.danish) *

(((1 - alpha.tolerance)/n.relative.excess)^(-xi.hat.danish) -
1))

## [1] 9.979336
(ES.gpd <- (VaR.gpd + beta.hat.danish -

xi.hat.danish * u)/(1 - xi.hat.danish))

## [1] 11.27284

Using these risk measures we can begin to have a discussion around the size of reserves,
the mitigation of losses, and the impact of this risk on budgeting for the allocation of risk
tolerance relative to other risks.

How good a fit? Let’s run this code next.
z <- pGPD(loss.excess, xi = xi.hat.danish,

beta = beta.hat.danish) ## should be U[0,1]
plot(z, ylab = "Fitted GPD applied to the excesses") ## looks fine
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hist(z, xlab = "z = prob(loss.excess)",
ylab = "Count of Excess", main = "GPD Goodness of Fit")
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And it is as most of the excesses are in the tail!

8.8.1 Try this exercise

Let’s try other thresholds to sensitize ourselves to the GPD fit and coefficients.
## Fit GPD model above 10
u <- 10
fit.danish <- fit.GPD(danish, threshold = u)
(RM.danish <- RiskMeasures(fit.danish,

c(0.99, 0.995)))

## p quantile sfall
## [1,] 0.990 27.28640 58.22848
## [2,] 0.995 40.16646 83.83326

Now let’s look at the whole picture with these exceedances. On the vertical axis we have the
probabilities that you are in the tail … the extreme loss of this operation. On the vertical
axis we have the exceedances (loss over the threshold u). The horizontal line is our risk
tolerance (this would be h percent of the time we don’t want to see a loss…)
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plotFittedGPDvsEmpiricalExcesses(danish,
threshold = u)

abline(h = 0.01)
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Let’s use the showRM function in the QRM package to calculate the expected short-
fall confidence intervals. The initial alpha.tolerance is 1 - h risk tolerance. We
are only looking at the expected shortfall and could also have specified value at
risk. What we really want to see is the range of ES as we wander into the deep
end of the pool with high exceedances. The BFGS is described technically here:
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm.
alpha.tolerance <- 0.05
showRM(fit.danish, alpha = 1 - alpha.tolerance,

RM = "ES", method = "BFGS")
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CI stands for “confidence interval” and we answer this question:

For each level of tolerance for loss (vertical axis) what is the practical lower and
upper limit on the expected shortfall of 23.95 million?

Practically speaking how much risk would managers be willing to retain (lower bound) and
how much would you underwrite (upper - lower bounds)?

8.8.2 The shape of things to come

Let’s now plot the GPD shape parameter as a function of the changing threshold.
## Effect of changing threshold on xi
xiplot(danish)
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What does xi tell us? Mainly information about the relationship between our risk measures.
The ratio of VaR to ’ES‘ is (1− ξ)−1 if 0 ≤ ξ ≥ 1. How bent the tail will be: higher ξ means
a heavier tail, and a higher frequency of very large losses.

Again the upper and lower bounds help us diagnose what is happening to our exceedances.
The Middle line is the shape parameter at variour thresholds and their corresponding ex-
ceedances. Dashed red lines are the “river banks” bounding the upper and lower edges of
the tail (by threshold) distribution of the estimated risk measure. Fairly stable?

8.8.3 Example

We can run this code to throw the two popular risk measures together.
## Fit GPD model above 20
mod2 <- fit.GPD(danish, threshold = 20)
mod2$par.ests

## xi beta
## 0.6844366 9.6341385
mod2$par.ses

## xi beta
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## 0.2752081 2.8976652
mod2$par.ests/mod2$par.ses

## xi beta
## 2.486978 3.324794
plotFittedGPDvsEmpiricalExcesses(danish,

threshold = 20)
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(RMs2 <- RiskMeasures(mod2, c(0.99, 0.995)))

## p quantile sfall
## [1,] 0.990 25.84720 69.05935
## [2,] 0.995 37.94207 107.38721
RMs2

## p quantile sfall
## [1,] 0.990 25.84720 69.05935
## [2,] 0.995 37.94207 107.38721
plotTail(mod2)
showRM(mod2, alpha = 0.99, RM = "VaR",

method = "BFGS")
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showRM(mod2, alpha = 0.99, RM = "ES",
method = "BFGS")
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We are just doubling the threshold. Here is the workflow:

1. Interpret the fit with mod2$par.ests/mod2$par.ses
2. Interpret the empiral excesses for this threshold.
3. Compute the risk measures.
4. Relate risk tolerance to exceedance.
5. Compare value at risk with expected shortfall.

Some results follow

Run this code first. This is the cumulative probability of an exceedance over a threshold,
here 20.
plotFittedGPDvsEmpiricalExcesses(danish,

threshold = 20)
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Let’s interpret across various threshold regions:

1. From 20 to about 40, fairly dense and linear
2. From about 40 to 60, less dense and a more bent slope (ξ is bigger than for lower

threshold)
3. Big and less frequent outliers from about 60 to well over 200.

Some managerial implications to spike the discussion could include:

1. Budget for loss in region 1
2. Buy insurance for region 2
3. Consider some loss reserves for region 3

mod2 <- fit.GPD(danish, threshold = 20)
mod2$par.ests

## xi beta
## 0.6844366 9.6341385
mod2$par.ses

## xi beta
## 0.2752081 2.8976652
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(t.value <- mod2$par.ests/mod2$par.ses)

## xi beta
## 2.486978 3.324794

The ratio of the parameter estimates to the standard errors of those estimates gives up an
idea of the rejection of the hypothesis that the parameters are no different than zero. In R
we can do this:
(p.value = dt(t.value, df = length(danish) -

2))

## xi beta
## 0.018158771 0.001604948

Here df is the degrees of freedom for 2 estimated parameters. Thep.values are very low,
meaning there is a very small chance that the estimates are zero. Various risk measures and
tail plots can elucidate more interpretation. Here we can use two confidence levels.
(RMs2 <- RiskMeasures(mod2, c(0.99, 0.995)))

## p quantile sfall
## [1,] 0.990 25.84720 69.05935
## [2,] 0.995 37.94207 107.38721
plotTail(mod2)
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A comparison for the mod2 run is shown here.
showRM(mod2, alpha = 0.99, RM = "VaR",

method = "BFGS")
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showRM(mod2, alpha = 0.99, RM = "ES",
method = "BFGS")
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8.9 Summary

Operational risk is “extreme” finance with (of course) extreme value distributions, meth-
ods from reliability and vulnerability analysis thrown in for good measure, and numerous
regaultory capital regulations. We just built both simulation and estimation models that
produced data driven risk thresholds of an operational nature. That nature means:

• Heavy tail loss severity distributions,
• Often with frequencies that may vary considerably over time, and
• Random losses over time

Application of robuswt risk measures is an ongoing exercise, especially as we learn more
about loss and its impact on operations and strategy.

8.10 Further Reading

Much of the operational risk methodologies have been developed around insurance, bank
supervision, and reliability engineering. Useful references are the textbooks of Cruz (2004)
and Panjer (2006). The material in this chapter derives from these and prominently from
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McNeil et al. (2015, chapters 5 and 13) with R code from their QRM, qrmtools, and evir
packages on CRAN.

8.11 Practice Laboratory

8.11.1 Practice laboratory #1

8.11.1.1 Problem

8.11.1.2 Questions

8.11.2 Practice laboratory #2

8.11.2.1 Problem

8.11.2.2 Questions

8.12 Project

8.12.1 Background

8.12.2 Data

8.12.3 Workflow

8.12.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.

• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.
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• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.
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Chapter 9

Meauring Volatility

9.1 Imagine this

• Your company owns several facilities for the manufacture and distribution of polysyl-
labic acid, a compound used in several industries (and of course quite fictional!).

• Inputs to the manufacturing and distribution processes include various petroleum prod-
ucts and natural gas. Price swings can be quite volatile, and you know that Brent crude
exhibits volatility clustering.

• Working capital management is always a challenge, and recent movements in the dollar
against the euro and pound sterling have impacted cash conversion severely.

• Your CFO, with a memory of having worked at Metallgesellschaft in the 1990’s, is being
pushed by the board to hedge the input price risk using futures and over-the-counter
(OTC) instruments.

The board is concerned because the company has missed its earnings estimate for the fifth
straight quarter in a row. Shareholders are not pleased. The culprits seem to be a volatile
cost of goods sold coupled with large swings in some revenue segments in the United Kingdom
(UK) and the European Union (EU).Your CFO has handed you the job of organizing the
company’s efforts to understand the limits your exposure can extend. The analysis will be
used to develop policy guidelines for managing customer and vendor relationships.

9.1.1 Example

1. What are the key business questions you should ask about energy pricing patterns?
2. What systematic approach might you use to manage input volatility?

Here are some ideas.

1. Key business questions might be

• Which input prices and exchange rates are more volatile than others and when?
• Are price movements correlated?

249
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• In times of market stress how volatile can they be?
• Are there hedging instruments we can deploy or third parties we can use to mitigate

pricing risk?

2. Managing volatility

• Set up an input monitoring system to know what inputs affect what components and
costs of running the manufacturing and distribution processes.

• Monitor price movements and characteristics and measure severity of impact on key
operating income components by process.

• Build in early warning indicators of intolerable swings in prices.
• Build a playbook to manage the otherwise insurgent and unanticipated retained risk

of input price volatility in manufacturing and distribution processes.

Topics we got to in previous chapters:

• Explored stylized fact of financial market data
• Learned just how insidious volatility really is
• Acquired new tools like acf, pacf, ccf to explore time series
• Analyzed market, credit, and operational risk

In this chapter we will

• Remember the stylized facts and use a fix for volatility clustering
• Fit AR-GARCH models
• Simulate volatility from the AR-GARCH model
• Measure the risks of various exposures

9.2 What is All the Fuss About?

We have already looked at volatility clustering. ARCH models are one way to model this
phenomenon.

ARCH stands for

• Autoregressive (lags in volatility)
• Conditional (any new values depend on others)
• Heteroscedasticity (Greek for varying volatility, here time-varying)

These models are especially useful for financial time series that exhibit periods of large return
movements alongside intermittent periods of relative calm price changes.

An experiment is definitely in order.

The AR+ARCH model can be specified starting with z(t) standard normal variables and
initial (we will overwrite this in the simulation) volatility series σ(t)2 = z(t)2. We then
condition these variates with the square of their variances ε(t) = (sigma2)1/2z(t). Then we
first compute for each date t = 1...n,
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ε(t) = (sigma2)1/2z(t)

Then, using this conditional error term we compute the autoregression (with lag 1 and
centered at the mean µ)

y(t) = µ+ ϕ(y(t− 1)− µ) + ε(t)

Now we are ready to compute the new variance term.
n <- 10500 ## lots of trials
z <- rnorm(n) ## sample standard normal distribution variates
e <- z ## store variates
y <- z ## store again in a different place
sig2 <- z^2 ## create volatility series
omega <- 1 ## base variance
alpha <- 0.55 ## Markov dependence on previous variance
phi <- 0.8 ## mMarkov dependence on previous period
mu <- 0.1 ## average return
omega/(1-alpha) ; sqrt(omega/(1-alpha))

## [1] 2.222222

## [1] 1.490712
set.seed("1012")
for (t in 2:n) ## Because of lag start at second date
{

e[t] <- sqrt(sig2[t])*z[t] ## 1. e is conditional on sig
y[t] <- mu + phi*(y[t-1]-mu) + e[t] ## 2. generate returns
sig2[t+1] <- omega + alpha * e[t]^2 ## 3. generate new sigma^2 to feed 1.

}

A plot is a little than instructive.
par(mfrow = c(2, 4))
plot(z[10001:n], type = "l", xlab = "t",

ylab = expression(epsilon), main = "1. Simple noise")
plot(sqrt(sig2[10000:n]), type = "l",

xlab = "t", ylab = expression(sigma[t]),
main = "2. Conditional sigma")

plot(e[10001:n], type = "l", xlab = "t",
ylab = "a", main = "3. ARCH")

plot(y[10001:n], type = "l", xlab = "t",
ylab = "y", main = "4. AR+ARCH")

acf(e[10001:n], main = "5. ARCH")
acf(abs(e[10001:n]), main = "6. Absolute ARCH value")
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acf(y[10001:n], main = "7. AR+ARCH")
acf(abs(y[10001:n]), main = "8. Absolute AR+ARCH value")
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##

What do we see?

1. Large outlying peaks in the conditional standard deviation
2. Showing up as well in the ARCH plot
3. AR adds the clustering as returns attempt to revert to the long run mean of µ = 10%.
4. Patterns reminiscent of clustering occur with thick and numerous lags in the acf plots.

There is persistence of large movements both up and down.

Why does it matter?

• Revenue received from customer contracts priced with volatility clustering will act like
the prices: when in a downward spiral, that spiral will amplify more than when prices
try to trend upward.

• The same will happen with the value of inventory and the costs of inputs.
• All of this adds up to volatile EBITDA (Earnings Before Interest and Tax adding in

non-cash Depreciation and Amortization), missed earnings targets, shareholders selling,
the stock price dropping, and equity-based compensation falling.
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9.3 Lock and Load…

We have more than one way to estimate the parameters of the AR-ARCH process. Essentially
we are running yet another “regression.” Let’s first load some data to tackle the CFO’s
questions around exposures in the UK, EU, and in the oil market.
require(rugarch)
require(qrmdata)
require(xts)
## The exchange rate data was obtained
## from OANDA (http://www.oanda.com/)
## on 2016-01-03
data("EUR_USD")
data("GBP_USD")
## The Brent data was obtained from
## Federal Reserve Economic Data
## (FRED) via Quandl on 2016-01-03
data("OIL_Brent")
data.1 <- na.omit(merge(EUR_USD, GBP_USD,

OIL_Brent))
P <- data.1
R <- na.omit(diff(log(P)) * 100)
names.R <- c("EUR.USD", "GBP.USD", "OIL.Brent")
colnames(R) <- names.R
Brent.p <- data.1[, 3]
Brent.r <- R[, 3] ## Pull out just the Brent pieces

Then we plot the data, transformations, and autocorrelations.
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##
## Box-Ljung test
##
## data: Brent.r
## X-squared = 32.272, df = 14, p-value = 0.003664

The p-value is small enough to more than reject the null hypothesis that the 14-day lag is
not significantly different from zero.

9.4 It is Fitting…

Our first mechanical task is to specify the ARMA-GARCH model. First we specify.

1. Use the ugarchspec function to specify a plain vanilla sGarch model.
2. garchOrder = c(1,1) means we are using the first lags of residuals squared and vari-

ance or (with ω, “omega,” the average variance, σ2
t ), here of Brent returns):

σ2
t = ω + α1ε

2
t−1 + βt−1σ

2
t−1.

3. Use armaOrder = c(1,0) to specify the mean Brent return model with long run aver-
age µ

rt = µ+ ψ1yt−1 + ψ2εt−1.
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4. Include means as in the equations above.
5. Specify the distribution as norm for normally distributed innovations εt. We will also

compare this fit with the std Student’s t-distribution innovations using the Akaike
Information Criterion (AIC).

6. Fit the data to the model using ugarchfit.
AR.GARCH.Brent.Norm.spec <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)), mean.model = list(armaOrder = c(1,
0), include.mean = TRUE), distribution.model = "norm")

fit.Brent.norm <- ugarchfit(spec = AR.GARCH.Brent.Norm.spec,
data = Brent.r)

Let’s look at the conditional quantiles from this model, otherwise known as the VaR limits,
nominally set at 99%.
## First the series with conditional
## quantiles
plot(fit.Brent.norm, which = 2)

We might think about hedging the very highs and very lows.

##
## please wait...calculating quantiles...
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Now let’s generate a panel of plots.
par(mfrow = c(2, 2))
## acf of absolute data - shows serial
## correlation
plot(fit.Brent.norm, which = 6)
## QQplot of data - shows
## leptokurtosis of standardized
## rediduals - normal assumption not
## supported
plot(fit.Brent.norm, which = 9)
## acf of standardized residuals -
## shows AR dynamics do a reasonable
## job of explaining conditional mean
plot(fit.Brent.norm, which = 10)
## acf of squared standardized
## residuals - shows GARCH dynamics do
## a reasonable job of explaining
## conditional sd
plot(fit.Brent.norm, which = 11)
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par(mfrow = c(1, 1))

9.4.1 Example

Let’s redo the GARCH estimation, now using the possibly more realistic thicker tails of the
Student’s t-distribution for the ε innovations. Here we just replace norm with std in the
distribution.model = statement in the ugarchspec function.
## Fit an AR(1)-GARCH(1,1) model with
## student innovations
AR.GARCH.Brent.T.spec <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)), mean.model = list(armaOrder = c(1,
0), include.mean = TRUE), distribution.model = "std")

fit.Brent.t <- ugarchfit(spec = AR.GARCH.Brent.T.spec,
data = Brent.r)

par(mfrow = c(2, 2))
plot(fit.Brent.t, which = 6)
plot(fit.Brent.t, which = 9)
plot(fit.Brent.t, which = 10)
plot(fit.Brent.t, which = 11)
par(mfrow = c(1, 1))
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Here are some results
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1. ACF of absolute observations indicates much volatility clustering.
2. These are significantly dampened by the AR-ARCH estimation with almost bounded

standardized residuals (residual / standard error).
3. More evidence of this comes from the ACF of the squared standardized residuals.
4. It appears that this AR-GARCH specification and Student’s t-distributed innovations

captures most of the movement in volatility for Brent.

Which model? - Use the Akaike Information Criterion (AIC) to measure information leakage
from a model. - AIC measures the mount of information used in a model specified by a
log likelihood function. - Likelihood: probability that you will observe the Brent returns
given the parameters estimated by (in this case) the GARCH(1,1) model with normal or
t-distributed innovations. - Smallest information leakage (smallest AIC) is the model for us.

Compute 5. Using normally distributed innovations produces a model with AIC = 4.2471.
6. Using Student’s t-distributed innovations produces a model with AIC = 4.2062. 7.
GARCH(1,1) with Student’s t-distributed innovations is more likely to have less informa-
tion leakage than the GARCH(1,1) with normally distributed innovations.

Here are some common results we can pull from the fit model:
coef(fit.Brent.t)

## mu ar1 omega alpha1 beta1 shape
## 0.04018002 0.01727725 0.01087721 0.03816097 0.96074399 7.03778415
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Coefficients include:

• mu is the long run average Brent return.
• ar1 is the impact of one day lagged return on today’s return.
• omega is the long run variance of Brent return.
• alpha1 is the impact of lagged squared variance on today’s return.
• beta1 is the impact of lagged squared residuals on today’s Brent return.
• shape is the degrees of freedom of the Student’s t-distribution and the bigger this is,

the thicker the tail.

Let’s plot the star of this show: time-varying volatility.
coef(fit.Brent.t)

## mu ar1 omega alpha1 beta1 shape
## 0.04018002 0.01727725 0.01087721 0.03816097 0.96074399 7.03778415
plot(sigma(fit.Brent.t))
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Here’s the other reason for going through this exercise: we can look at any Brent volatility
range we like.
plot(quantile(fit.Brent.t, 0.99))
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Next we plot and test the residuals:
z.hat <- residuals(fit.Brent.t, standardize = TRUE)
plot(z.hat)
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hist(z.hat)
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Histogram of z.hat
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mean(z.hat)

## [1] -0.0181139
var(z.hat)

## [,1]
## [1,] 1.000682
require(moments)
skewness(z.hat)

## [1] -0.3207327
## attr(,"method")
## [1] "moment"
kurtosis(z.hat)

## [1] 2.048561
## attr(,"method")
## [1] "excess"
shapiro.test(as.numeric(z.hat))

##
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## Shapiro-Wilk normality test
##
## data: as.numeric(z.hat)
## W = 0.98439, p-value < 2.2e-16
jarque.test(as.numeric(z.hat))

##
## Jarque-Bera Normality Test
##
## data: as.numeric(z.hat)
## JB = 780.73, p-value < 2.2e-16
## alternative hypothesis: greater

What do we see?

• Left skewed.
• Thick tailed.
• Potentially large losses can occur with ever larger losses in the offing.
• More negative than positive.
• Both standard tests indicate rejection of the null hypothesis that the series is normally

distributed.

9.5 Simulate… again until Morale Improves…

1. Specify the AR-GARCH process using the parameters from the fit.Brent.t results.
2. Generate 2000 paths.

require(rugarch)
GARCHspec <- ugarchspec(variance.model = list(model = "sGARCH",

garchOrder = c(1, 1)), mean.model = list(armaOrder = c(1,
0), include.mean = TRUE), distribution.model = "std",
fixed.pars = list(mu = 0.04, ar1 = 0.0173,

omega = 0.0109, alpha1 = 0.0382,
beta1 = 0.9607, shape = 7.0377))

GARCHspec

##
## *---------------------------------*
## * GARCH Model Spec *
## *---------------------------------*
##
## Conditional Variance Dynamics
## ------------------------------------
## GARCH Model : sGARCH(1,1)
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## Variance Targeting : FALSE
##
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model : ARFIMA(1,0,0)
## Include Mean : TRUE
## GARCH-in-Mean : FALSE
##
## Conditional Distribution
## ------------------------------------
## Distribution : std
## Includes Skew : FALSE
## Includes Shape : TRUE
## Includes Lambda : FALSE
## Generate two realizations of length
## 2000
path <- ugarchpath(GARCHspec, n.sim = 2000,

n.start = 50, m.sim = 2)

There is a special plotting function for “uGARCHpath” objects.
plot(path, which = 1)
plot(path, which = 2)
plot(path, which = 3)
plot(path, which = 4)
## How to see the documentation of the
## plot function showMethods('plot')
## getMethod('plot',c(x='GPDTAILS',
## y='missing'))

There is also an extraction function for the volatility.
vol <- sigma(path)
head(vol)

## [,1] [,2]
## T+1 2.552394 3.055851
## T+2 2.522779 2.997590
## T+3 2.476002 2.941198
## T+4 2.435407 2.895049
## T+5 2.538984 2.839528
## T+6 2.602648 3.259610
plot(vol[, 1], type = "h")
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plot(vol[, 2], type = "h")
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Here is a little more background on the classes used.
series <- path@path
## series is a simple list
class(series)

## [1] "list"
names(series)

## [1] "sigmaSim" "seriesSim" "residSim"
## the actual simulated data are in
## the matrix/vector called
## 'seriesSim'
X <- series$seriesSim
head(X)

## [,1] [,2]
## [1,] -1.5147777 0.32902835
## [2,] -0.3625537 -0.39313263
## [3,] 0.9288261 -1.21795218
## [4,] 4.4490588 -0.03232866
## [5,] -3.7458270 -8.62620734
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## [6,] 1.8274273 -5.53845040

9.5.1 Example

Does the simulated series conform to stylized facts?
X1 <- X[, 1]
acf(X1)
acf(abs(X1))
qqnorm(X1)
qqline(X1, col = 2)
shapiro.test(X1)

Remember the stylized facts?

1. Volatility clustering.
2. If it’s bad, it gets worse more often.
3. If it’s good, it get better less often.
4. High stress means high volatility.

Here are some results
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##
## Shapiro-Wilk normality test
##
## data: X1
## W = 0.98524, p-value = 1.66e-13

Shapiro-Wilk test - Null hypothesis: normally distributed. - Reject null if p-value is small
enough. - Must verify with a QQ plot of empirical versus theoretical quantiles.

The stylized facts perdure.

9.6 Now for Something Really Interesting

We go from univariate GARCH to multivariate GARCH…and use the most recent technique
to make it into the fray:

• The Dynamic Conditional Correlation of Nobel Laureate Robert Engle.
• In the GARCHmodel we just did, individual assets follow their own univariate GARCH

process: they now have time-varying volatilities.
• Engle figured out how to make the correlations among asset return also time-varying.

Why? - What if we have a portfolio, like the accounts receivable that might face variations
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in exchange rates and in Brent oil. - We would need to know the joint volatilities and
dependences of these three factors as they contribute to overall accounts receivable volatility.
- We would use these conditional variances at least to model option prices on instruments to
manage currency and commodity risk.
require(rmgarch)
garch11.spec <- ugarchspec(mean.model = list(armaOrder = c(0,

0)), variance.model = list(garchOrder = c(1,
1), model = "sGARCH"), distribution.model = "std")

dcc.garch11.spec = dccspec(uspec = multispec(replicate(3,
garch11.spec)), dccOrder = c(1, 1),
distribution = "mvt")

Look at dcc.garch11.spec
dcc.garch11.spec

##
## *------------------------------*
## * DCC GARCH Spec *
## *------------------------------*
## Model : DCC(1,1)
## Estimation : 2-step
## Distribution : mvt
## No. Parameters : 21
## No. Series : 3

Now for the fit (takes more than 27.39 seconds on my laptop…)
dcc.fit <- dccfit(dcc.garch11.spec, data = R)

Now let’s get some results:

##
## *---------------------------------*
## * DCC GARCH Fit *
## *---------------------------------*
##
## Distribution : mvt
## Model : DCC(1,1)
## No. Parameters : 21
## [VAR GARCH DCC UncQ] : [0+15+3+3]
## No. Series : 3
## No. Obs. : 4057
## Log-Likelihood : -12820.82
## Av.Log-Likelihood : -3.16
##
## Optimal Parameters
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## -----------------------------------
## Estimate Std. Error t value Pr(>|t|)
## [EUR.USD].mu 0.006996 0.007195 0.97238 0.330861
## [EUR.USD].omega 0.000540 0.000288 1.87540 0.060738
## [EUR.USD].alpha1 0.036643 0.001590 23.04978 0.000000
## [EUR.USD].beta1 0.962357 0.000397 2426.49736 0.000000
## [EUR.USD].shape 9.344066 1.192132 7.83811 0.000000
## [GBP.USD].mu 0.006424 0.006386 1.00594 0.314447
## [GBP.USD].omega 0.000873 0.000327 2.67334 0.007510
## [GBP.USD].alpha1 0.038292 0.002217 17.27004 0.000000
## [GBP.USD].beta1 0.958481 0.000555 1727.86868 0.000000
## [GBP.USD].shape 10.481272 1.534457 6.83061 0.000000
## [OIL.Brent].mu 0.040479 0.026696 1.51627 0.129450
## [OIL.Brent].omega 0.010779 0.004342 2.48228 0.013055
## [OIL.Brent].alpha1 0.037986 0.001941 19.57467 0.000000
## [OIL.Brent].beta1 0.960927 0.000454 2118.80489 0.000000
## [OIL.Brent].shape 7.040287 0.729837 9.64639 0.000000
## [Joint]dcca1 0.009915 0.002821 3.51469 0.000440
## [Joint]dccb1 0.987616 0.004386 225.15202 0.000000
## [Joint]mshape 9.732509 0.652707 14.91100 0.000000
##
## Information Criteria
## ---------------------
##
## Akaike 6.3307
## Bayes 6.3633
## Shibata 6.3306
## Hannan-Quinn 6.3423
##
##
## Elapsed time : 11.9331

• The mean models of each series (EUR.USD, GPB.USD, OIL.Brent) are overwhelmed
by the preponderance of time-varying volatility, correlation, and shape (degrees of
freedom since we used the Student’s t-distribution).

• The joint conditional covariance (relative of correlation) parameters are also signifi-
cantly different from zero.

Using all of the information from the fit, we now forecast. These are the numbers we would
use to simulate hedging instruments or portfolio VaR or ES.Let’s plot the time-varying sigma
first.
# dcc.fcst <- dccforecast(dcc.fit,
# n.ahead = 100) plot(dcc.fcst, which
# = 2)
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9.6.1 Example

Look at VaR and ES for the three risk factors given both conditional volatility and correla-
tion.

Here are some results. First, compute, then plot.
dcc.residuals <- residuals(dcc.fit)
(Brent.dcc.var <- quantile(dcc.residuals$OIL.Brent,

c(0.01, 0.05, 0.5, 0.95, 0.99)))

## 1% 5% 50% 95% 99%
## -6.137269958 -3.677130793 -0.004439644 3.391312753 5.896992710
(GBP.dcc.var <- quantile(dcc.residuals$GBP.USD,

c(0.01, 0.05, 0.5, 0.95, 0.99)))

## 1% 5% 50% 95% 99%
## -1.3393119939 -0.8235076255 -0.0003271163 0.7659725631 1.2465945013
(EUR.dcc.var <- quantile(dcc.residuals$EUR.USD,

c(0.01, 0.05, 0.5, 0.95, 0.99)))

## 1% 5% 50% 95% 99%
## -1.520666396 -0.980794376 0.006889539 0.904772045 1.493169076
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What do we see?

1. A bit more heavily weighted in the negative part of the distributions.
2. Exchange rates are about the same as one another in this profile.
3. Brent is shocky at best: large moves either way.
4. If you use Brent contingent inputs (costs) in your production process you are naturally

short Brent and would experience losses at the rate of 500% about 1% of the time.
5. If you use Brent contingent outputs (revenue) in your customer and distribution pro-

cesses you are naturally long Brent and could experience over 600% losses about 1%
of the time.

plot(dcc.residuals$OIL.Brent)
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9.7 Just One More Thing

Back to Brent. Let’s refit using the new volatility models and innovation distributions to
capture asymmetry and thick tails.
Brent.spec <- ugarchspec(variance.model = list(model = "gjrGARCH",

garchOrder = c(1, 1)), mean.model = list(armaOrder = c(1,
1), include.mean = TRUE), distribution.model = "nig")

Here we experiment with a new GARCH model: the gjr stands for Glosten, Jagannathan,
and Runkle (1993), who proposed a volatility model that puts a knot into the works:

σ2
t = ω + ασ2

t−1 + β1ε
2
t−1 + β2ε

2
t−1It−1

where It−1 = 1 when εt−1 > 0 and 0 otherwise, the “knot.”

We also experiment with a new distribution: the negative inverse gamma. Thick tails
abound…
fit.Brent <- ugarchfit(spec = Brent.spec,

data = R$OIL.Brent, solver.control = list(trace = 0))
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Another 10 seconds (or so) of our lives will fit this model.
fit.Brent

##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : gjrGARCH(1,1)
## Mean Model : ARFIMA(1,0,1)
## Distribution : nig
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu -0.040275 0.027883 -1.4445e+00 0.148608
## ar1 0.996072 0.001900 5.2430e+02 0.000000
## ma1 -0.989719 0.000005 -1.8786e+05 0.000000
## omega 0.006346 0.003427 1.8517e+00 0.064071
## alpha1 0.009670 0.003841 2.5178e+00 0.011808
## beta1 0.968206 0.001237 7.8286e+02 0.000000
## gamma1 0.042773 0.007183 5.9547e+00 0.000000
## skew -0.120184 0.032059 -3.7488e+00 0.000178
## shape 2.362890 0.351494 6.7224e+00 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu -0.040275 0.030871 -1.3046e+00 0.192023
## ar1 0.996072 0.002107 4.7283e+02 0.000000
## ma1 -0.989719 0.000005 -1.8363e+05 0.000000
## omega 0.006346 0.003388 1.8729e+00 0.061086
## alpha1 0.009670 0.004565 2.1184e+00 0.034143
## beta1 0.968206 0.000352 2.7485e+03 0.000000
## gamma1 0.042773 0.008503 5.0300e+00 0.000000
## skew -0.120184 0.033155 -3.6249e+00 0.000289
## shape 2.362890 0.405910 5.8212e+00 0.000000
##
## LogLikelihood : -8508.439
##
## Information Criteria
## ------------------------------------
##
## Akaike 4.1989
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## Bayes 4.2129
## Shibata 4.1989
## Hannan-Quinn 4.2038
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 1.856 0.1730
## Lag[2*(p+q)+(p+q)-1][5] 2.196 0.9090
## Lag[4*(p+q)+(p+q)-1][9] 2.659 0.9354
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.5109 0.474739
## Lag[2*(p+q)+(p+q)-1][5] 9.3918 0.013167
## Lag[4*(p+q)+(p+q)-1][9] 13.2753 0.009209
## d.o.f=2
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[3] 10.26 0.500 2.000 0.001360
## ARCH Lag[5] 10.41 1.440 1.667 0.005216
## ARCH Lag[7] 11.06 2.315 1.543 0.010371
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 2.5309
## Individual Statistics:
## mu 0.91051
## ar1 0.07050
## ma1 0.06321
## omega 0.70755
## alpha1 0.22126
## beta1 0.28137
## gamma1 0.17746
## skew 0.25115
## shape 0.16545
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 2.1 2.32 2.82
## Individual Statistic: 0.35 0.47 0.75
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##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 1.1836 0.23663
## Negative Sign Bias 0.7703 0.44119
## Positive Sign Bias 1.8249 0.06809 *
## Joint Effect 9.8802 0.01961 **
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 27.42 0.09520
## 2 30 46.32 0.02183
## 3 40 58.50 0.02311
## 4 50 70.37 0.02431
##
##
## Elapsed time : 7.077968

9.7.1 Example (last one!)

Let’s run this code and recall what the evir package does for us.
require(evir)
Brent.resid <- abs(residuals(fit.Brent))
gpdfit.Brent <- gpd(Brent.resid, threshold = quantile(Brent.r,

0.9))
(Brent.risk <- riskmeasures(gpdfit.Brent,

c(0.9, 0.95, 0.975, 0.99, 0.999)))

We can interpret the results…and use the tailplot() function as well.
require(evir)
Brent.resid <- abs(residuals(fit.Brent))
gpdfit.Brent <- gpd(Brent.resid, threshold = quantile(Brent.r,

0.9))
(Brent.risk <- riskmeasures(gpdfit.Brent,

c(0.9, 0.95, 0.975, 0.99, 0.999)))

## p quantile sfall
## [1,] 0.900 3.478474 5.110320
## [2,] 0.950 4.509217 6.293461
## [3,] 0.975 5.636221 7.587096
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## [4,] 0.990 7.289163 9.484430
## [5,] 0.999 12.415553 15.368772

What does this mean? 1. 1 - p gives us levels of tolerance 2. quantile gives us the value
at risk (VaR) 3. sfall reports the expected short fall (ES)

From the evir package here is the tail plot.
tailplot(gpdfit.Brent)
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What does this mean?

• The results show much thick and volatile tail activity event with the AR-GARCH
treatment.

• We could well go back to market and operational risk sections to understand mean
excess value (beyond thresholds) and the confidence intervals for VaR and ES.

• For accounts receivable mitigation strategies might be to have excess risk hedges pro-
vided through reinsurance and total return swaps.

• Credit risk analysis of customers is critical: frequent updates of Brent exposed cus-
tomers will help to detect early on problems that might admit of some solution.
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9.8 Summary

• Lots more R practice
• Univariate GARCH
• Multivariate GARCH
• Fitting models
• Simulating volatility and correlation
• …and why it might all matter: answering a critical business question of how much

volatility do we have to manage.

9.9 Further Reading

9.10 Practice Laboratory

9.10.1 Practice laboratory #1

9.10.1.1 Problem

9.10.1.2 Questions

9.10.2 Practice laboratory #2

9.10.2.1 Problem

9.10.2.2 Questions

9.11 Project

9.11.1 Background

9.11.2 Data

9.11.3 Workflow

9.11.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.
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• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.

• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.

9.12 References
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Chapter 10

Portfolio Analytics

The first stage starts with observation and experience and ends with beliefs about
the future performances of available securities. The second stage starts with the
relevant beliefs about future performances and ends with the choice of portfolio.
Harry Markowitz

10.1 Imagine This

• You are trying to negotiate a new energy contract across 10 different facilities and 20
gas and oil suppliers.

• Your colleague is managing accounts receivable across 38 different currencies in spot
and forward markets.

• Another colleague manages collateral for workers’ compensation funding in all 50
states.

• Yet another colleague manages 5 fund managers for a health insurer.

Portfolios are everywhere! We can conceive of every margin as a long position in revenue
and a short position in costs. In all case of interest at least some notion of the the mean
(central tendency) and standard deviation (scale and diffusion) of a portfolio metric (e.g.,
return) will be traded off. Operational and financial constraints will narrow the possible
choices to achieve performance (mean = “mu” = µ) and risk (standard deviation = “sigma”
= σ) goals.

10.1.1 Our “working example”

This will we Working Capital which is Receivables + Inventory - Payables. The CFO needs
answers around why it is so big and always seems to bulge when the economic fortunes of
our customers are in peril of deteriorating. She knows that there are three culprits: the euro
rate, the Sterling rate, and Brent crude. She commissions you and your team to figure out

283
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the ultimate combination of these factors that contributes to a $100 million working capital
position with a volatility of over $25 million this past year.

10.1.2 This chapter

The goal of this chapter is to introduce portfolio analytics and incorporate our knowledge of
statistics, optimization, and financial objects into the analysis.

10.2 Let’s Walk Before We Run

Suppose management wants to achieve a targeted value at risk on new contracts. The value
at risk (VaR) is the α quantile of portfolio value where α (“alpha”) is the organization’s
tolerance for risk. While VaR is the maximum amount of tolerable loss more loss is possible.

Now suppose Management is considering a $1 billion contract with two Iberian companies
and one United Kingdom-based (UK) company working in Spain. The deal is constrained
by having $100 million in reserves are available to cover any losses. The Board wants some
comfort that no more than a 10 % age loss (the average “return” µ) would occur. The Board
has set the organization’s tolerance for risk at 5%. This means in this case a maximum of
5% of the time could losses exceed 10%. To keep things simple at first we assume that losses
are normally distributed.

Let’s perform a “back of the envelope” analysis. We let R stand for returns, so that −R is
a loss. Our management team wants

Prob(R < −0.10) = 0.05,

that is, the probability of a loss worse than 10 % is no more than 5 %.

Let’s now do some algebra and first let w be the “weight” invested in the risky contract. The
rest of the proportion of the contract, 1−w, is in high quality collateral assets like treasury
bonds. The weight w can take on values from 0% (0.0) to 100% (1.0).

• No collateral means w = 1
• No contract means w = 0.

The average return, µ, on the contract is

µ = w(0.1) + (1− w)(0.02).

This is the weighted average return of the contract at 10% and collateral at 2%.

The average level of risk in this model is given by the standard deviation of this combination
of risky contract and default-free collateral.
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Management currently believes that a 25% standard deviation of return on the contract,
“sigma” or σ, is reasonable. Collateral is not “risky” in this scenario and thus its standard
deviation is zero (and by definition is not correlated with the contract return).

σ = w2(0.25)2 + (1− w)2(0.0).

We now try to figure out what w is. More precisely, we solve for the percentage of total
assets as investment in this contract, that will make losses happen no greater than 5% of
the time.

We form a normalizing “z-score” to help us. We shift the largest possible loss to average
return to a deviation around the 10% loss, then divide by σ to scale losses to the number of
standard deviations around the maximum tolerable loss.

z = −0.1− µ
σ

.

The z the ratio of potential deviation of loss from the mean maximum loss per unit of
risk. It is dimensionless and represents the number of standard deviations of loss around
the maximum tolerable loss. Our job is to find w such that the z score under the normal
distribution cannot exceed 5%.

Prob(R < −0.10) = Normal(z(w)) = 0.05,

whereNormal is the cumulative normal distribution (you might know this as =Norm.S.Dist()
in Excel or qnorm() in R), with mean of zero and standard deviation of one.

Using our models of µ and σ we get

z = −0.1− 0.1w − 0.02(1− w)
0.25w

After combining constant terms and terms in w and putting this into the target probability:

z = Normal
[−0.12− 0.12w

0.25w

]
= 0.05.

Finally, we solve for w in a few more steps.

1. We invert the normal distribution on both sides of the equation. On the left hand side
we are left with the z score as a function of w, the percentage of all wealth in the risk
contract.

InverseNormal
[
Normal

(−0.12− 0.12w
0.25w

)]
= InverseNormal(0.05)

We can calculate InverseNormal(0.05) using R
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qnorm(0.05)

## [1] -1.644854

or in Excel with =NORM.S.INV(0.05). Each of these takes as input the probability under
the normal distribution and calculates the z score associated with the probability.

2. We find that qnorm(0.05) is 1.64. Loss cannot exceed 1.64 times the portfolio standard
deviation in the direction of loss (“negative” or less than the mean) using a one-tail
interval. We justify a one-tail interval since we, and the Board, are only interested in
loss. Inserting this value we get

(−0.12− 0.12w
0.25w

)
= NormalInverse(0.05) = −1.64

Multiplying each side by 0.25w, combining terms in w and dividing by the coefficient of that
last combined w we get

w = −0.12
0.25(−1.64) + 0.12

= 0.42.

In R:
0.413793103

## [1] 0.4137931

Implications?

• 42% of portfolio value = risky contract value.
• Portfolio value = $1 billion / 0.42 = $2.38 billion.
• Collateral value = $2.38 billion - $1 billion = $1.38 billion or 68% of portfolio value.

We just found the notorious “tangency” portfolio. This portfolio, when combined with a
risk-free (really “default-free” asset), will yield the best mix of risky and risk-free assets.
“Best” here is in the sense of not violating the organization’s risk tolerance policy.

A way to find the tangency portfolio in any situation is then to

1. Find the optimal combination of risky assets, the tangency portfolio.
2. Then find the optimal mix of tangency assets and the risk-free asset.

In our example working capital’s “risk-free” asset is the cash account and the process of
getting there is the cash-conversion cycle.
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10.3 All In

Now that we have our basic procedure, let’s complicate this problem with many risky assets.
The basic solution will be choosing weights to minimize the portfolio risk given risk-adjusted
return targets. This is the Markowitz (1952) portfolio solution. For this task we need to
define a matrix version of the portfolio allocation problem. Our three risky “assets” will be
the euro/USD and GBP/USD exchange rates and Brent crude.

This is all about the normally distributed universe. Let’s define more precisely

First, the return matrix R for N assets across T sample periods and the subscript indicates
the row (observation) and column (asset):

 R11 ... R1N

... ... ...
R1T ... RT N


Then, the mean return vector µ is the arithmetic average of each column of R

 µ1
...
µN

 ,
after exchanging rows for columns (transpose).

10.3.1 Try this exercise

First let’s be sure the qrmdata package is installed. We require this package and the daily
data in it. Then we will look up the apply function to see how we can compute row averages.
require(qrmdata)
require(xts)
## The exchange rate data was obtained
## from OANDA (http://www.oanda.com/)
## on 2016-01-03
data("EUR_USD")
data("GBP_USD")
## The Brent data was obtained from
## Federal Reserve Economic Data
## (FRED) via Quandl on 2016-01-03
data("OIL_Brent")
data.1 <- na.omit(merge(EUR_USD, GBP_USD,

OIL_Brent))
R <- na.omit(diff(log(data.1)) * 100)
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names.R <- c("EUR.USD", "GBP.USD", "OIL.Brent")
colnames(R) <- names.R

First we compute the mean return.
(mean.R <- apply(R, 2, mean))

## EUR.USD GBP.USD OIL.Brent
## 0.001538585 -0.002283062 0.010774203

Now some questions for us to consider:

1. Let’s look at a summary of a few columns. Is there anything odd or curious?
2. What does the 2 indicate in the apply function.
3. What is Brent crude’s annualized mean “return”?

Some immediate results ensue.
summary(R)

## Index EUR.USD GBP.USD
## Min. :2000-01-05 Min. :-2.522684 Min. :-4.648461
## 1st Qu.:2003-12-18 1st Qu.:-0.308317 1st Qu.:-0.277715
## Median :2007-12-05 Median : 0.013886 Median : 0.006097
## Mean :2007-12-19 Mean : 0.001539 Mean :-0.002283
## 3rd Qu.:2011-12-19 3rd Qu.: 0.322014 3rd Qu.: 0.286959
## Max. :2015-12-28 Max. : 3.463777 Max. : 3.140629
## OIL.Brent
## Min. :-19.89065
## 1st Qu.: -1.15322
## Median : 0.03604
## Mean : 0.01077
## 3rd Qu.: 1.24927
## Max. : 18.12974

Means are much less than medians. There are juge maximum and minimum returns. We
can also look at acf and ccf, absolute returns, run GARCH models, and so on to hone our
exploratory analysis.

We ook up ??apply and read that the 2 indicates that we are calculating the mean for the
second dimension of the data matrix, namely, the assets.

Brent crude’s annualized mean return is calculated on a 252 average days traded in a year
basis as:
(1 + mean.R[3]/100)^252 - 1

## OIL.Brent
## 0.02752144
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Some folks use 253 days. But this is all a back of the envelope computation.

10.3.2 Let’s keep moving on…

So, what is the context? We have working capital with three main drivers of risk and return:
two exchange rates and a commodity price. Over time we will want to know how these
factors act and interact to produce EBITDA returns on Assets. Here EBITDA is Earnings
Before Interest and Tax adding back in non-cash Depreciation and Amortization.

Then, how does that combination compare with today’s reality and especially
answer the CFO’s question of what to do about the millstone of working capital
around the neck of EBITDA?

Given this context, and the data we found earlier on, we then calculate the variance-
covariance matrix. The diagonals of this matrix are the variances, so that the square root
of the diagonal will yield standard deviations. The off-diagonals can be converted to corre-
lations as needed.
(mean.R <- apply(R, 2, mean))

## EUR.USD GBP.USD OIL.Brent
## 0.001538585 -0.002283062 0.010774203
(cov.R <- cov(R))

## EUR.USD GBP.USD OIL.Brent
## EUR.USD 0.3341046 0.1939273 0.1630795
## GBP.USD 0.1939273 0.2538908 0.1809121
## OIL.Brent 0.1630795 0.1809121 5.0572328
(sd.R <- sqrt(diag(cov.R))) ## remember these are in daily percentages

## EUR.USD GBP.USD OIL.Brent
## 0.5780178 0.5038758 2.2488292

Now for some programming (quadratic that is…) but first let’s get more mathematical about
the statement of the problem we are about to solve. In a mathematical nutshell we are
formally (more tractable version to follow…) solving the problem of minimizing working
capital factors risk, subject to target returns and a budget that says it all has to add up to
our working capital position. We define weights as percentages of the total working capital
position. Thus the weights need to add up to one.

minwwT Σw
subject to
1Tw = 1
wTµ = µ0

where
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• w are the weights in each instrument.
• Σ is the variance-covariance matrix we just estimated, cov.R.
• 1 is a vector of ones’s with length equal to the number of instruments.
• µ are the mean returns we just estimated, mean.R.
• µ0 is the target portfolio return.
• T is the matrix transpose.
• minw means to find weights w that minimizes portfolio risk.

The expression wT Σw is our measure of portfolio risk and is a quadratic form that looks like
this for two instruments:

[
w1 w2

] [ σ2
1 σ12

σ21 σ2
2

] [
w1
w2

]

Multiplied out we get the following quadratic formula for portfolio variance:

σ2
P = w2

1σ
2
1 + w2

2σ
2
2 + w1w2σ12 + w2w1σ21

and because σ12 = σ21 this reduces a bit to

σ2
P = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ12

Tedious? Definitely. But useful to explain the components of portfolio risk

1. Two dashes of own asset risk w2
1σ

2
1 + w2

2σ
2
2, and

2. Two dashes of relational risk 2w1w2σ12

When σ12 < 1 we have diversification.

10.3.3 Try this exercise

Suppose we have two commodities (New York Harbor No. 2 Oil and Henry Hub Natural Gas)
feeding a production process (Electricity Generation).These are the weights in this process:

w = {woil = −.5, wng = −.5, wele = 1.0}

The percentage changes in terms of the prices of these commodities are given by:

µ = {µoil = 0.12, µng = −0.09, µele = 0.15}.

Standard deviations are

σ = {σoil = 0.20, σng = 0.15, σele = 0.40}
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The correlation matrix is

ρ =

 1.0 0.2 0.6
0.2 1.0 0.4
0.6 0.4 1.0


Using the formula

Σ = (σσT )ρ

we can calculate the variance-covariance matrix Σ using our R knowledge of arrays. [Hint:
t() is the transpose of an array so that σT is t(sigma).] We can also calculate the portfolio
mean return and portfolio standard deviation.

Let’s Use this R code to put all of this into action.
sigma <- c(0.2, 0.15, 0.4)
rho = c(1, 0.2, 0.6, 0.2, 1, 0.4, 0.6,

0.4, 1)
(rho <- matrix(rho, nrow = 3, ncol = 3))

## [,1] [,2] [,3]
## [1,] 1.0 0.2 0.6
## [2,] 0.2 1.0 0.4
## [3,] 0.6 0.4 1.0
(Sigma2 <- (sigma %*% t(sigma)) * rho)

## [,1] [,2] [,3]
## [1,] 0.040 0.0060 0.048
## [2,] 0.006 0.0225 0.024
## [3,] 0.048 0.0240 0.160

The diagonals are the squared standard deviations. Next we tackle the portfolio average
rate.
w <- c(-0.5, -0.5, 1)
mu <- c(0.12, -0.09, 0.15)
(mu.P <- t(w) %*% mu)

## [,1]
## [1,] 0.135

Now we compute the portfolio average level of “risk”.
(Sigma.P <- (t(w) %*% Sigma2 %*% w))^0.5

## [,1]
## [1,] 0.3265348

What does all of this mean?

• Running a power-generating plant (or refinery, or distribution chain, …) over time
financially really means generating a spark spread: the margin between costs of inputs
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natural gas and oil (the negative or short position) and revenue from the output
• The average spark spread rate of return for this plant is 10.67%. The spark spread is

the difference between the price of electricity and the price of input fuels on a MWh
basis (megawatt-hour).

• The standard deviation of the spark spread is 32.65%.

Our next job is to use these mechanics about portfolio means, standard deviations, and
correlations to find the best set of weights that minimizes portfolio risk while attempting to
achieve a target level of return.

10.4 Optimizing a Portfolio

To perform the optimization task we turn to the quadprog quadratic programming package
(yes, parabolas are indeed very useful). We worked out a two-asset example that showed us
clearly that the objective function has squared terms (and interactive product terms too).
These are the tell-tale signs that mark the portfolio variance as quadratic. It is all in the
weights.

After all of our wrangling above it is useful to define our portfolio optimization problem
again here:

min(w)wT Σw
subject to
1Tw = 1
wTµ = µ0

On the other hand here is what quadprog does in its native format.

mind − dTx+ 1
2x

TDx
subject to
AT

neqx ≥ bneq

AT
eqx = beq

Now we need to transform these equations into portfolio paramters to solve our portfolio
problem. We do this by setting

AT
eq =

[
1T

µT

]
This gives us a stack of equality constraints that looks like:[

1Tw
µTw

]
=
[

1
µ0

]

We will allow short positions, like the spark spread experiment above. This means we will
not yet impose inequality constraints like w ≥ 0.

Here is the setup code



10.4. OPTIMIZING A PORTFOLIO 293

library(quadprog)
Amat <- cbind(rep(1, 3), mean.R) ## set the equality constraints matrix
mu.P <- seq(min(mean.R - 5e-04), max(mean.R +

5e-04), length = 300) ## set of 300 possible target portfolio returns
sigma.P <- mu.P ## set up storage for std dev's of portfolio returns
weights <- matrix(0, nrow = 300, ncol = ncol(R)) ## storage for portfolio weights
colnames(weights) <- names.R

Next we build the “efficient frontier.” This curve (a parabola…) traces optimal combinations
of risk and return. For each combination there is an underlying set of weights calculated in
successive optimizations, one for each target µ. In effect this is a very specialized sensitivity
analysis.
for (i in 1:length(mu.P)) {

bvec = c(1, mu.P[i]) ## constraint vector
result = solve.QP(Dmat = 2 * cov.R,

dvec = rep(0, 3), Amat = Amat,
bvec = bvec, meq = 2)

sigma.P[i] = sqrt(result$value)
weights[i, ] = result$solution

}

First, we plot all of the portfolio combinations.
par(mfrow = c(1, 1))
plot(sigma.P, mu.P, type = "l", xlim = c(0,

max(sd.R) * 1.1), ylim = c(0, max(mean.R) *
1.1), lty = 3, lwd = 3) ## plot

## the efficient frontier (and
## inefficient portfolios below the
## min var portfolio)
mu.free = 1.3/253 ## input value of risk-free interest rate
points(0, mu.free, cex = 1, pch = "+") ## show risk-free asset

Then we plot the point on the graph that represents the so-called risk-free (actually more like
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default-free) asset.
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Finally we deploy William Sharpe’s ratio.

• This number is the amount of portfolio premium per unit of risk (the “price” of risk)
across all combinations of portfolio assets on the efficient frontier. Its maximum is the
best combination for the risk in terms of returns.

• We figure out where (the index ind) the return to risk is along the frontier, record the
weights associated with this unique point in risk-return space, and

• We find where (the index ind2) the minimum variance portfolio is.
• We then plot the “efficient frontier”: the efficient frontier will extend from the minimum

variance portfolio (a “+” will mark the spot) up and out (in red). Anything else below
this line is “inefficient” in the sense you get less and less return for mo

Here is the code we just built up.
sharpe = (mu.P - mu.free)/sigma.P ## compute Sharpe's ratios
ind = (sharpe == max(sharpe)) ## Find maximum Sharpe's ratio
options(digits = 3)
lines(c(0, 2), mu.free + c(0, 2) * (mu.P[ind] -

mu.free)/sigma.P[ind], lwd = 4, lty = 1,
col = "blue")

## show line of optimal portfolios
points(sigma.P[ind], mu.P[ind], cex = 4,

pch = "*") ## show tangency portfolio
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ind2 = (sigma.P == min(sigma.P)) ## find the minimum variance portfolio
points(sigma.P[ind2], mu.P[ind2], cex = 2,

pch = "+") ## show min var portfolio
ind3 = (mu.P > mu.P[ind2]) ## finally the efficient frontier
lines(sigma.P[ind3], mu.P[ind3], type = "l",

xlim = c(0, max(sd.R) * 1.1), ylim = c(min(mean.R) *
1.05, max(mean.R) * 1.1), lwd = 3,

col = "red") ## plot the efficient frontier
text(sd.R[1], mean.R[1], "EUR.USD", cex = 1.15)
text(sd.R[2], mean.R[2], "GBP.USD", cex = 1.15)
text(sd.R[3], mean.R[3], "OIL_Brent",

cex = 1.15)

Altogether we have these results.
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EUR.USD

GBP.USD

OIL.Brent

The weights for the tangency portfolio (“*“) are in
weights[ind, ]

## EUR.USD GBP.USD OIL.Brent
## 2.500 -1.807 0.306
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sum(weights[ind, ])

## [1] 1

For a given notional amount in your portfolio, go long (buy) 250.% of that position in euros
traded against USD, go short (sell) 180.7% of your aggregate position in euros traded against
USD, and go long 30.6% in Brent.

This means in the working capital accounts:

1. $250 million should be denominated in euros
2. Net of a short (payables?) position of $180 million
3. With another $30 million priced in Brent crude.

If our working capital is $100 million in euros, -$200 in sterling, and $200 exposed to Brent,
we might think of ways to bring this more into line with the optimal positions we just derived,
by changing contract terms and using swaps and other derivative instruments.

10.4.1 Try this exercise

In this scenario we don’t allow short positions (negative weights). This means we impose
the inequality constraint:

w ≥ 0

Further,

• We modify the Amat to Amat to cbind(rep(1,3),mean.R,diag(1,nrow=3)).
• We set the target return vectormu.P to seq(min(mean.R)+.0001, max(mean.R)-.0001,

length=300).
• We also set the righthand-side vector bvec to c(1,mu.P[i],rep(0,3)).

Let’s watch what happens using these questions as a guide.

1. Are the tangency portfolio and minimum variance portfolio weights different?
2. Explain how the constraint matrix and target return vector are different from the first

run where w was allowed to be negative.

Here is the new setup code where we no longer allow for short positions.
library(quadprog)
Amat <- cbind(rep(1, 3), mean.R, diag(1,

nrow = 3)) ## set the equality ND inequality constraints matrix
mu.P <- seq(min(mean.R) + 1e-04, max(mean.R) -

1e-04, length = 300) ## set of 300 possible target portfolio returns
sigma.P <- mu.P ## set up storage for std dev's of portfolio returns
weights <- matrix(0, nrow = 300, ncol = 3) ## storage for portfolio weights

Next we build the “efficient frontier.” All of this code is as before.
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for (i in 1:length(mu.P)) {
bvec <- c(1, mu.P[i], rep(0, 3)) ## constraint vector with no short positions
result <- solve.QP(Dmat = 2 * cov.R,

dvec = rep(0, 3), Amat = Amat,
bvec = bvec, meq = 2)

sigma.P[i] <- sqrt(result$value)
weights[i, ] <- result$solution

}

Then we plot, again the same as before.

1. Plot all of the portfolio combinations.
2. Plot the point on the graph that represents the so-called risk-free (actually more like

default-free) asset.
par(mfrow = c(1, 1))
plot(sigma.P, mu.P, type = "l", xlim = c(0,

max(sd.R) * 1.1), ylim = c(min(mean.R) *
1.05, max(mean.R) * 1.1), lty = 3,
lwd = 3) ## plot the efficient frontier (and inefficient portfolios

## below the min var portfolio)
mu.free <- 1.3/253 ## input value of risk-free interest rate
points(0, mu.free, cex = 1.5, pch = "+") ## show risk-free asset
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And…
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Now for William Sharpe’s ratio, again as before, where

• This number is the amount of portfolio premium per unit of risk (the “price” of risk)
across all combinations of portfolio assets on the efficient frontier. Its maximum is the
best combination for the risk in terms of returns.

• We figure out where (the index ind) the return to risk is along the frontier, record the
weights associated with this unique point in risk-return space, and

• Find where (the index ind2) the minimum variance portfolio is.
• Plot the “efficient frontier”: the efficient frontier will extend from the minimum vari-

ance portfolio (a “+” will mark the spot) up and out (in red). Anything else below
this line is “inefficient” in the sense you get less and less return for more and m

Here is the code (again) for using Sharpe’s ratio.
par(mfrow = c(1, 1))
plot(sigma.P, mu.P, type = "l", xlim = c(0,

max(sd.R) * 1.1), ylim = c(min(mean.R) *
1.05, max(mean.R) * 1.1), lty = 3,
lwd = 3) ## plot the efficient frontier (and inefficient portfolios

## below the min var portfolio)
mu.free <- 1.3/253 ## input value of risk-free interest rate
points(0, mu.free, cex = 1.5, pch = "+") ## show risk-free asset
mu.free <- 1.3/253 ## input value of risk-free interest rate
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points(0, mu.free, cex = 1.5, pch = "+") ## show risk-free asset
sharpe = (mu.P - mu.free)/sigma.P ## compute Sharpe's ratios
ind = (sharpe == max(sharpe)) ## Find maximum Sharpe's ratio
options(digits = 3)
lines(c(0, 2), mu.free + c(0, 2) * (mu.P[ind] -

mu.free)/sigma.P[ind], lwd = 4, lty = 1,
col = "blue")

## show line of optimal portfolios
points(sigma.P[ind], mu.P[ind], cex = 4,

pch = "*") ## show tangency portfolio
ind2 = (sigma.P == min(sigma.P)) ## find the minimum variance portfolio
points(sigma.P[ind2], mu.P[ind2], cex = 1.5,

pch = "+") ## show min var portfolio
ind3 = (mu.P > mu.P[ind2])
lines(sigma.P[ind3], mu.P[ind3], type = "l",

xlim = c(0, max(sd.R) * 1.1), ylim = c(min(mean.R) *
1.05, max(mean.R) * 1.1), lwd = 3,

col = "red") ## plot the efficient frontier
text(sd.R[1], mean.R[1], "EUR.USD", cex = 1.15)
text(sd.R[2], mean.R[2], "GBP.USD", cex = 1.15)
text(sd.R[3], mean.R[3], "OIL.Brent",

cex = 1.15)
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Amat

## mean.R
## EUR.USD 1 0.00154 1 0 0
## GBP.USD 1 -0.00228 0 1 0
## OIL.Brent 1 0.01077 0 0 1
bvec

## [1] 1.0000 0.0107 0.0000 0.0000 0.0000

Here

1. bvec changes for each of the three assets. Here we see one of them.
2. The short position bvec has three zeros appended to it.
3. The Amat constraint matrix has the identity matrix appended to it to represent wi = 0

in the formulation of the inequality constraints parsed by quantprog.
4. The tangency of the line from the risk-free rate to the maximum Sharpe ratio point

on the efficient frontier does not change.

The weights are

## [1] 0.0108 0.0000 0.9892

The picture radically changes:
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1. Long working capital position with only a $1 million euro exposure.
2. No pounding sterling exposure at all.
3. A huge $99 million Brent exposure.

10.5 Summary

We learned portfolio maths and finance: building feasible combinations of risk and return
called the efficient frontier, figured out in 1952 by Harry Markowitz. We also looked at a
simple example of tolerance for loss to imply the amount of collateral (risk-free asset) to
hold. Using that idea and a ruler we drew a line to the efficient frontier to discover the best
portfolio of exposures for a hypothetical working capital position: the one that maximizes
the return for the risk, the ratio that William Sharpe figured out in 1966.

10.6 Further Reading

McNeil et al. has sections on . Ruppert et al. has a chapter on portfolio selection upon
which much of the R programming in this chapter is based. Bassett et al. has a way forward
for more risk management minded analytics that uses quantile regression techniques.
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10.7 Practice Laboratory

10.7.1 Practice laboratory #1

10.7.1.1 Problem

10.7.1.2 Questions

10.7.2 Practice laboratory #2

10.7.2.1 Problem

10.7.2.2 Questions

10.8 Project

10.8.1 Background

10.8.2 Data

10.8.3 Workflow

10.8.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.

• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
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procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.
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Chapter 11

Aggregating Enterprise Risk

11.1 The Problem with Enterprise Risk

International Mulch & Compost Company1IM&C os a ficitious company dreamt up and
used by Brealey and Myers.) makes and distributes an emerging energy source made from
guano and prairie grass briquets. IM&C is about to go IPO. Corporate policy dictates that
management must assess risks to equity annually and whether a circumstance dictates. Such
a circumstance is an IPO.

Management knows of at least three material risks:

• Customers defect so there is uncertainty in revenue growth.
• Suppliers stop competing on price, quantity, and quality so there is uncertainty in

variable expense.
• There are major compliance breaches which impact fixed expense.

No one knows much about these risks from history because this company is the first in
its market to produce this very innovative product from bio-engineered guano. Very abun-
dant prairie grass grows alongside every highway in North America. Management does have
considerable experience in marketing, production, and operations. IM&C ponders its SEC
disclosure for the IPO where it will report its view of material risks. One question manage-
ment knows someone will ask is how likely is it that the net operating margin will fall below,
say, indicated earnings of $400 million. IM&C thinks it needs to know how much capital is
involved in this risk venture.

11.2 Let’s make copulas

Our problem is:
1(

305
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1. We have three major risk factors and each has their own distribution.
2. We also know that they are somehow correlated.
3. How can we aggregate the three into one risk measure that is tangible, and preserve

the correlation?

11.2.1 We do this from scratch.

Our first task is to generate multivariate normal variates that are correlated with one another.
Here we relate three standard normal random variables together.A standard normal random
variable has a mean, µ = 0, and variance, σ2 = 1. The variable sigma in the code below is
the correlation matrix.
library(mvtnorm)
set.seed(1016)
n.risks <- 3 ## Number of risk factors
m <- n.risks
n.sim <- 1000
sigma <- matrix(c(1, 0.4, 0.2, 0.4, 1,

-0.8, 0.2, -0.8, 1), nrow = 3)
z <- rmvnorm(n.sim, mean = rep(0, nrow(sigma)),

sigma = sigma, method = "svd")

In the rmvnorm function svd stands for the “singular value decomposition” that allows us to
fan the correlations across the z values.

11.2.2 Example

Let’s use the .panels feature in the psych library to look at the variates so far. We also
calculate two kinds of correlations, Spearman and Pearson.
library(psych)
cor(z, method = "spearman") ## Textbook calculation

## [,1] [,2] [,3]
## [1,] 1.000 0.408 0.139
## [2,] 0.408 1.000 -0.801
## [3,] 0.139 -0.801 1.000
cor(z, method = "pearson") ## Rank order calculation

## [,1] [,2] [,3]
## [1,] 1.000 0.426 0.152
## [2,] 0.426 1.000 -0.811
## [3,] 0.152 -0.811 1.000
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pairs.panels(z)

var 1
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Here is the result.

## [,1] [,2] [,3]
## [1,] 1.000 0.408 0.139
## [2,] 0.408 1.000 -0.801
## [3,] 0.139 -0.801 1.000

## [,1] [,2] [,3]
## [1,] 1.000 0.426 0.152
## [2,] 0.426 1.000 -0.811
## [3,] 0.152 -0.811 1.000
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var 1
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Notice how close the correlations are to the ones we specified in sigma.

11.3 Sklar’s in the house…

Next we use a result from mathematical probability called

Sklar’s theorem (1959):

• If x is a random variable with distribution F ,
• then F (x) is uniformly distributed in the interval [0, 1].

Let’s translate this idea into R and look at the resulting interactions.
require(psych)
u <- pnorm(z)
pairs.panels(u)
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var 1
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We see that the Gaussian (normal) distribution has been reshaped into a uniform distribution,
just as Sklar predicted. The idea around this theorem is the same as around the number 1.
We can multiply any real number by one and get the real number back. This is an identity
operation. (Please remember we are not trying to be mathematicians! My apologies to the
mathematical community.) In a somewhat analogous way, the uniform distribution serves
a role as an distribution identity operator.When we operate on the uniformly distributed
random numbers with a distribution, we get back that distribution. But in this case the
identity distribution has structure in it (correlations) that the new distribution inherits.

A 3-D plot looks more interesting. In the Rstudio graphics device window we can the roll
the cube around to see into the relationships among the random variables. Try this at home
for an interactive experience.
library(rgl)
plot3d(u[, 1], u[, 2], u[, 3], pch = 20,

col = "orange")

Now, we only need to select the marginal probabilities of the risks we are assessing and apply
them to the dependently related ‘u’ variates. Suppose the marginal probability distributions
for revenue growth is gamma, variable expense ratio is beta, and the fixed expense ratio is
Student’s t distributed with these parameters:
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x1 <- qgamma(u[, 1], shape = 2, scale = 1)
x2 <- qbeta(u[, 2], 2, 2)
x3 <- qt(u[, 3], df = 5)

Nice outliers! Starting from a multivariate normal distribution we created dependent uniform
variates. Using the dependent uniform variates we created dependent distributions of our
choosing.
factors.df <- cbind(x1/10, x2, x3/10)
colnames(factors.df) <- c("Revenue",

"Variable Cost", "Fixed Cost")
pairs.panels(factors.df)
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cor(factors.df, method = "spearman")

## Revenue Variable Cost Fixed Cost
## Revenue 1.000 0.408 0.139
## Variable Cost 0.408 1.000 -0.801
## Fixed Cost 0.139 -0.801 1.000
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11.4 Analyze that…

Now to use all of this simulation to project revenue, expense, and margin.
revenue <- 1000 * (1 + factors.df[, 1])
variable.cost <- revenue * factors.df[,

2]
fixed.cost <- revenue * factors.df[,

3]
total.cost <- variable.cost + fixed.cost
operating.margin <- revenue - variable.cost -

fixed.cost
analysis <- cbind(revenue, total.cost,

operating.margin)
colnames(analysis) <- c("Revenue", "Cost",

"Margin")

11.4.1 Example

Run pairs.panels using the analysis data frame. What do you see?

Here’s the result.
pairs.panels(analysis)
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What do we see?

1. Variable and fixed cost aggregate into a distribution that is right-skewed.
2. Margin has a high density across a broad range of potential outcomes.
3. An increase (decrease) in cost will probably result in an increase (decrease) in revenue.
4. Revenue and margin also seem to be counter cyclical, a non-intuitive result, but one

that makes sense only by looking at the negative correlation between cost and margin.

11.5 Risk measures

We are not yet done. The whole point of this analysis is to get consistent and coherent
measures of risk to a consumer of the analysis, namely, the decision maker who is the CFO
in this case. We define the value at risk, V aR, as the α quantile of the performance metric
of interest. Higher α means lower risk tolerance. Here is the relationship:

Q(x, α) = F (x;Prob[X] > α).

The metric x in this case is margin. Expected Shortfall, ES, is then the mean of the margin
beyond V aR. The parameter α is the level of organizational risk tolerance. If α = 0.99,
then the organization would want risk capital to cover a potential loss of V aR, and more
conservatively, ES. The organization is even more conservative the higher the α.
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We purloin the R code from the market risk material here:
### Simple Value at Risk
expected.margin <- 400
## Center margin loss on expected
## margin
loss.rf <- -(expected.margin - operating.margin)
## Assign metric of interest to
## reusable code
summary(loss.rf)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -211 63 180 176 290 499
## Always review a key variable's
## content
alpha.tolerance <- 0.99
## Very intolerant! Remember that
## putting a variable assignment in
## parentheses also prints the result
(VaR.hat <- quantile(loss.rf, probs = alpha.tolerance,

names = FALSE))

## [1] 437
### Just as simple Expected shortfall
(ES.hat <- mean(loss.rf[loss.rf > VaR.hat]))

## [1] 456

Let’s plot the results.
hist(loss.rf, xlab = "Operating Margin",

ylab = "Frequency", main = "Margin Loss Tolerance")
abline(v = VaR.hat, col = "red")
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Sklar provides us with a way to join together any set of distributions. It transforms correlated
variates into a uniform distribution. The uniform distribution takes on the role of the number
1 in algebra. Anything multiplied by 1 returns itself. In a very loose way, the uniform
distribution is the identity distribution, just like one is the identity term in algebra. So that
whenever we operate on the uniform distribution we get back the same distribution – but
this time with correlation.

The rub is the starting point. Here we used the Gaussian (normal) distribution. This is
not a very thickly tailed distribution, and it can be shown that extreme events are not
dependent on one another using this distribution. This is NOT a useful feature ultimately.
So, analysts use more thickly tailed distributions such as the Student-t and the generalized
Pareto distribution (GPD) to get dependency far out into the tails. This is nearly perfect
for risk managers and decision makers.

11.5.1 Example

Let’s use this R code to modify the copula-making machine we just built. Instead of rmvnorm
we will use rmvt to generate the correlated risk factors. This is called a t-copula.
library(mvtnorm)
library(psych)
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set.seed(1016) ## Freezes the random seed to reproduce results exactly
n.risks <- 3 ## Number of risk factors
m <- n.risks
n.sim <- 1000
sigma <- matrix(c(1, 0.4, 0.2, 0.4, 1,

-0.8, 0.2, -0.8, 1), nrow = m)
z <- rmvt(n.sim, delta = rep(0, nrow(sigma)),

sigma = sigma, df = 6, type = "shifted")

Here are the results of our experiment. Let’s go through the paces. First we look at the z
variates we simulated using the multivariate Student’s t-distribution.
pairs.panels(z)
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We then run the uniform distribution generator (with correlation structure).
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Now, we only need to select the marginal probabilities of the risks we are assessing and apply
them to the dependently related ‘u’ variates. Again suppose the marginal probability for
revenue growth is gamma, for the variable expense ratio is beta, and fixed expense ratio is
Student’s t distributed with these parameters:
x1 <- qgamma(u[, 1], shape = 2, scale = 1)
x2 <- qbeta(u[, 2], 2, 2)
x3 <- qt(u[, 3], df = 6)

Starting from a multivariate Student’s t-distribution we created dependent uniform variates.
Using the dependent uniform variates we created dependent distributions of our choosing.

Next we combine the series into a data frame and review the scatterplot matrix.
factors.df <- cbind(x1/10, x2, x3/10)
colnames(factors.df) <- c("Revenue",

"Variable Cost", "Fixed Cost")
pairs.panels(factors.df)
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## cor(df,meth='spearman') could also
## be run to verify the pairs.panels()

Again, we have nice outliers! (We could run the qqplot to see this). Now to use all of this
to project revenue, expense, and margin.
revenue <- 1000 * (1 + factors.df[, 1])
variable.cost <- revenue * factors.df[,

2]
fixed.cost <- revenue * factors.df[,

3]
total.cost <- variable.cost + fixed.cost
operating.margin <- revenue - variable.cost -

fixed.cost
analysis.t <- cbind(revenue, total.cost,

operating.margin)
colnames(analysis.t) <- c("Revenue",

"Cost", "Margin")

And again here is the scatterplot matrix.
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pairs.panels(analysis.t)
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We can…

1. Experiment with different degrees of freedom to sensitive ourselves to the random
numbers generated.

2. Parameterize correlations. This means assign correlations to a variable and place that
variable into the sigma matrix. This might get into trouble with an error. It would
mean we would have to reassign the correlation. The mathematical problem is finding
a positive definite variance-covariance matrix.

3. How different are the value at risk and expected shortfall measures between the use of
the Gaussian (normal) copula and the t-copula? Why should a decision maker care?

All of that experimentation begs for an interactive decision tool.

11.6 Let’s build an app …

The application (the “app”) will be housed in an R script that contain four architectural
layers.

1. Analytics
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2. User Interface (UI)
3. Server
4. Application generator

11.6.1 Analytics

1. Libraries used in app processes
2. Function that wraps analytical script
3. Inputs from UI layer to server layer
4. Outputs from server layer to UI layer

11.6.2 UI

1. Slide bars for user to input range of parameters
2. Plots to display results
3. Text to report results

11.6.3 Server

1. Run analytics with inputs from the UI and from a simulation function
2. Generate outputs for UI

11.6.4 Application generator

Here we run application function with UI and Server inputs

11.7 The simulation function

The risk.sim function is a wrapper that pulls all of the risk aggregation together. In our
scenario we vary the correlation coefficients. Shiny calls these input and this is what is given
to risk.sim through the ui to risk.sim by way of the server. risk.sim then outputs the
results into result called analysis.t. This is fetched by the server and rendered in the
app.
library(shiny)
require(mvtnorm)
require(psych)
risk.sim <- function(input) {

## Begin enterprise risk simulation
set.seed(1016) ## Freezes the random seed to reproduce results exactly
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n.risks <- 3 ## Number of risk factors
m <- n.risks
n.sim <- 1000 ## pull slider settings into the sigma correlation matrix
sigma <- matrix(c(1, input[1], input[2],

input[1], 1, input[3], input[2],
input[3], 1), nrow = m)

z <- rmvt(n.sim, delta = rep(0, nrow(sigma)),
sigma = sigma, df = 6, type = "shifted")

u <- pt(z, df = 6)
x1 <- qgamma(u[, 1], shape = 2, scale = 1)
x2 <- qbeta(u[, 2], 2, 2)
x3 <- qt(u[, 3], df = 6)
factors.df <- cbind(x1/10, x2, x3/10)
colnames(factors.df) <- c("Revenue",

"Variable Cost", "Fixed Cost")
revenue <- 1000 * (1 + factors.df[,

1])
variable.cost <- revenue * factors.df[,

2]
fixed.cost <- revenue * factors.df[,

3]
total.cost <- variable.cost + fixed.cost
operating.margin <- revenue - variable.cost -

fixed.cost
analysis.t <- cbind(revenue, total.cost,

operating.margin)
colnames(analysis.t) <- c("Revenue",

"Cost", "Margin")
return(analysis.t)

}

11.8 The UI

Here is a mock-up of the screen we will implement in Shiny.

Here is what the Shiny UI code looks like:
ui <- fluidPage(titlePanel("Enterprise Risk Analytics"),

sidebarLayout(sidebarPanel(sliderInput(inputId = "cor.1",
label = "Set the Revenue - Variable Cost Correlation",
value = 0.5, min = 0.1, max = 0.9),
sliderInput(inputId = "cor.2",

label = "Set the Revenue - Variable Cost Correlation",
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Figure 11.1: UI Design
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value = 0.5, min = 0.1, max = 0.9),
sliderInput(inputId = "cor.3",

label = "Set the Variable - Fixed Cost Correlation",
value = 0.5, min = 0.1, max = 0.9)),

mainPanel(plotOutput("pairs.1"))))

11.9 The server

• The Shiny server is a function
• The function gets inputs from the UI
• Generates outputs that are sent back to the UI

server <- function(input, output) {
output$pairs.1 <- renderPlot({

analysis.t <- risk.sim(c(input$cor.1,
input$cor.2, input$cor.3))

pairs.panels(analysis.t)
})

}

11.10 Run the app

This function call the Shiny application process with inputs ui and server.
shinyApp(ui = ui, server = server)

Here is what you see when you run the app in the script window of Rstudio.

11.11 What else could we do?

• Build tabs for various components of the analysis
• Use tables to summarize metrics (e.g., VaR, ES)
• Whatever else the consumer of this analysis would need

11.12 Summary

• More and more R, finance, risk, statistics, probability
• Multivariate simulation of risk factors
• Math to R translation



11.12. SUMMARY 323

Figure 11.2: ERM Application Screenshot
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• Graphics
• Normal, t, gamma, and beta distributions
• VaR and ES
• Aggregation of multiple risk factors
• Introduction to Shiny and application development

11.13 Further Reading

11.14 Practice Laboratory

11.14.1 Practice laboratory #1

11.14.1.1 Problem

11.14.1.2 Questions

11.14.2 Practice laboratory #2

11.14.2.1 Problem

11.14.2.2 Questions

11.15 Project

11.15.1 Background

11.15.2 Data

11.15.3 Workflow

11.15.4 Assessment

We will use the following rubric to assess our performance in producing analytic work product
for the decision maker.

• Words: The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences, logically grouped into
paragraphs and sections, and easy to follow from the presumed level of knowledge.
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• Numbers: All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

• Pictures: All figures and tables shown are relevant to the argument for ultimate
conclusions. Figures and tables are easy to read, with informative captions, titles, axis
labels and legends, and are placed near the relevant pieces of text.

• Code: The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical questions,
and avoids redundancy. Code borrowed from the notes, from books, or from resources
found online is explicitly acknowledged and sourced in the comments. Functions or
procedures not directly taken from the notes have accompanying tests which check
whether the code does what it is supposed to. All code runs, and the R Markdown file
knits to pdf_document output, or other output agreed with the instructor.

• Modeling: Model specifications are described clearly and in appropriate detail. There
are clear explanations of how estimating the model helps to answer the analytical
questions, and rationales for all modeling choices. If multiple models are compared,
they are all clearly described, along with the rationale for considering multiple models,
and the reasons for selecting one model over another, or for using multiple models
simultaneously.

• Inference: The actual estimation and simulation of model parameters or estimated
functions is technically correct. All calculations based on estimates are clearly ex-
plained, and also technically correct. All estimates or derived quantities are accompa-
nied with appropriate measures of uncertainty.

• Conclusions: The substantive, analytical questions are all answered as precisely as
the data and the model allow. The chain of reasoning from estimation results about the
model, or derived quantities, to substantive conclusions is both clear and convincing.
Contingent answers (for example, “if X, then Y , but if A, then B, else C”) are likewise
described as warranted by the model and data. If uncertainties in the data and model
mean the answers to some questions must be imprecise, this too is reflected in the
conclusions.

• Sources: All sources used, whether in conversation, print, online, or otherwise are
listed and acknowledged where they used in code, words, pictures, and any other
components of the analysis.
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11.16 References

11.17 R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring
HTML, PDF, and MS Word documents. For more details on using R Markdown see http:
//rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content
as well as the output of any embedded R code chunks within the document. You can embed
an R code chunk like this:
summary(cars)

## speed dist
## Min. : 4.0 Min. : 2
## 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4 Mean : 43
## 3rd Qu.:19.0 3rd Qu.: 56
## Max. :25.0 Max. :120

11.18 Including Plots

You can also embed plots, for example:

http://rmarkdown.rstudio.com
http://rmarkdown.rstudio.com
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Note that the echo = FALSE parameter was added to the code chunk to prevent printing of
the R code that generated the plot.



328 CHAPTER 11. AGGREGATING ENTERPRISE RISK



Bibliography

329


	Introduction to Financial Analytics
	Analytics
	Chapter Outline
	Setting Up R for Analytics
	Nomenclature

	R Warm-ups in Finance
	Learning outcomes
	Tickling the Ivories
	Building Some Character
	Arrays and You
	More Array Work
	Summary
	Further Reading
	Practice Set
	Project
	References

	R Data Modeling
	Imagine This
	Pivot tables and Vertical Lookups
	Why Functions?
	Making distributions
	Optimization
	Estimate until morale improves…
	Summary
	Further Reading
	Practice Sets
	Project
	References

	Macrofinancial Data Analysis
	Imagine This
	Building the Stylized Facts
	Getting Caught in the Cross-Current
	Time is on our Side
	Give it the Boot
	Summary
	Further Reading
	Practice Laboratory
	Project
	References

	Term Structure and Splines
	Imagine This
	The Bond
	Forward Rate Parameters
	Back to Our Story
	A Summary Exercise
	Just one more thing
	Summary
	Further Reading
	Practice Laboratory
	Project
	References

	Market Risk
	Imagine This
	What is Market Risk?
	History Speaks
	$ Try this exercise
	Now to the Matter at Hand
	Carl Friedrich Gauss, I Presume…
	Back to the Future
	Try this example
	Let's Go to Extremes
	All Together Now
	Summary
	Further Reading
	Practice Laboratory
	Project
	References

	Credit Risk
	Imagine This
	New customers!
	It Depends
	Generating Some Hazards
	Now for the Future
	Build We Must
	Now for the Finale
	Enter Laplace
	Summary
	Further Reading
	Practice Laboratory
	Project
	References

	Operational Risk and Extreme Finance
	Imagine This
	What is Operational Risk?
	How Much?
	How Often?
	How Much Potential Loss?
	We Have History
	Fire Losses
	Estimating the Extremes
	Summary
	Further Reading
	Practice Laboratory
	Project
	References

	Meauring Volatility
	Imagine this
	What is All the Fuss About?
	Lock and Load…
	It is Fitting…
	Simulate… again until Morale Improves…
	Now for Something Really Interesting
	Just One More Thing
	Summary
	Further Reading
	Practice Laboratory
	Project
	References

	Portfolio Analytics
	Imagine This
	Let's Walk Before We Run
	All In
	Optimizing a Portfolio
	Summary
	Further Reading
	Practice Laboratory
	Project
	References

	Aggregating Enterprise Risk
	The Problem with Enterprise Risk
	Let's make copulas
	Sklar's in the house…
	Analyze that…
	Risk measures
	Let's build an app …
	The simulation function
	The UI
	The server
	Run the app
	What else could we do?
	Summary
	Further Reading
	Practice Laboratory
	Project
	References
	R Markdown
	Including Plots


