Portfolio Construction
2020-11-24
Preface
Structure of the book
outline:
portfolio: basic portfolio concepts
portfolio construction:
back-testing
machine learning: data clean, transform, viz, exploratory ts modeling model model evaluation
math: convex optimization
Software information and conventions
The R session information when compiling this book is shown below:
sessionInfo()
#> R version 4.0.2 (2020-06-22)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 17763)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=English_United States.1252
#> [2] LC_CTYPE=English_United States.1252
#> [3] LC_MONETARY=English_United States.1252
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United States.1252
#>
#> attached base packages:
#> [1] parallel stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] rugarch_1.4-4 CVXR_1.0-1
#> [3] dplyr_1.0.2 PerformanceAnalytics_2.0.4
#> [5] quantmod_0.4.17 TTR_0.23-6
#> [7] xts_0.12-0 zoo_1.8-8
#>
#> loaded via a namespace (and not attached):
#> [1] tidyselect_1.1.0 xfun_0.19
#> [3] ks_1.11.7 purrr_0.3.4
#> [5] lattice_0.20-41 vctrs_0.3.2
#> [7] generics_0.0.2 htmltools_0.5.0
#> [9] SkewHyperbolic_0.4-0 yaml_2.2.1
#> [11] gmp_0.6-0 rlang_0.4.7
#> [13] pillar_1.4.6 nloptr_1.2.2.2
#> [15] glue_1.4.1 Rmpfr_0.8-1
#> [17] bit64_0.9-7 lifecycle_0.2.0
#> [19] stringr_1.4.0 mvtnorm_1.1-1
#> [21] evaluate_0.14 knitr_1.29
#> [23] curl_4.3 Rcpp_1.0.5
#> [25] KernSmooth_2.23-17 DistributionUtils_0.6-0
#> [27] truncnorm_1.0-8 bit_4.0.4
#> [29] spd_2.0-1 digest_0.6.25
#> [31] stringi_1.5.3 bookdown_0.20
#> [33] numDeriv_2016.8-1.1 grid_4.0.2
#> [35] quadprog_1.5-8 tools_4.0.2
#> [37] magrittr_1.5 Rsolnp_1.16
#> [39] tibble_3.0.3 crayon_1.3.4
#> [41] pkgconfig_2.0.3 ellipsis_0.3.1
#> [43] GeneralizedHyperbolic_0.8-4 MASS_7.3-51.6
#> [45] Matrix_1.2-18 rmarkdown_2.5
#> [47] rstudioapi_0.13 R6_2.4.1
#> [49] mclust_5.4.6 compiler_4.0.2
Acknowledgments
Prerequisites
Some basic knowledge about finance, time series analysis, optimization (linear and convex), programming (python1 or R) would be preferred.
Later I will add corresponding python code↩︎