==============================================================================================
Model 1 Model 2 Model 3 Model 4 Model 5
----------------------------------------------------------------------------------------------
logcost 0.78 *** 0.78 *** 0.68 ** 0.96 * 0.96 *
(0.01) (0.01) (0.22) (0.34) (0.34)
v_integrated 0.36 * 0.43 **
(0.14) (0.13)
logtax 0.16 *** 0.16 *** 0.39 *** 0.46 ** 0.46 **
(0.01) (0.01) (0.08) (0.13) (0.13)
logcost:v_integrated -0.02 -0.02 -0.02 -0.02 -0.02
(0.01) (0.01) (0.01) (0.01) (0.01)
v_integrated:logtax -0.05 * -0.05 * -0.05 ** -0.05 * -0.05 *
(0.02) (0.02) (0.02) (0.02) (0.02)
----------------------------------------------------------------------------------------------
Num. obs. 755985 755985 755985 755985 755985
R^2 (full model) 0.77 0.66 0.64 0.78 0.78
R^2 (proj model) 0.71 0.64 0.10 0.01 0.01
Adj. R^2 (full model) 0.77 0.66 0.64 0.78 0.78
Adj. R^2 (proj model) 0.71 0.64 0.10 0.01 0.01
Num. groups: station 1244 1244 1244
Num. groups: town 17 17 17
Num. groups: month 59 59 59
==============================================================================================
Spec:log~log. Sample: regular gasoline. Cluster:municipality.
sandbox10042024
Separate regressions
Estimating pass-through separately
Regular
Using the estimates on column 5, the %increase in the price of REGULAR gasoline after a 1% increase in the tax for a vertically integrated stations is 0.41 (.46-0.05). The mean tax is COP 139 and the mean price is COP 9050. So an increase of COP 1.39 in tax leads to an increase of .43% increase in price or COP 37.1.
Plot tax and price
Plot detrended tax and prices in log and levels