Chapter 3 ANOVA RCBD

Dataset (Somasegaran and Hoben 1985)

gs4_deauth() giúp cho không cần xác thực API từ googlesheet.

File raw

library(googlesheets4)
gs4_deauth()
data_rcbd <- read_sheet('1dFmKOhpYABrPR_e5MF27W2LSbaAGdt5dFVV3zc1H47I')
## v Reading from "raw_data".
## v Range 'Sheet1'.
print(data_rcbd, n = Inf)
## # A tibble: 48 x 3
##    block  treatment yield
##    <chr>  <chr>     <dbl>
##  1 block1 TAL102     9.66
##  2 block1 TAL379     9.36
##  3 block1 TAL206     8.41
##  4 block1 TAL435     8.61
##  5 block1 TAL411     9.2 
##  6 block1 ALLEN527   8.11
##  7 block1 TAL211     8.83
##  8 block1 TAL487     6.27
##  9 block1 CB1795     6.79
## 10 block1 TAL650     6.95
## 11 block1 TAL649     6.55
## 12 block1 TAL860     6   
## 13 block1 TAL183     6.11
## 14 block1 TAL378     5.39
## 15 block1 CONTROL1   1.53
## 16 block1 CONTROL2   6.41
## 17 block2 TAL102    10.6 
## 18 block2 TAL379     9   
## 19 block2 TAL206     9.44
## 20 block2 TAL435     9.23
## 21 block2 TAL411     8.19
## 22 block2 ALLEN527   8.82
## 23 block2 TAL211     6.32
## 24 block2 TAL487     8.67
## 25 block2 CB1795     8.17
## 26 block2 TAL650     5.83
## 27 block2 TAL649     4.82
## 28 block2 TAL860     4.83
## 29 block2 TAL183     3.46
## 30 block2 TAL378     4.46
## 31 block2 CONTROL1   1.3 
## 32 block2 CONTROL2   7.83
## 33 block3 TAL102    10.8 
## 34 block3 TAL379    10.5 
## 35 block3 TAL206    10.2 
## 36 block3 TAL435     8.22
## 37 block3 TAL411     8.46
## 38 block3 ALLEN527   8.62
## 39 block3 TAL211     9.14
## 40 block3 TAL487     8.35
## 41 block3 CB1795     5.7 
## 42 block3 TAL650     6.83
## 43 block3 TAL649     8.1 
## 44 block3 TAL860     6.54
## 45 block3 TAL183     5.51
## 46 block3 TAL378     5.07
## 47 block3 CONTROL1   1.8 
## 48 block3 CONTROL2   5.83

ANOVA

library(agricolae)
## 
## Attaching package: 'agricolae'
## The following object is masked from 'package:ape':
## 
##     consensus
outAOV <- aov(yield ~ block + treatment, data = data_rcbd)
outAOV
## Call:
##    aov(formula = yield ~ block + treatment, data = data_rcbd)
## 
## Terms:
##                     block treatment Residuals
## Sum of Squares    2.42538 217.47868  27.94669
## Deg. of Freedom         2        15        30
## 
## Residual standard error: 0.9651716
## Estimated effects may be unbalanced

Check assumptions

plot(fitted(outAOV), residuals(outAOV))

hist(residuals(outAOV))
lines(density(residuals(outAOV)))

hist(residuals(outAOV), prob = TRUE)
lines(density(residuals(outAOV)))

library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:ape':
## 
##     rotate
ggqqplot(residuals(outAOV))

ANOVA table

anova(outAOV)
## Analysis of Variance Table
## 
## Response: yield
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## block      2   2.425  1.2127  1.3018     0.287    
## treatment 15 217.479 14.4986 15.5638 3.284e-10 ***
## Residuals 30  27.947  0.9316                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

t-test LSD

outFactorial <-LSD.test (outAOV, c("treatment"), main = "yield ~ block + treatment",console=TRUE)
## 
## Study: yield ~ block + treatment
## 
## LSD t Test for yield 
## 
## Mean Square Error:  0.9315563 
## 
## treatment,  means and individual ( 95 %) CI
## 
##              yield       std r       LCL       UCL  Min   Max
## ALLEN527  8.516667 0.3661056 3 7.3786265  9.654707 8.11  8.82
## CB1795    6.886667 1.2378341 3 5.7486265  8.024707 5.70  8.17
## CONTROL1  1.543333 0.2502665 3 0.4052932  2.681374 1.30  1.80
## CONTROL2  6.690000 1.0289801 3 5.5519598  7.828040 5.83  7.83
## TAL102   10.363333 0.6198656 3 9.2252932 11.501374 9.66 10.83
## TAL183    5.026667 1.3895443 3 3.8886265  6.164707 3.46  6.11
## TAL206    9.346667 0.8936629 3 8.2086265 10.484707 8.41 10.19
## TAL211    8.096667 1.5464260 3 6.9586265  9.234707 6.32  9.14
## TAL378    4.973333 0.4724757 3 3.8352932  6.111374 4.46  5.39
## TAL379    9.616667 0.7774531 3 8.4786265 10.754707 9.00 10.49
## TAL411    8.616667 0.5229085 3 7.4786265  9.754707 8.19  9.20
## TAL435    8.686667 0.5093460 3 7.5486265  9.824707 8.22  9.23
## TAL487    7.763333 1.3031245 3 6.6252932  8.901374 6.27  8.67
## TAL649    6.490000 1.6408230 3 5.3519598  7.628040 4.82  8.10
## TAL650    6.536667 0.6149255 3 5.3986265  7.674707 5.83  6.95
## TAL860    5.790000 0.8741281 3 4.6519598  6.928040 4.83  6.54
## 
## Alpha: 0.05 ; DF Error: 30
## Critical Value of t: 2.042272 
## 
## least Significant Difference: 1.609432 
## 
## Treatments with the same letter are not significantly different.
## 
##              yield groups
## TAL102   10.363333      a
## TAL379    9.616667     ab
## TAL206    9.346667    abc
## TAL435    8.686667     bc
## TAL411    8.616667     bc
## ALLEN527  8.516667     bc
## TAL211    8.096667    bcd
## TAL487    7.763333     cd
## CB1795    6.886667     de
## CONTROL2  6.690000     de
## TAL650    6.536667    def
## TAL649    6.490000    def
## TAL860    5.790000     ef
## TAL183    5.026667      f
## TAL378    4.973333      f
## CONTROL1  1.543333      g

References

Somasegaran, P., and H. J. Hoben. 1985. “Methods in Legume-Rhizobium Technology.”