Setup and Requirements
Install appropriate packages and open the libraries.
library(Hmisc)
library(funModeling)
library(tidyverse)
Target sources and URL Share and Unique Domain Counts
When looking at the total number of dataset appearances, those with
the highest count were frequently social media platforms or websites
closely controlled by the Russian state. Depending upon how the data was
refined, the central node in the network was either YouTube or YouTube
and orly_rs.
The table ranks the “share counts” in descending order. The share
count column is in order, with vk_ being the most shared website with
2819 shares, followed by instagram_ with 802 shares.
The least shared website is russian.rt.com, with only 12 shares. The
extreme skew among sources reflects a relatively small subset that is
heavily shared within the network. Most sources are not shared by more
than one or two channels. The channels show a strong preference for
sources controlled by or supportive of the Russian state.
YouTube agg (YouTube aggregation is a combined total of different
types of YouTube links) was the lone source that appeared in all core
channels. Instagram.com appears in only 5 datasets, the least among the
top ten, though this is still considerable. 95% of sources did not
appear in more than two datasets. A source that was shared by three or
more datasets was among a small subset of sources that were highly
favored by this network. The average domain was shared 7 times, but the
75th percentile for share counts had just two shares.
Basic statistics for stats.csv
The table above shows various statistics related to the number of
times URLs were shared on a platform. The data includes the number of
times a URL was shared, the number of unique domains for each share
count, the number of URLs for each share count, and various cumulative
percentages and frequencies.
Rows: 2,469
Columns: 3
$ target <chr> "youtube_", "fb_", "vk_", "instagram_", "orly_rs", "twitter.com"…
$ share_counts <int> 678, 624, 2819, 802, 755, 520, 314, 12, 109, 38, 33, 33, 15, 6, …
$ dataset_counts <int> 8, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4…
df
3 Variables 2469 Observations
-----------------------------------------------------------------------------------------
target
n missing distinct
2469 0 2469
lowest : /c/1732054517/3452 /c/1732054517/4875 /c/1732054517/5727 /c/1732054517/9009 @GRIP_SoundLab
highest: Ztdk3FDbbhA1Nzdi zubovskiy4 zvezdalive zvezdalive.ru zvezdanews
-----------------------------------------------------------------------------------------
share_counts
n missing distinct Info Mean Gmd .05 .10 .25
2469 0 63 0.764 7.164 11.7 1 1 1
.50 .75 .90 .95
1 2 6 10
lowest : 1 2 3 4 5, highest: 755 802 856 1407 2819
-----------------------------------------------------------------------------------------
dataset_counts
n missing distinct Info Mean Gmd
2469 0 7 0.413 1.226 0.3943
lowest : 1 2 3 4 5, highest: 3 4 5 6 8
Value 1 2 3 4 5 6 8
Frequency 2065 307 65 18 6 7 1
Proportion 0.836 0.124 0.026 0.007 0.002 0.003 0.000
-----------------------------------------------------------------------------------------
Describe stats.csv
stats
3 Variables 2469 Observations
-----------------------------------------------------------------------------------------
target
n missing distinct
2469 0 2469
lowest : /c/1732054517/3452 /c/1732054517/4875 /c/1732054517/5727 /c/1732054517/9009 @GRIP_SoundLab
highest: Ztdk3FDbbhA1Nzdi zubovskiy4 zvezdalive zvezdalive.ru zvezdanews
-----------------------------------------------------------------------------------------
share_counts
n missing distinct Info Mean Gmd .05 .10 .25
2469 0 63 0.764 7.164 11.7 1 1 1
.50 .75 .90 .95
1 2 6 10
lowest : 1 2 3 4 5, highest: 755 802 856 1407 2819
-----------------------------------------------------------------------------------------
dataset_counts
n missing distinct Info Mean Gmd
2469 0 7 0.413 1.226 0.3943
lowest : 1 2 3 4 5, highest: 3 4 5 6 8
Value 1 2 3 4 5 6 8
Frequency 2065 307 65 18 6 7 1
Proportion 0.836 0.124 0.026 0.007 0.002 0.003 0.000
-----------------------------------------------------------------------------------------
Group data by dataset counts
LS0tDQp0aXRsZTogIkJyb3RoZXJseSBJbmZvcm1hdGlvbiBPcGVyYXRpb25zIg0Kc3VidGl0bGU6ICJSLUNvZGUgZm9yIHN0YXRzLmNzdiINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogDQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQotLS0NCg0KXA0KXA0KDQojIyMgU2V0dXAgYW5kIFJlcXVpcmVtZW50cw0KDQpJbnN0YWxsIGFwcHJvcHJpYXRlIHBhY2thZ2VzIGFuZCBvcGVuIHRoZSBsaWJyYXJpZXMuDQoNCmBgYHtyIGV2YWw9RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpDQpgYGANCg0KYGBge3IgZXZhbD1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgaW5jbHVkZT1GQUxTRX0NCmluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQppbnN0YWxsLnBhY2thZ2VzKCJmdW5Nb2RlbGluZyIpDQppbnN0YWxsLnBhY2thZ2VzKCJIbWlzYyIpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KEhtaXNjKQ0KbGlicmFyeShmdW5Nb2RlbGluZykgDQpsaWJyYXJ5KHRpZHl2ZXJzZSkgDQpgYGANCg0KXA0KXA0KDQojIyMgVGFyZ2V0IHNvdXJjZXMgYW5kIFVSTCBTaGFyZSBhbmQgVW5pcXVlIERvbWFpbiBDb3VudHMNCg0KV2hlbiBsb29raW5nIGF0IHRoZSB0b3RhbCBudW1iZXIgb2YgZGF0YXNldCBhcHBlYXJhbmNlcywgdGhvc2Ugd2l0aCB0aGUgaGlnaGVzdCBjb3VudCB3ZXJlIGZyZXF1ZW50bHkgc29jaWFsIG1lZGlhIHBsYXRmb3JtcyBvciB3ZWJzaXRlcyBjbG9zZWx5IGNvbnRyb2xsZWQgYnkgdGhlIFJ1c3NpYW4gc3RhdGUuDQpEZXBlbmRpbmcgdXBvbiBob3cgdGhlIGRhdGEgd2FzIHJlZmluZWQsIHRoZSBjZW50cmFsIG5vZGUgaW4gdGhlIG5ldHdvcmsgd2FzIGVpdGhlciBZb3VUdWJlIG9yIFlvdVR1YmUgYW5kIG9ybHlfcnMuDQoNClRoZSB0YWJsZSByYW5rcyB0aGUgInNoYXJlIGNvdW50cyIgaW4gZGVzY2VuZGluZyBvcmRlci4NClRoZSBzaGFyZSBjb3VudCBjb2x1bW4gaXMgaW4gb3JkZXIsIHdpdGggdmtcXyBiZWluZyB0aGUgbW9zdCBzaGFyZWQgd2Vic2l0ZSB3aXRoIDI4MTkgc2hhcmVzLCBmb2xsb3dlZCBieSBpbnN0YWdyYW1cXyB3aXRoIDgwMiBzaGFyZXMuDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpsaWJyYXJ5KERUKQ0Kc3RhdHMgPC0gZGF0YS5mcmFtZShzdGF0cykNCmRhdGF0YWJsZShzdGF0cykNCmBgYA0KDQpUaGUgbGVhc3Qgc2hhcmVkIHdlYnNpdGUgaXMgcnVzc2lhbi5ydC5jb20sIHdpdGggb25seSAxMiBzaGFyZXMuDQpUaGUgZXh0cmVtZSBza2V3IGFtb25nIHNvdXJjZXMgcmVmbGVjdHMgYSByZWxhdGl2ZWx5IHNtYWxsIHN1YnNldCB0aGF0IGlzIGhlYXZpbHkgc2hhcmVkIHdpdGhpbiB0aGUgbmV0d29yay4NCk1vc3Qgc291cmNlcyBhcmUgbm90IHNoYXJlZCBieSBtb3JlIHRoYW4gb25lIG9yIHR3byBjaGFubmVscy4NClRoZSBjaGFubmVscyBzaG93IGEgc3Ryb25nIHByZWZlcmVuY2UgZm9yIHNvdXJjZXMgY29udHJvbGxlZCBieSBvciBzdXBwb3J0aXZlIG9mIHRoZSBSdXNzaWFuIHN0YXRlLg0KDQpZb3VUdWJlIGFnZyAoWW91VHViZSBhZ2dyZWdhdGlvbiBpcyBhIGNvbWJpbmVkIHRvdGFsIG9mIGRpZmZlcmVudCB0eXBlcyBvZiBZb3VUdWJlIGxpbmtzKSB3YXMgdGhlIGxvbmUgc291cmNlIHRoYXQgYXBwZWFyZWQgaW4gYWxsIGNvcmUgY2hhbm5lbHMuDQpJbnN0YWdyYW0uY29tIGFwcGVhcnMgaW4gb25seSA1IGRhdGFzZXRzLCB0aGUgbGVhc3QgYW1vbmcgdGhlIHRvcCB0ZW4sIHRob3VnaCB0aGlzIGlzIHN0aWxsIGNvbnNpZGVyYWJsZS4NCjk1JSBvZiBzb3VyY2VzIGRpZCBub3QgYXBwZWFyIGluIG1vcmUgdGhhbiB0d28gZGF0YXNldHMuDQpBIHNvdXJjZSB0aGF0IHdhcyBzaGFyZWQgYnkgdGhyZWUgb3IgbW9yZSBkYXRhc2V0cyB3YXMgYW1vbmcgYSBzbWFsbCBzdWJzZXQgb2Ygc291cmNlcyB0aGF0IHdlcmUgaGlnaGx5IGZhdm9yZWQgYnkgdGhpcyBuZXR3b3JrLg0KVGhlIGF2ZXJhZ2UgZG9tYWluIHdhcyBzaGFyZWQgNyB0aW1lcywgYnV0IHRoZSA3NXRoIHBlcmNlbnRpbGUgZm9yIHNoYXJlIGNvdW50cyBoYWQganVzdCB0d28gc2hhcmVzLg0KDQpcDQpcDQoNCiMjIyBCYXNpYyBzdGF0aXN0aWNzIGZvciBzdGF0cy5jc3YNCg0KYGBge3IgZWNobz1GQUxTRX0NCnN1bW1hcnkoc3RhdHMpDQpgYGANCg0KVGhlIHRhYmxlIGFib3ZlIHNob3dzIHZhcmlvdXMgc3RhdGlzdGljcyByZWxhdGVkIHRvIHRoZSBudW1iZXIgb2YgdGltZXMgVVJMcyB3ZXJlIHNoYXJlZCBvbiBhIHBsYXRmb3JtLg0KVGhlIGRhdGEgaW5jbHVkZXMgdGhlIG51bWJlciBvZiB0aW1lcyBhIFVSTCB3YXMgc2hhcmVkLCB0aGUgbnVtYmVyIG9mIHVuaXF1ZSBkb21haW5zIGZvciBlYWNoIHNoYXJlIGNvdW50LCB0aGUgbnVtYmVyIG9mIFVSTHMgZm9yIGVhY2ggc2hhcmUgY291bnQsIGFuZCB2YXJpb3VzIGN1bXVsYXRpdmUgcGVyY2VudGFnZXMgYW5kIGZyZXF1ZW5jaWVzLg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBmaWcud2lkdGg9NzAwLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBwYWdlZC5wcmludD1UUlVFfQ0KbGlicmFyeShIbWlzYykNCmxpYnJhcnkoZ2dwbG90MikNCg0KZGYgPC0gZGF0YS5mcmFtZShzdGF0cykNCg0KYmFzaWNfZWRhIDwtIGZ1bmN0aW9uKGRmKSANCnsNCiAgZ2xpbXBzZShkZikNCiAgc3VtbWFyeShkZikNCiAgZnJlcShkZikgDQogIGdncGxvdChkZiwgYWVzKHggPSBzdGF0cykpICsgZ2VvbV9oaXN0b2dyYW0oKSArIGxhYnMoeCA9ICJzaGFyZV9jb3VudHMiLCB5ID0gIkZyZXF1ZW5jeSIpDQogIGRlc2NyaWJlKGRmKQ0KfQ0KDQpiYXNpY19lZGEoZGYpDQpgYGANCg0KXA0KXA0KDQojIyMgRGVzY3JpYmUgc3RhdHMuY3N2DQoNCmBgYHtyIGVjaG89RkFMU0UsIHBhZ2VkLnByaW50PVRSVUV9DQpkZXNjcmliZShzdGF0cykNCmBgYA0KDQpcDQpcDQoNCiMjIyBHcm91cCBieSBzaGFyZSBjb3VudHMNCg0KYGBge3IgZWNobz1GQUxTRX0NCg0KDQpkZl9zdGF0cyA8LSBkYXRhLmZyYW1lKHN0YXRzKSAlPiUNCiAgICAgICAgICAgICAgZ3JvdXBfYnkoc2hhcmVfY291bnRzKSAlPiUNCiAgICAgICAgICAgICAgc3VtbWFyaXNlKHN1bSA9IChzdW0oZGF0YXNldF9jb3VudHMpKSkgJT4lDQogICAgICAgICAgICAgIG11dGF0ZShwZXJjZW50ID0gc3VtIC8gc3VtKHN1bSkgKiAxMDApICU+JQ0KICAgICAgICAgICAgICBhcnJhbmdlKGRlc2Moc3VtKSkNCg0KZGF0YXRhYmxlKGRmX3N0YXRzKQ0KYGBgDQoNCmBgYHtyIGV2YWw9RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQp3cml0ZS5jc3YoZGZfc3RhdHMsIGZpbGUgPSAncGVyY19zaGFyZXMuY3N2JykNCmBgYA0KDQpcDQpcDQoNCiMjIyBHcm91cCBkYXRhIGJ5IGRhdGFzZXQgY291bnRzDQoNCmBgYHtyIGVjaG89RkFMU0UsIHBhZ2VkLnByaW50PVRSVUV9DQpkZl9zdGF0czIgPC0gZGF0YS5mcmFtZShzdGF0cykgJT4lDQogICAgICAgICAgICAgIGdyb3VwX2J5KGRhdGFzZXRfY291bnRzKSAlPiUNCiAgICAgICAgICAgICAgc3VtbWFyaXNlKHN1bSA9IChzdW0oc2hhcmVfY291bnRzKSkpICU+JQ0KICAgICAgICAgICAgICBtdXRhdGUocGVyY2VudCA9IHN1bSAvIHN1bShzdW0pICogMTAwKSAlPiUNCiAgICAgICAgICAgICAgYXJyYW5nZShkYXRhc2V0X2NvdW50cykNCg0KZGF0YXRhYmxlKGRmX3N0YXRzMikNCmBgYA0KDQpgYGB7ciBldmFsPUZBTFNFLCBpbmNsdWRlPUZBTFNFfQ0Kd3JpdGUuY3N2KGRmX3N0YXRzMiwgZmlsZSA9ICdwZXJjX2RvbWFpbnMuY3N2JykNCmBgYA0K