Setup and Requirements

Install appropriate packages and open the libraries.

library(Hmisc)
library(funModeling) 
library(tidyverse) 



Target sources and URL Share and Unique Domain Counts

When looking at the total number of dataset appearances, those with the highest count were frequently social media platforms or websites closely controlled by the Russian state. Depending upon how the data was refined, the central node in the network was either YouTube or YouTube and orly_rs.

The table ranks the “share counts” in descending order. The share count column is in order, with vk_ being the most shared website with 2819 shares, followed by instagram_ with 802 shares.

The least shared website is russian.rt.com, with only 12 shares. The extreme skew among sources reflects a relatively small subset that is heavily shared within the network. Most sources are not shared by more than one or two channels. The channels show a strong preference for sources controlled by or supportive of the Russian state.

YouTube agg (YouTube aggregation is a combined total of different types of YouTube links) was the lone source that appeared in all core channels. Instagram.com appears in only 5 datasets, the least among the top ten, though this is still considerable. 95% of sources did not appear in more than two datasets. A source that was shared by three or more datasets was among a small subset of sources that were highly favored by this network. The average domain was shared 7 times, but the 75th percentile for share counts had just two shares.



Basic statistics for stats.csv

The table above shows various statistics related to the number of times URLs were shared on a platform. The data includes the number of times a URL was shared, the number of unique domains for each share count, the number of URLs for each share count, and various cumulative percentages and frequencies.

Rows: 2,469
Columns: 3
$ target         <chr> "youtube_", "fb_", "vk_", "instagram_", "orly_rs", "twitter.com"…
$ share_counts   <int> 678, 624, 2819, 802, 755, 520, 314, 12, 109, 38, 33, 33, 15, 6, …
$ dataset_counts <int> 8, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4…
df 

 3  Variables      2469  Observations
-----------------------------------------------------------------------------------------
target 
       n  missing distinct 
    2469        0     2469 

lowest : /c/1732054517/3452 /c/1732054517/4875 /c/1732054517/5727 /c/1732054517/9009 @GRIP_SoundLab    
highest: Ztdk3FDbbhA1Nzdi   zubovskiy4         zvezdalive         zvezdalive.ru      zvezdanews        
-----------------------------------------------------------------------------------------
share_counts 
       n  missing distinct     Info     Mean      Gmd      .05      .10      .25 
    2469        0       63    0.764    7.164     11.7        1        1        1 
     .50      .75      .90      .95 
       1        2        6       10 

lowest :    1    2    3    4    5, highest:  755  802  856 1407 2819
-----------------------------------------------------------------------------------------
dataset_counts 
       n  missing distinct     Info     Mean      Gmd 
    2469        0        7    0.413    1.226   0.3943 

lowest : 1 2 3 4 5, highest: 3 4 5 6 8
                                                    
Value          1     2     3     4     5     6     8
Frequency   2065   307    65    18     6     7     1
Proportion 0.836 0.124 0.026 0.007 0.002 0.003 0.000
-----------------------------------------------------------------------------------------



Describe stats.csv

stats 

 3  Variables      2469  Observations
-----------------------------------------------------------------------------------------
target 
       n  missing distinct 
    2469        0     2469 

lowest : /c/1732054517/3452 /c/1732054517/4875 /c/1732054517/5727 /c/1732054517/9009 @GRIP_SoundLab    
highest: Ztdk3FDbbhA1Nzdi   zubovskiy4         zvezdalive         zvezdalive.ru      zvezdanews        
-----------------------------------------------------------------------------------------
share_counts 
       n  missing distinct     Info     Mean      Gmd      .05      .10      .25 
    2469        0       63    0.764    7.164     11.7        1        1        1 
     .50      .75      .90      .95 
       1        2        6       10 

lowest :    1    2    3    4    5, highest:  755  802  856 1407 2819
-----------------------------------------------------------------------------------------
dataset_counts 
       n  missing distinct     Info     Mean      Gmd 
    2469        0        7    0.413    1.226   0.3943 

lowest : 1 2 3 4 5, highest: 3 4 5 6 8
                                                    
Value          1     2     3     4     5     6     8
Frequency   2065   307    65    18     6     7     1
Proportion 0.836 0.124 0.026 0.007 0.002 0.003 0.000
-----------------------------------------------------------------------------------------



Group by share counts



Group data by dataset counts

LS0tDQp0aXRsZTogIkJyb3RoZXJseSBJbmZvcm1hdGlvbiBPcGVyYXRpb25zIg0Kc3VidGl0bGU6ICJSLUNvZGUgZm9yIHN0YXRzLmNzdiINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogDQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQotLS0NCg0KXA0KXA0KDQojIyMgU2V0dXAgYW5kIFJlcXVpcmVtZW50cw0KDQpJbnN0YWxsIGFwcHJvcHJpYXRlIHBhY2thZ2VzIGFuZCBvcGVuIHRoZSBsaWJyYXJpZXMuDQoNCmBgYHtyIGV2YWw9RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpDQpgYGANCg0KYGBge3IgZXZhbD1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgaW5jbHVkZT1GQUxTRX0NCmluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQppbnN0YWxsLnBhY2thZ2VzKCJmdW5Nb2RlbGluZyIpDQppbnN0YWxsLnBhY2thZ2VzKCJIbWlzYyIpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KEhtaXNjKQ0KbGlicmFyeShmdW5Nb2RlbGluZykgDQpsaWJyYXJ5KHRpZHl2ZXJzZSkgDQpgYGANCg0KXA0KXA0KDQojIyMgVGFyZ2V0IHNvdXJjZXMgYW5kIFVSTCBTaGFyZSBhbmQgVW5pcXVlIERvbWFpbiBDb3VudHMNCg0KV2hlbiBsb29raW5nIGF0IHRoZSB0b3RhbCBudW1iZXIgb2YgZGF0YXNldCBhcHBlYXJhbmNlcywgdGhvc2Ugd2l0aCB0aGUgaGlnaGVzdCBjb3VudCB3ZXJlIGZyZXF1ZW50bHkgc29jaWFsIG1lZGlhIHBsYXRmb3JtcyBvciB3ZWJzaXRlcyBjbG9zZWx5IGNvbnRyb2xsZWQgYnkgdGhlIFJ1c3NpYW4gc3RhdGUuDQpEZXBlbmRpbmcgdXBvbiBob3cgdGhlIGRhdGEgd2FzIHJlZmluZWQsIHRoZSBjZW50cmFsIG5vZGUgaW4gdGhlIG5ldHdvcmsgd2FzIGVpdGhlciBZb3VUdWJlIG9yIFlvdVR1YmUgYW5kIG9ybHlfcnMuDQoNClRoZSB0YWJsZSByYW5rcyB0aGUgInNoYXJlIGNvdW50cyIgaW4gZGVzY2VuZGluZyBvcmRlci4NClRoZSBzaGFyZSBjb3VudCBjb2x1bW4gaXMgaW4gb3JkZXIsIHdpdGggdmtcXyBiZWluZyB0aGUgbW9zdCBzaGFyZWQgd2Vic2l0ZSB3aXRoIDI4MTkgc2hhcmVzLCBmb2xsb3dlZCBieSBpbnN0YWdyYW1cXyB3aXRoIDgwMiBzaGFyZXMuDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpsaWJyYXJ5KERUKQ0Kc3RhdHMgPC0gZGF0YS5mcmFtZShzdGF0cykNCmRhdGF0YWJsZShzdGF0cykNCmBgYA0KDQpUaGUgbGVhc3Qgc2hhcmVkIHdlYnNpdGUgaXMgcnVzc2lhbi5ydC5jb20sIHdpdGggb25seSAxMiBzaGFyZXMuDQpUaGUgZXh0cmVtZSBza2V3IGFtb25nIHNvdXJjZXMgcmVmbGVjdHMgYSByZWxhdGl2ZWx5IHNtYWxsIHN1YnNldCB0aGF0IGlzIGhlYXZpbHkgc2hhcmVkIHdpdGhpbiB0aGUgbmV0d29yay4NCk1vc3Qgc291cmNlcyBhcmUgbm90IHNoYXJlZCBieSBtb3JlIHRoYW4gb25lIG9yIHR3byBjaGFubmVscy4NClRoZSBjaGFubmVscyBzaG93IGEgc3Ryb25nIHByZWZlcmVuY2UgZm9yIHNvdXJjZXMgY29udHJvbGxlZCBieSBvciBzdXBwb3J0aXZlIG9mIHRoZSBSdXNzaWFuIHN0YXRlLg0KDQpZb3VUdWJlIGFnZyAoWW91VHViZSBhZ2dyZWdhdGlvbiBpcyBhIGNvbWJpbmVkIHRvdGFsIG9mIGRpZmZlcmVudCB0eXBlcyBvZiBZb3VUdWJlIGxpbmtzKSB3YXMgdGhlIGxvbmUgc291cmNlIHRoYXQgYXBwZWFyZWQgaW4gYWxsIGNvcmUgY2hhbm5lbHMuDQpJbnN0YWdyYW0uY29tIGFwcGVhcnMgaW4gb25seSA1IGRhdGFzZXRzLCB0aGUgbGVhc3QgYW1vbmcgdGhlIHRvcCB0ZW4sIHRob3VnaCB0aGlzIGlzIHN0aWxsIGNvbnNpZGVyYWJsZS4NCjk1JSBvZiBzb3VyY2VzIGRpZCBub3QgYXBwZWFyIGluIG1vcmUgdGhhbiB0d28gZGF0YXNldHMuDQpBIHNvdXJjZSB0aGF0IHdhcyBzaGFyZWQgYnkgdGhyZWUgb3IgbW9yZSBkYXRhc2V0cyB3YXMgYW1vbmcgYSBzbWFsbCBzdWJzZXQgb2Ygc291cmNlcyB0aGF0IHdlcmUgaGlnaGx5IGZhdm9yZWQgYnkgdGhpcyBuZXR3b3JrLg0KVGhlIGF2ZXJhZ2UgZG9tYWluIHdhcyBzaGFyZWQgNyB0aW1lcywgYnV0IHRoZSA3NXRoIHBlcmNlbnRpbGUgZm9yIHNoYXJlIGNvdW50cyBoYWQganVzdCB0d28gc2hhcmVzLg0KDQpcDQpcDQoNCiMjIyBCYXNpYyBzdGF0aXN0aWNzIGZvciBzdGF0cy5jc3YNCg0KYGBge3IgZWNobz1GQUxTRX0NCnN1bW1hcnkoc3RhdHMpDQpgYGANCg0KVGhlIHRhYmxlIGFib3ZlIHNob3dzIHZhcmlvdXMgc3RhdGlzdGljcyByZWxhdGVkIHRvIHRoZSBudW1iZXIgb2YgdGltZXMgVVJMcyB3ZXJlIHNoYXJlZCBvbiBhIHBsYXRmb3JtLg0KVGhlIGRhdGEgaW5jbHVkZXMgdGhlIG51bWJlciBvZiB0aW1lcyBhIFVSTCB3YXMgc2hhcmVkLCB0aGUgbnVtYmVyIG9mIHVuaXF1ZSBkb21haW5zIGZvciBlYWNoIHNoYXJlIGNvdW50LCB0aGUgbnVtYmVyIG9mIFVSTHMgZm9yIGVhY2ggc2hhcmUgY291bnQsIGFuZCB2YXJpb3VzIGN1bXVsYXRpdmUgcGVyY2VudGFnZXMgYW5kIGZyZXF1ZW5jaWVzLg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBmaWcud2lkdGg9NzAwLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBwYWdlZC5wcmludD1UUlVFfQ0KbGlicmFyeShIbWlzYykNCmxpYnJhcnkoZ2dwbG90MikNCg0KZGYgPC0gZGF0YS5mcmFtZShzdGF0cykNCg0KYmFzaWNfZWRhIDwtIGZ1bmN0aW9uKGRmKSANCnsNCiAgZ2xpbXBzZShkZikNCiAgc3VtbWFyeShkZikNCiAgZnJlcShkZikgDQogIGdncGxvdChkZiwgYWVzKHggPSBzdGF0cykpICsgZ2VvbV9oaXN0b2dyYW0oKSArIGxhYnMoeCA9ICJzaGFyZV9jb3VudHMiLCB5ID0gIkZyZXF1ZW5jeSIpDQogIGRlc2NyaWJlKGRmKQ0KfQ0KDQpiYXNpY19lZGEoZGYpDQpgYGANCg0KXA0KXA0KDQojIyMgRGVzY3JpYmUgc3RhdHMuY3N2DQoNCmBgYHtyIGVjaG89RkFMU0UsIHBhZ2VkLnByaW50PVRSVUV9DQpkZXNjcmliZShzdGF0cykNCmBgYA0KDQpcDQpcDQoNCiMjIyBHcm91cCBieSBzaGFyZSBjb3VudHMNCg0KYGBge3IgZWNobz1GQUxTRX0NCg0KDQpkZl9zdGF0cyA8LSBkYXRhLmZyYW1lKHN0YXRzKSAlPiUNCiAgICAgICAgICAgICAgZ3JvdXBfYnkoc2hhcmVfY291bnRzKSAlPiUNCiAgICAgICAgICAgICAgc3VtbWFyaXNlKHN1bSA9IChzdW0oZGF0YXNldF9jb3VudHMpKSkgJT4lDQogICAgICAgICAgICAgIG11dGF0ZShwZXJjZW50ID0gc3VtIC8gc3VtKHN1bSkgKiAxMDApICU+JQ0KICAgICAgICAgICAgICBhcnJhbmdlKGRlc2Moc3VtKSkNCg0KZGF0YXRhYmxlKGRmX3N0YXRzKQ0KYGBgDQoNCmBgYHtyIGV2YWw9RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQp3cml0ZS5jc3YoZGZfc3RhdHMsIGZpbGUgPSAncGVyY19zaGFyZXMuY3N2JykNCmBgYA0KDQpcDQpcDQoNCiMjIyBHcm91cCBkYXRhIGJ5IGRhdGFzZXQgY291bnRzDQoNCmBgYHtyIGVjaG89RkFMU0UsIHBhZ2VkLnByaW50PVRSVUV9DQpkZl9zdGF0czIgPC0gZGF0YS5mcmFtZShzdGF0cykgJT4lDQogICAgICAgICAgICAgIGdyb3VwX2J5KGRhdGFzZXRfY291bnRzKSAlPiUNCiAgICAgICAgICAgICAgc3VtbWFyaXNlKHN1bSA9IChzdW0oc2hhcmVfY291bnRzKSkpICU+JQ0KICAgICAgICAgICAgICBtdXRhdGUocGVyY2VudCA9IHN1bSAvIHN1bShzdW0pICogMTAwKSAlPiUNCiAgICAgICAgICAgICAgYXJyYW5nZShkYXRhc2V0X2NvdW50cykNCg0KZGF0YXRhYmxlKGRmX3N0YXRzMikNCmBgYA0KDQpgYGB7ciBldmFsPUZBTFNFLCBpbmNsdWRlPUZBTFNFfQ0Kd3JpdGUuY3N2KGRmX3N0YXRzMiwgZmlsZSA9ICdwZXJjX2RvbWFpbnMuY3N2JykNCmBgYA0K