Loading the libraries
library("tidyverse") ## !!!!!!!!
library("caret")
load ("marketing.rda")
Define training and test data sets:
training.samples <- marketing$sales %>%
createDataPartition(p=0.8, list = F)
train.data <- marketing[training.samples, ]
test.data <- marketing[ -training.samples, ]
The plot
plot(train.data)
Model
##
## Call:
## lm(formula = sales ~ youtube, data = train.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.7106 -2.3657 -0.2705 2.5006 8.6251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.427642 0.637167 13.23 <0.0000000000000002 ***
## youtube 0.047710 0.003119 15.30 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.012 on 160 degrees of freedom
## Multiple R-squared: 0.5939, Adjusted R-squared: 0.5914
## F-statistic: 234 on 1 and 160 DF, p-value: < 0.00000000000000022
Veryfying assumptions:
##
## studentized Breusch-Pagan test
##
## data: model1
## BP = 36.646, df = 1, p-value = 0.000000001416