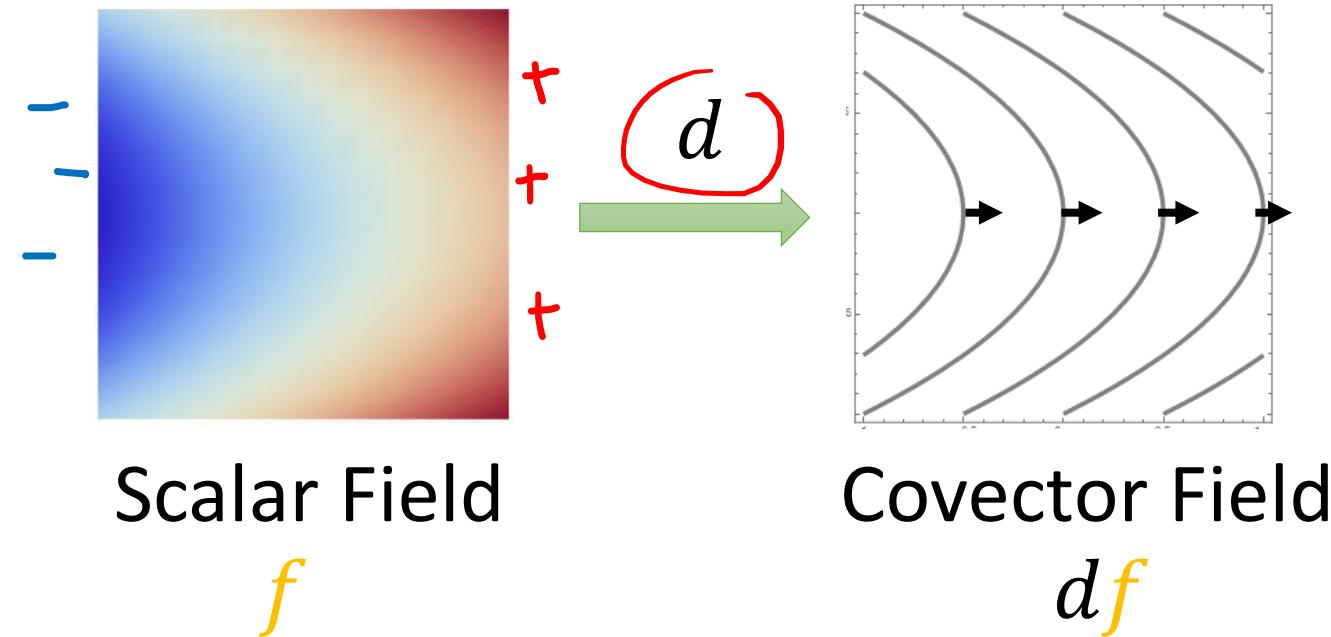
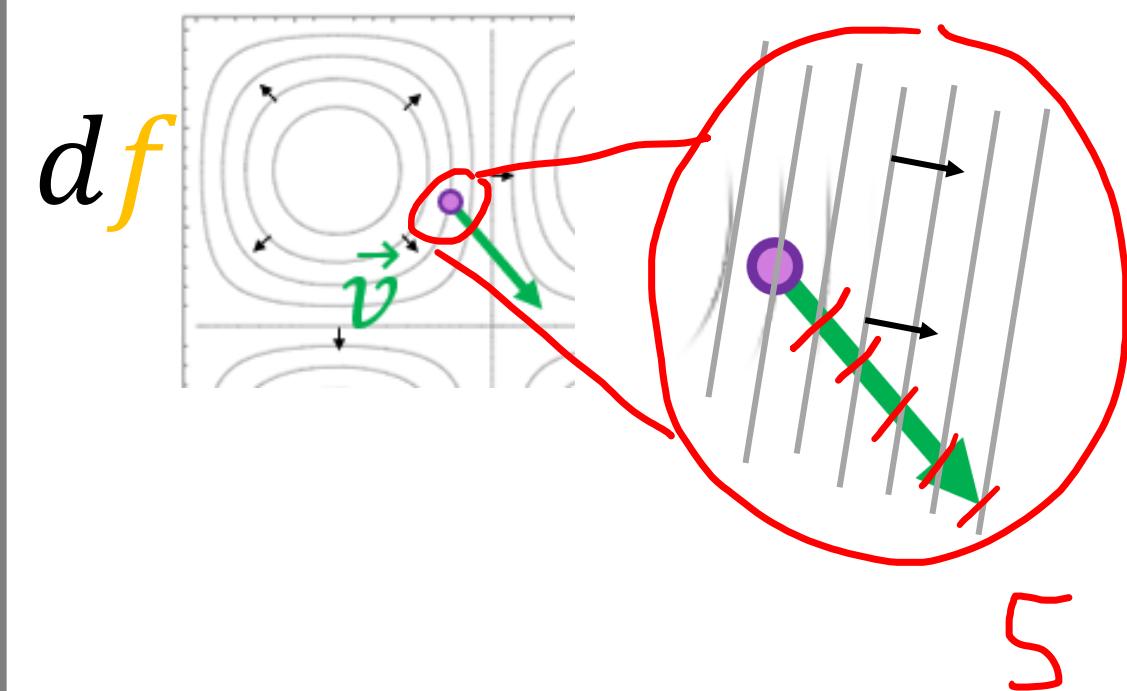


Integration With Differential Forms

(see links in description to learn about
differential forms/covector fields)

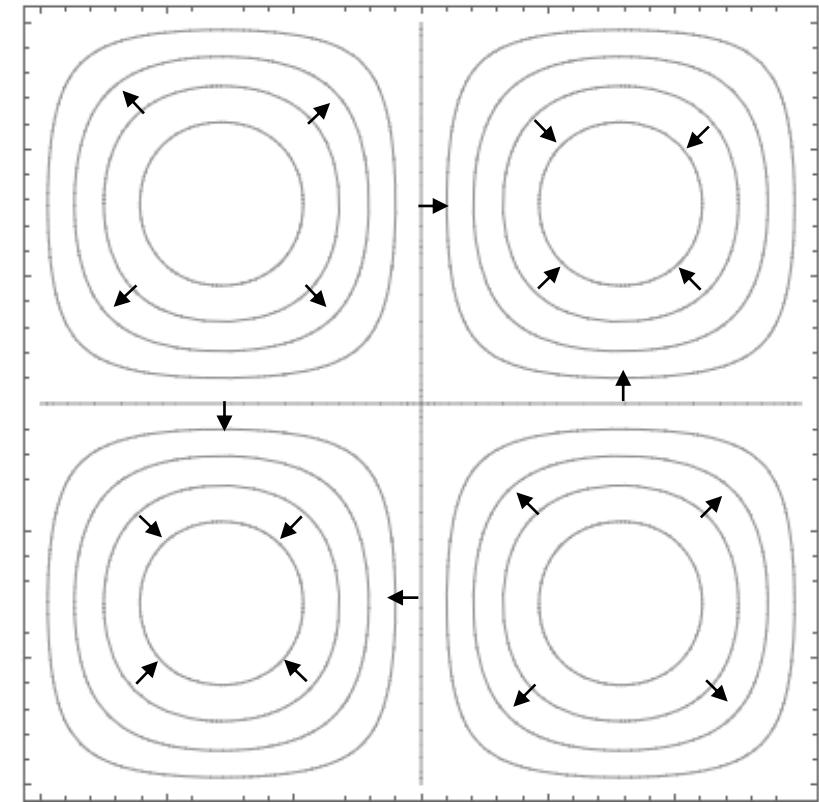
Differential Forms



$$\int_a^b f(x) dx$$

Integration

$$df$$



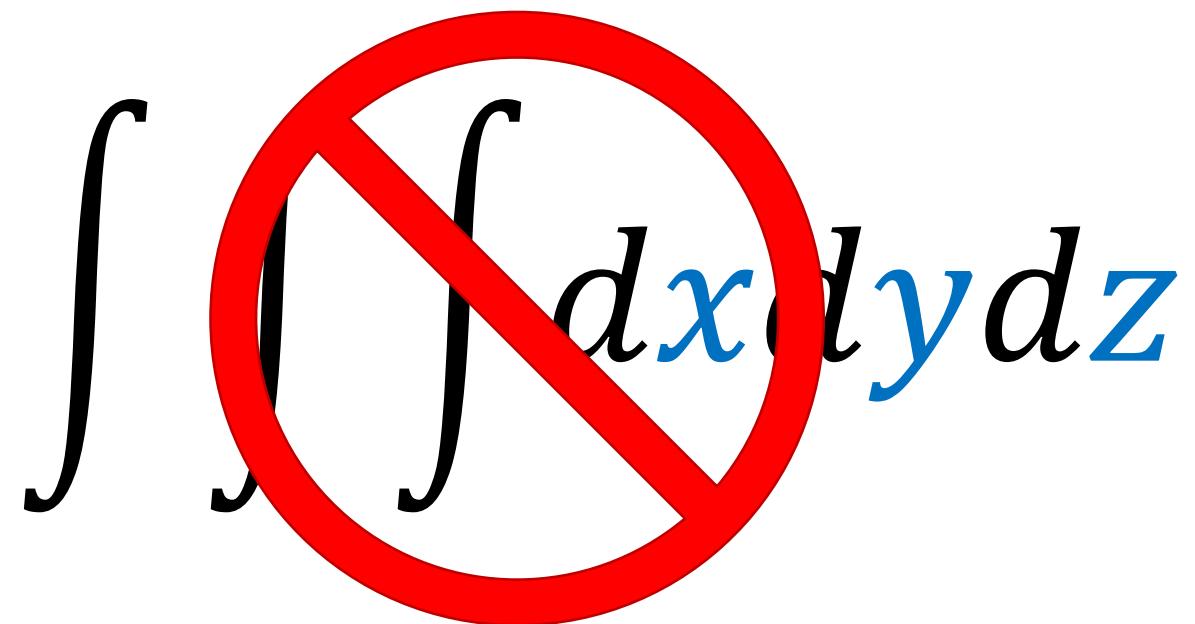
Covector Field/
Differential Form

Differential Form interpretation of Integrals

Every (single) integral....

$$\int_a^b f(x)dx$$

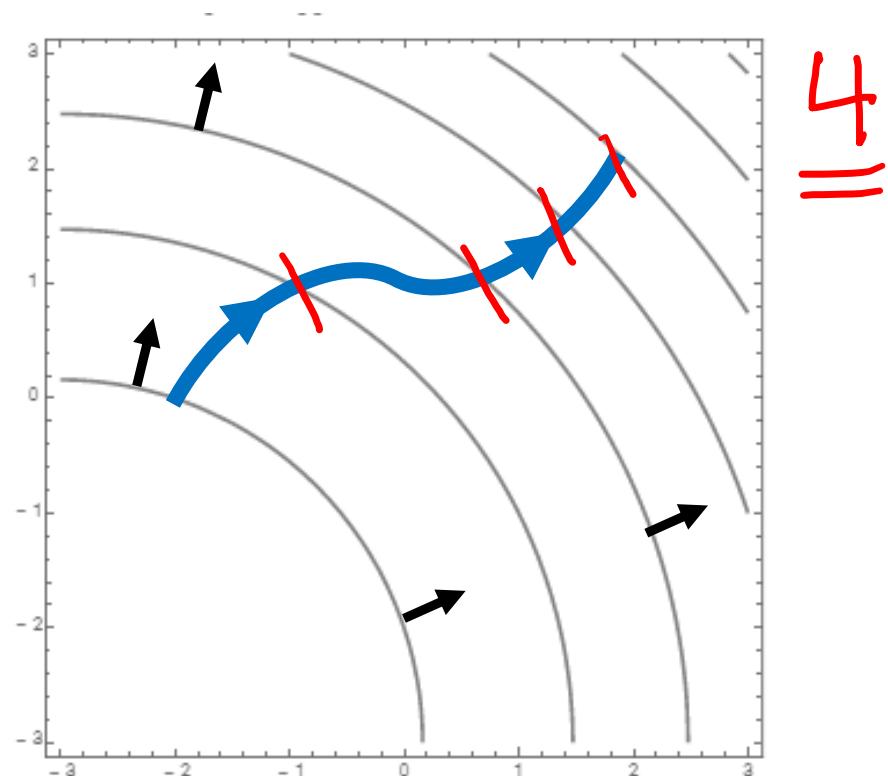
$$\int \int f dx dy$$


$$\int \int \int f dx dy dz$$

Differential Form interpretation of Integrals

Every (single) integral involves

- a **differential form** (covector field)
- a **path**



$$\int_a^b f(x) dx$$

The result of the integral is just the number of **covector stacks** pierced by the **path**.

Fundamental Theorem of Calculus

$$\int_a^b \underline{f(x) dx} = \boxed{F(b) - F(a)}$$

F is the anti-derivative of f

$$\int_a^b \underline{\frac{dF}{dx}} dx = F(b) - F(a)$$

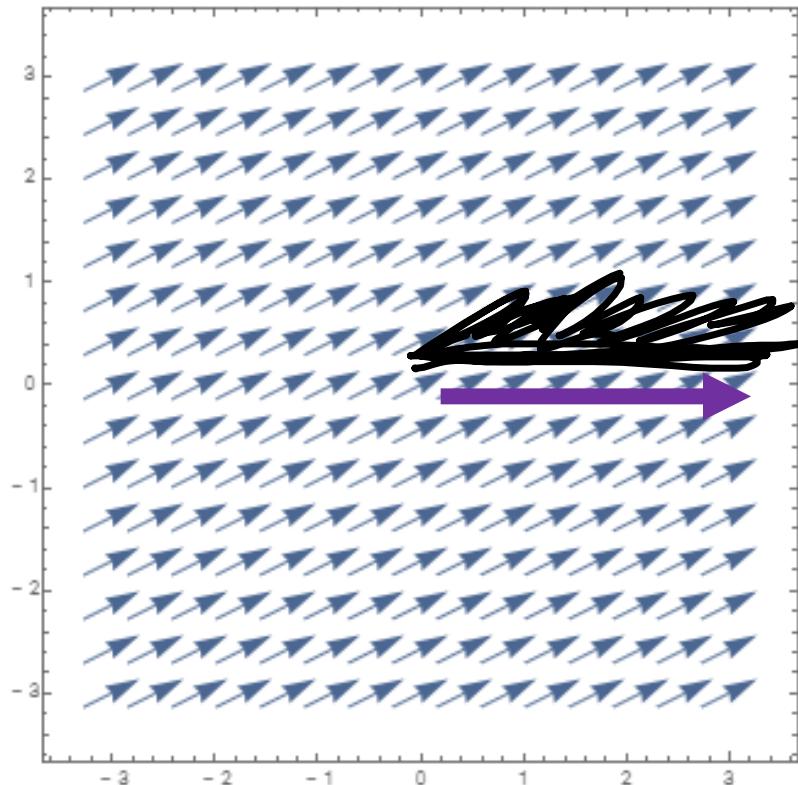
Fundamental Theorem of Calculus for Line Integrals ("Gradient Theorem")

$$\int_{\underline{P[a, b]}} \underline{\nabla F \cdot d\vec{r}} = \boxed{F(b) - F(a)}$$

Work

Force Field

$$\vec{F} = 2\vec{e}_x + 1\vec{e}_y$$



Work done by Force Field

$$W = \underline{\vec{F}} \cdot \underline{\vec{R}}$$

$$\vec{R} = 3\vec{e}_x + 0\vec{e}_y$$

$$W = \vec{F} \cdot \vec{R}$$

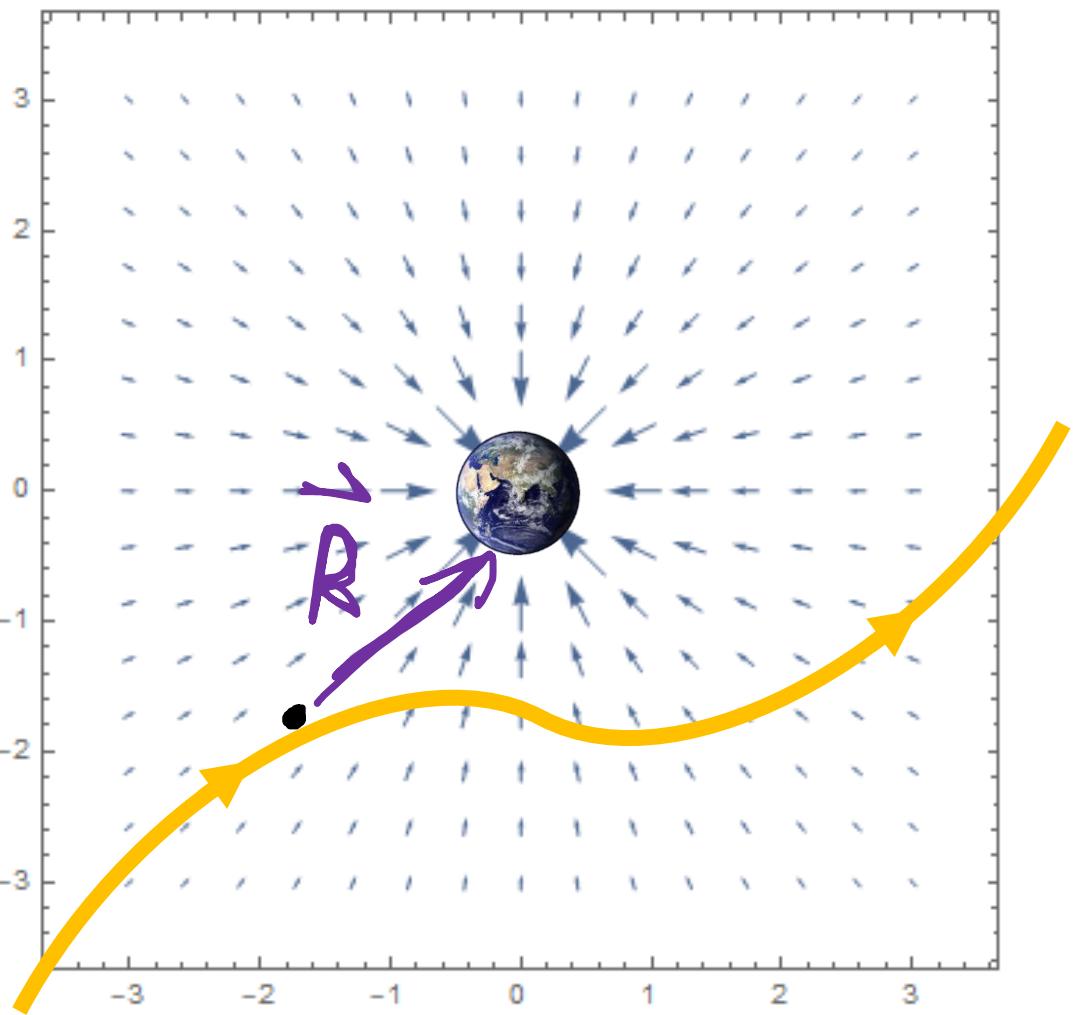
$$W = (2\vec{e}_x + 1\vec{e}_y) \cdot (3\vec{e}_x + 0\vec{e}_y)$$

$$W = (2)(3) + (1)(0)$$

$$W = 6 \text{ Joules}$$

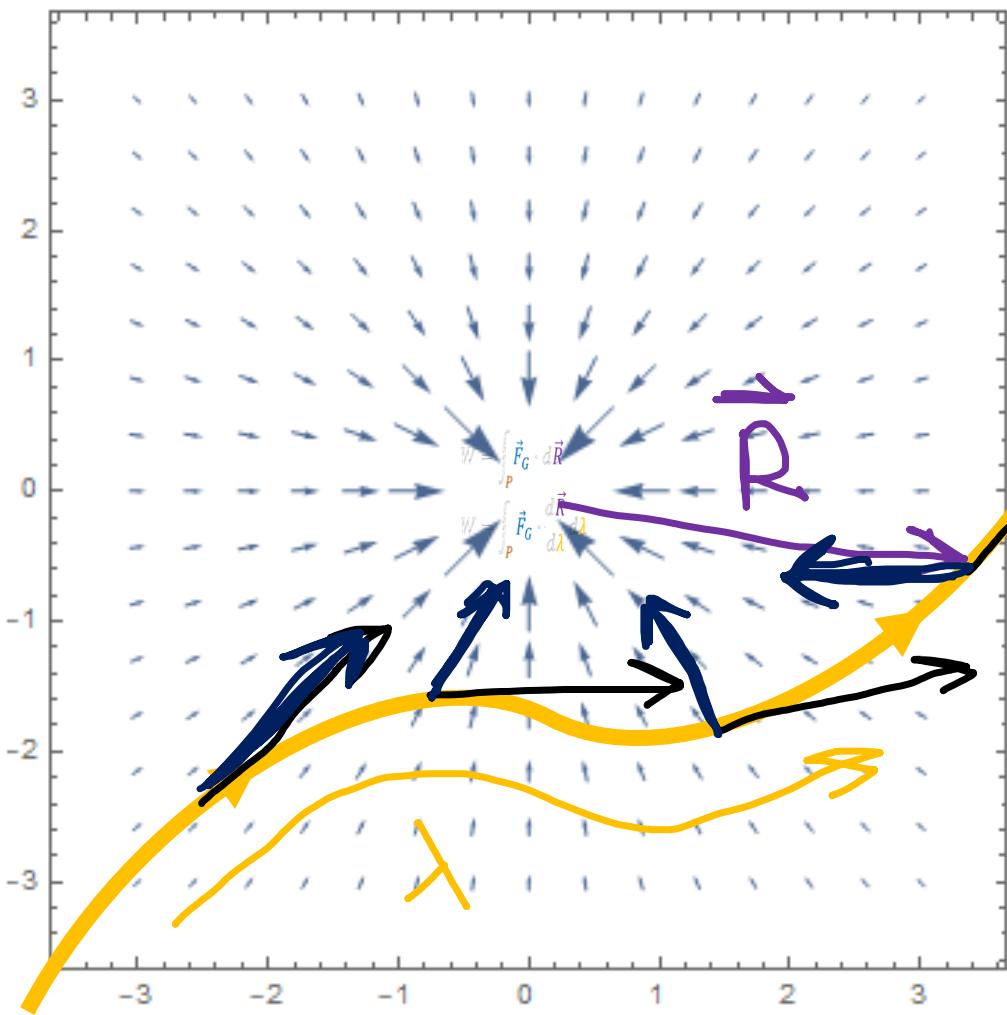
Gravitational Force Field

$$\vec{F}_G = \frac{GMm}{\|\vec{R}\|^2} (-\vec{e}_r)$$



Gravitational Force Field

$$\vec{F}_G = \frac{GMm}{\|\vec{R}\|^2} (-\vec{e}_r)$$



Work done by Force Field

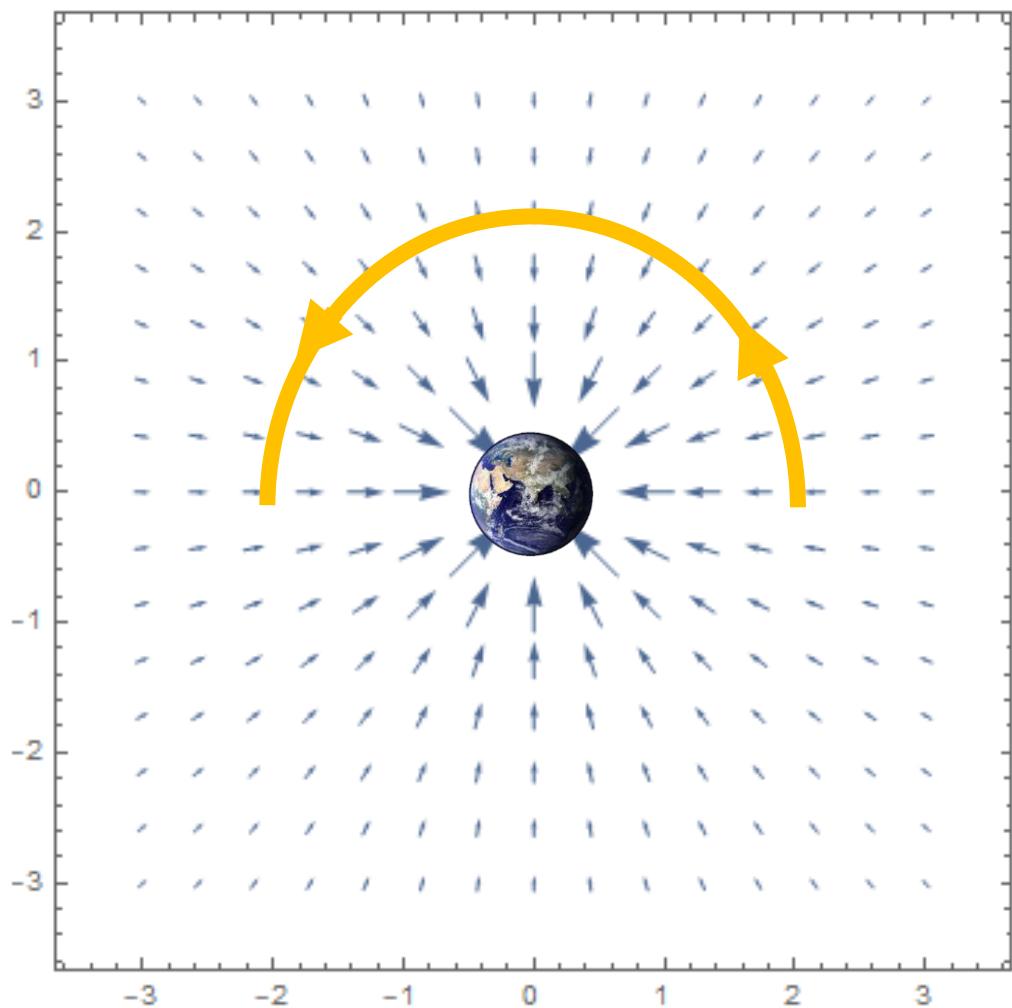
~~$W = \vec{F} \cdot \vec{R}$~~

$$W = \int_P \vec{F}_G \cdot d\vec{R}$$

$$W = \int_P \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

Gravitational Force Field

$$\vec{F}_G = \frac{GMm}{\|\vec{R}\|^2} (-\vec{e}_r)$$



$$\vec{R}(\lambda) = (r = 2, \theta = \lambda)$$

$$\frac{d\vec{R}}{d\lambda} = \frac{dr}{d\lambda} \frac{\vec{R}}{dr} + \frac{d\theta}{d\lambda} \frac{\vec{R}}{d\theta}$$

$$\frac{d\vec{R}}{d\lambda} = 0\vec{e}_r + 1\vec{e}_\theta$$

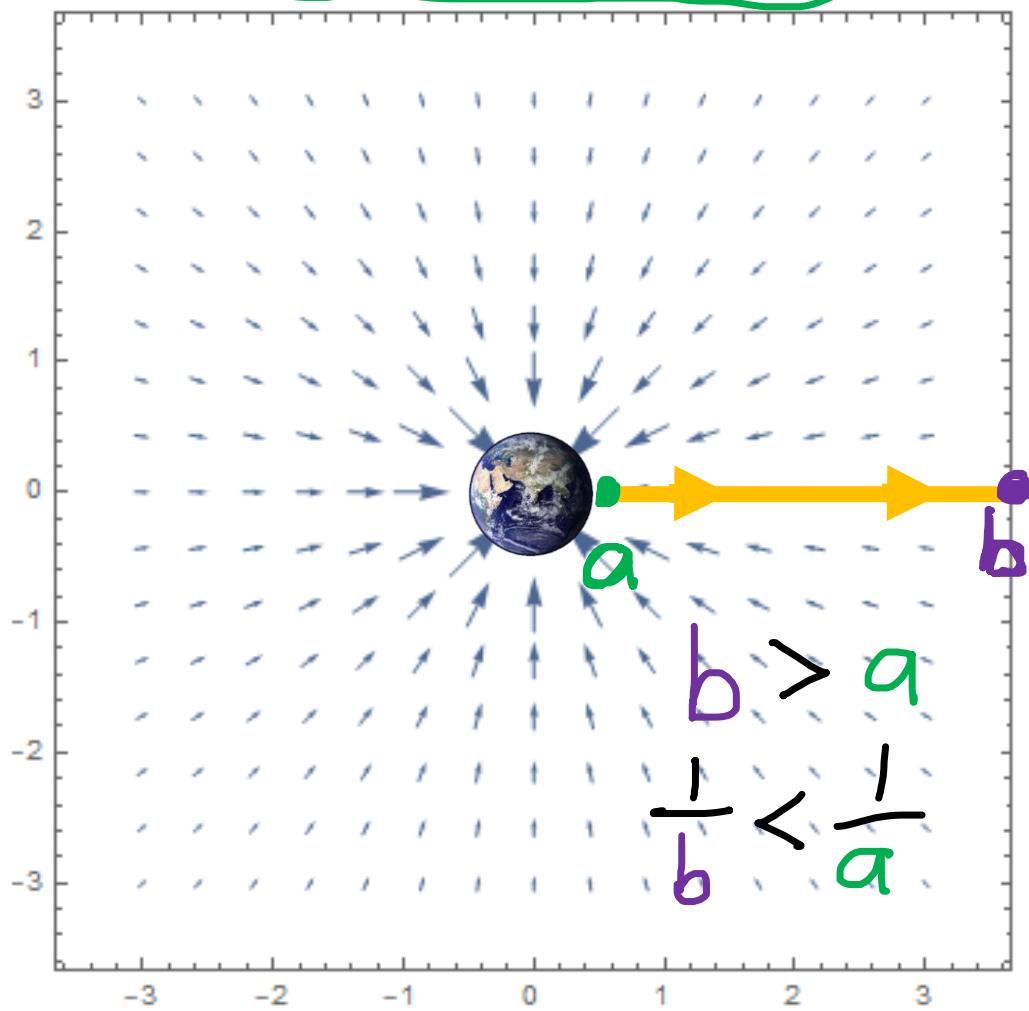
$$W = \int_P \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

$$W = \int_P \left(\frac{GMm}{\|\vec{R}\|^2} (-\vec{e}_r) \right) \cdot (\vec{e}_\theta) d\lambda$$

$$W = -\frac{GMm}{4} \int_C (\vec{e}_r \cdot \vec{e}_\theta) d\lambda = 0$$

Gravitational Force Field

$$\vec{F}_G = \frac{GMm}{\|\vec{R}\|^2} (-\vec{e}_r)$$



$$\vec{R}(\lambda) = (r = \lambda, \theta = 0)$$

$$\frac{d\vec{R}}{d\lambda} = 1\vec{e}_r + 0\vec{e}_\theta$$

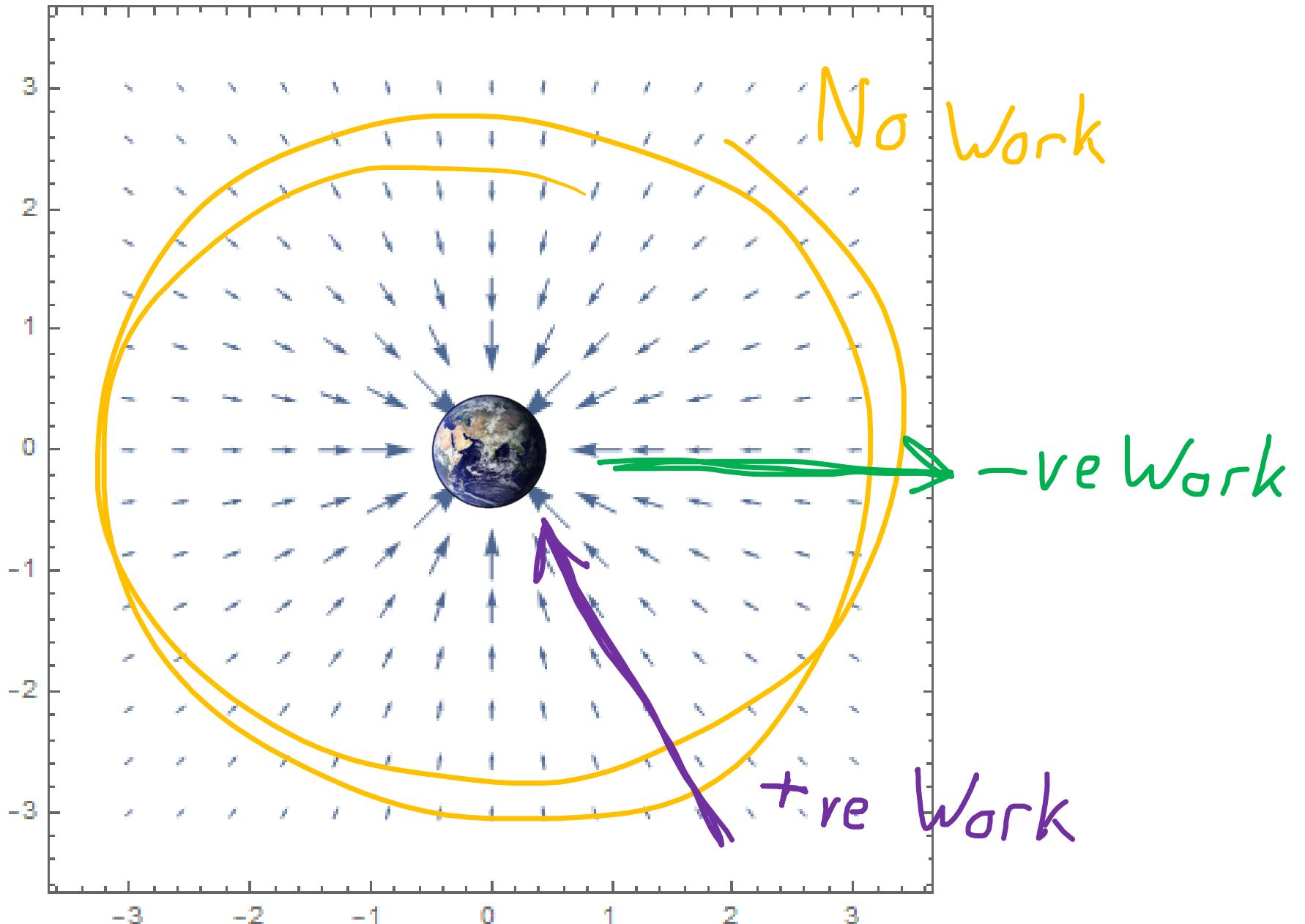
$$W = \int_P \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

$$W = \int_P \left(\frac{GMm}{\|\vec{R}\|^2} (-\vec{e}_r) \right) \cdot (\vec{e}_r) d\lambda$$

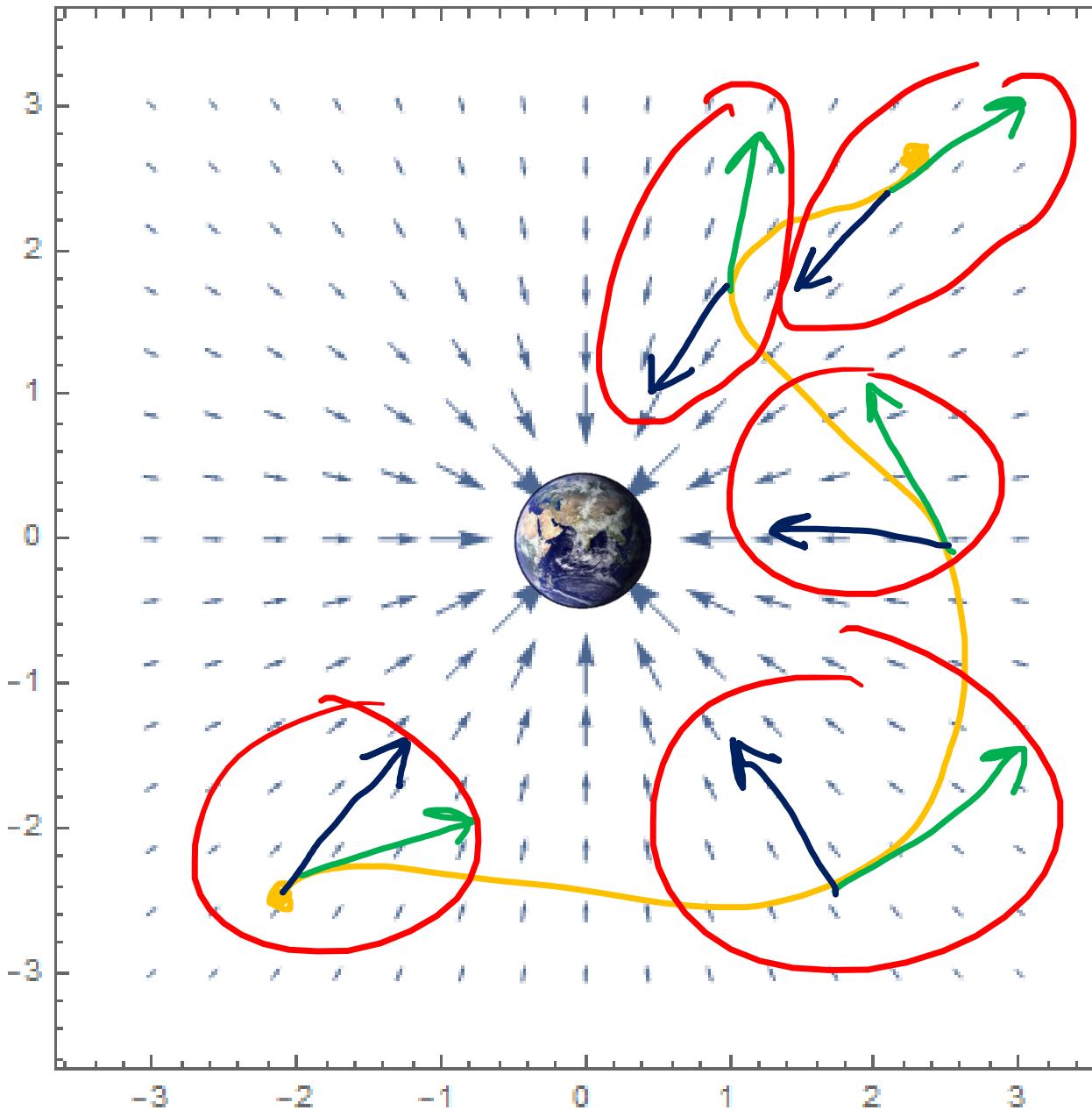
$$W = GMm \int_P \left(-\frac{1}{\lambda^2} \right) (\vec{e}_r \cdot \vec{e}_r) d\lambda$$

$$W = GMm \left[\frac{1}{\lambda} \right]_a^b = GMm \left(\frac{1}{b} - \frac{1}{a} \right)$$

(Negative Result) ↗



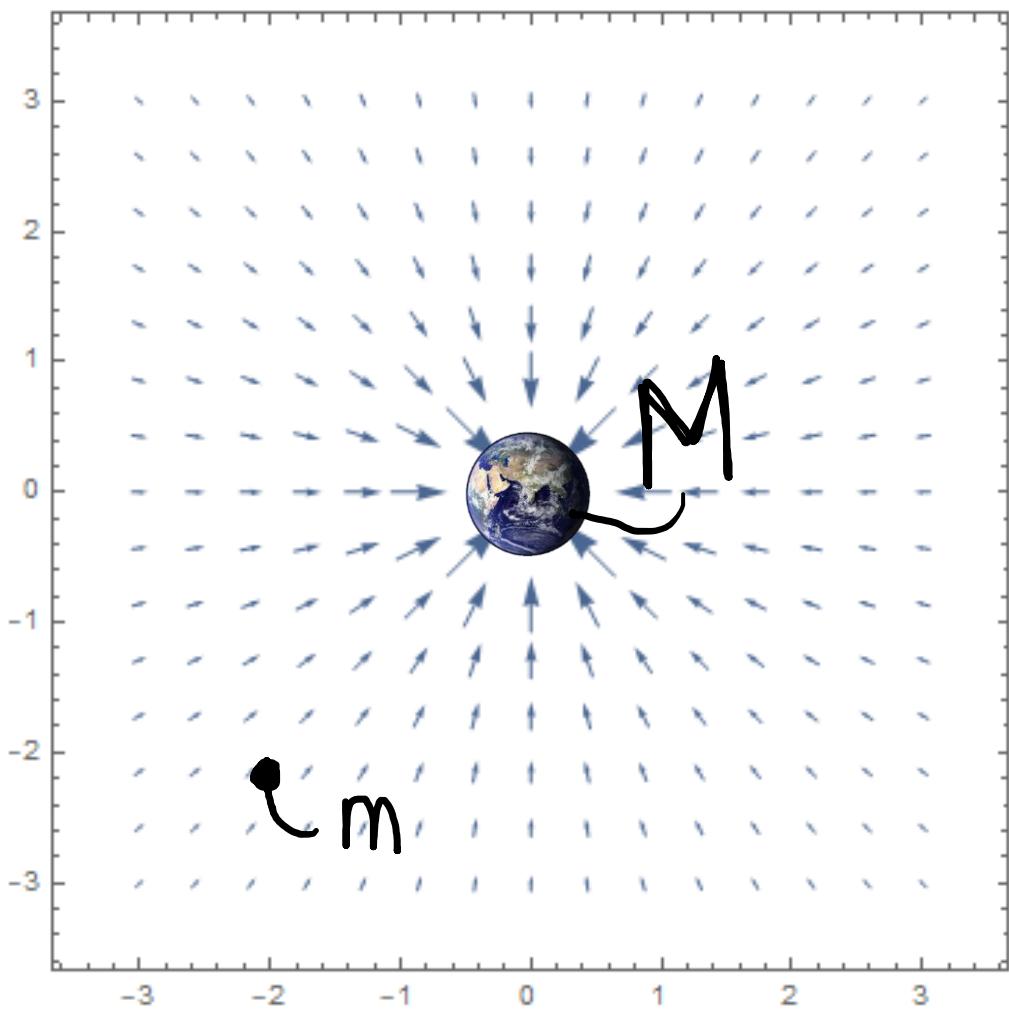
$$\int \mathbf{F}_G \cdot \frac{d\mathbf{R}}{d\lambda} d\lambda$$



Gravitational Potential

Gravitational Force Field

$$\vec{F}_G = \frac{GMm}{\|\vec{R}\|^2} (-\vec{e}_r)$$



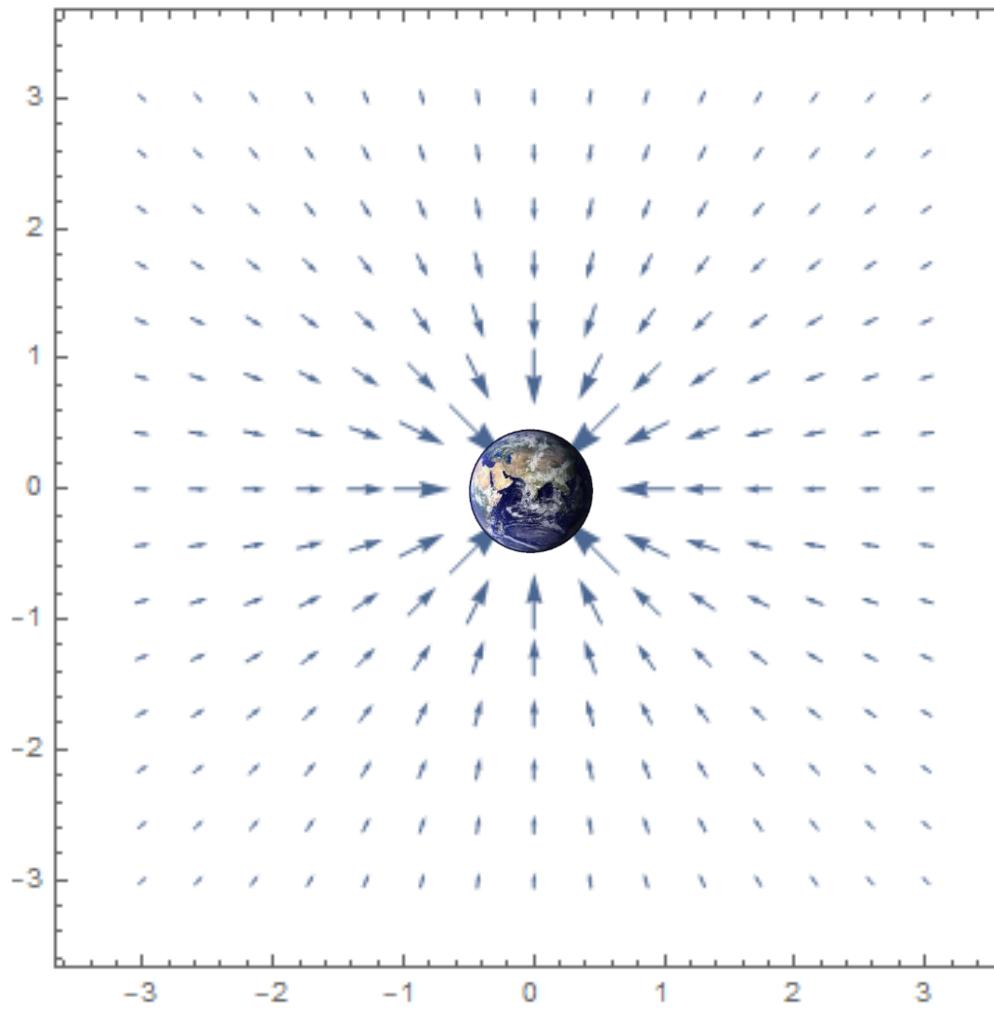
$$\vec{F}_G = \underline{m} \frac{GM}{\|\vec{R}\|^2} (-\vec{e}_r)$$

$\vec{F}_G = m \vec{G}$ *Gravitational Field*

$$\vec{G} = -\nabla \phi \quad \text{Gravitational Potential}$$
$$\vec{F}_G = m(-\nabla \phi)$$

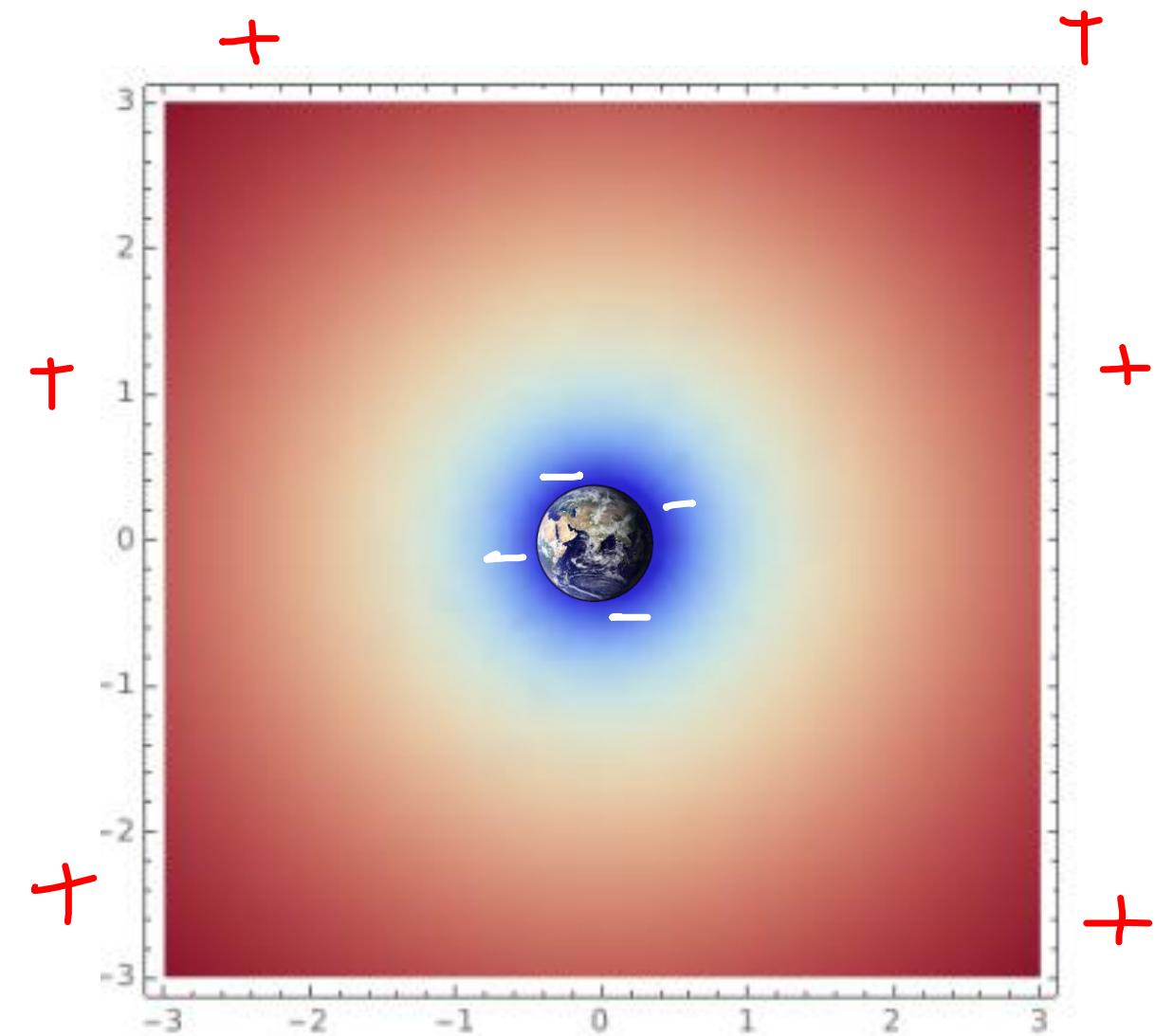
Gravitational Force Field

$$\vec{F}_G = m(-\nabla\phi)$$



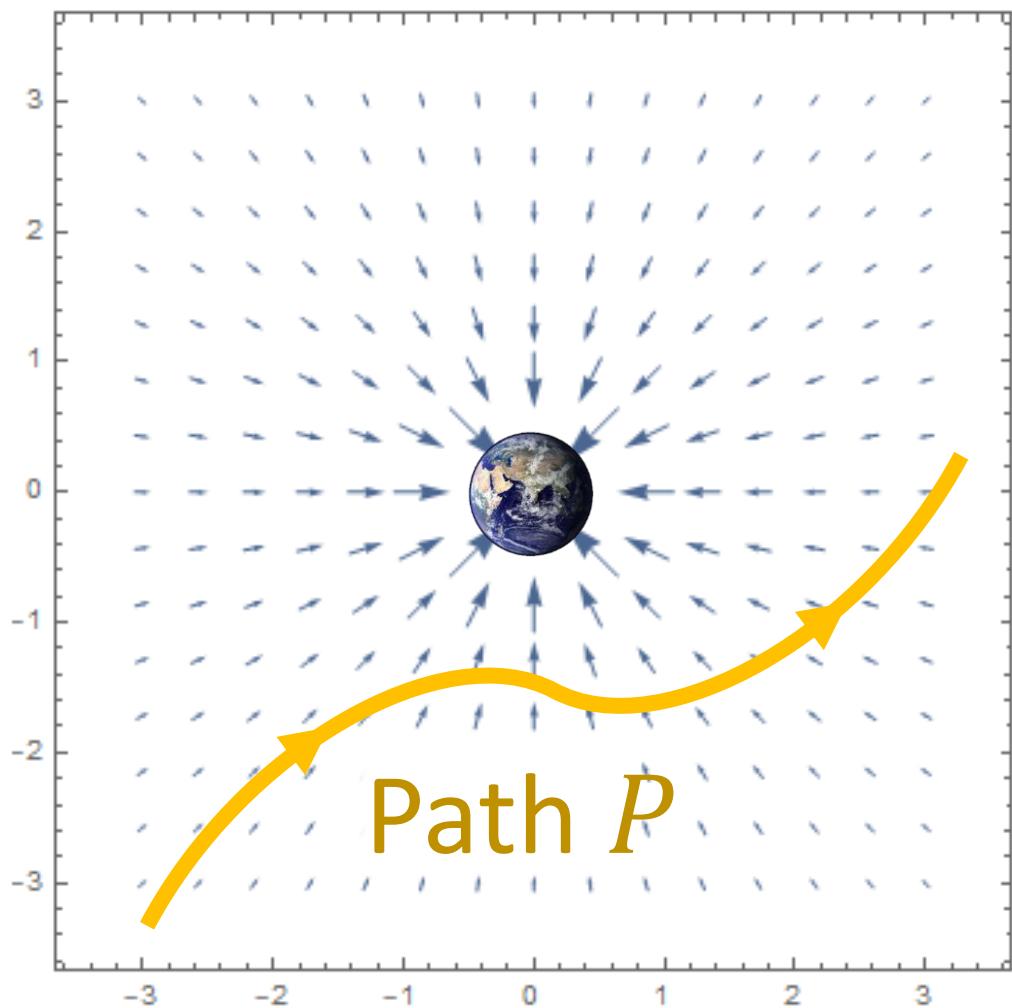
Gravitational Potential

$$\phi$$



Gravitational Force Field

$$\vec{F}_G = m(-\nabla\phi)$$



$$W = \int_P \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

$$W = \int_P m(-\nabla\phi) \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

$$\nabla\phi = \frac{\partial\phi}{\partial x} \vec{e}_x + \frac{\partial\phi}{\partial y} \vec{e}_y$$

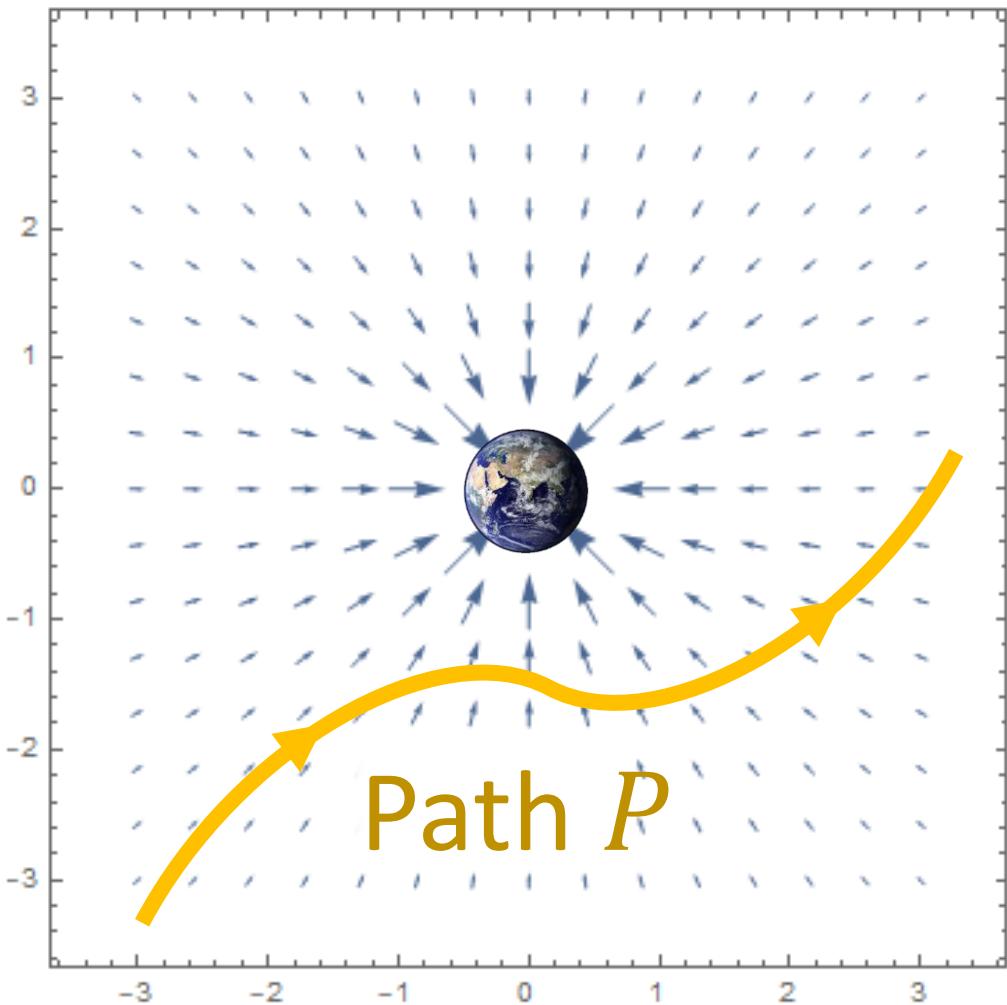
$$\frac{d\vec{R}}{d\lambda} = \frac{dx}{d\lambda} \frac{d\vec{R}}{dx} + \frac{dy}{d\lambda} \frac{d\vec{R}}{dy}$$

$$\frac{d\vec{R}}{d\lambda} = \frac{dx}{d\lambda} \vec{e}_x + \frac{dy}{d\lambda} \vec{e}_y$$

Cartesian
Only!

Gravitational Force Field

$$\vec{F}_G = m(-\nabla\phi)$$



$$W = \int_P \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

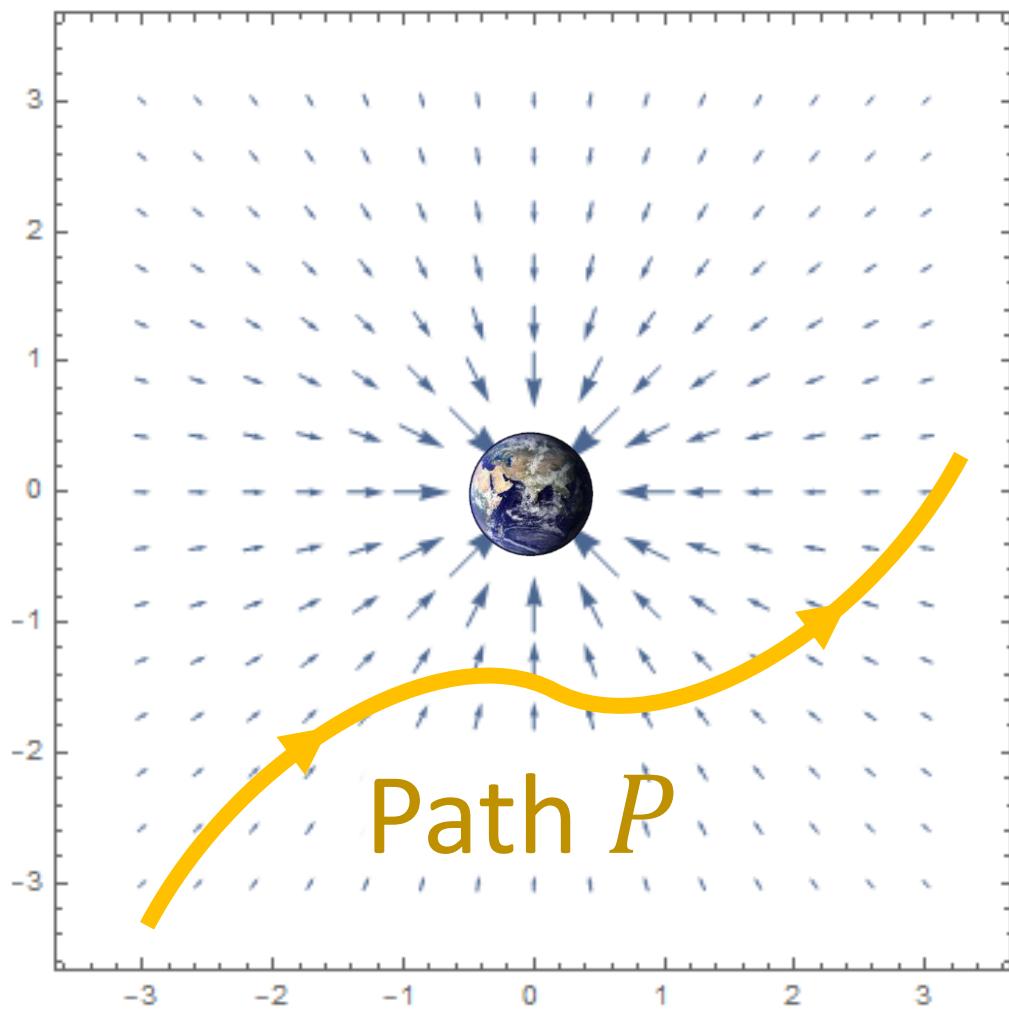
$$W = \int_P m(-\nabla\phi) \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

$$\begin{aligned} & \nabla\phi \cdot \frac{d\vec{R}}{d\lambda} \\ &= \left(\frac{\partial\phi}{\partial x} \vec{e}_x + \frac{\partial\phi}{\partial y} \vec{e}_y \right) \cdot \left(\frac{dx}{d\lambda} \vec{e}_x + \frac{dy}{d\lambda} \vec{e}_y \right) \end{aligned}$$

$$= \frac{\partial\phi}{\partial x} \frac{dx}{d\lambda} + \frac{\partial\phi}{\partial y} \frac{dy}{d\lambda} = \frac{d\phi}{d\lambda}$$

Gravitational Force Field

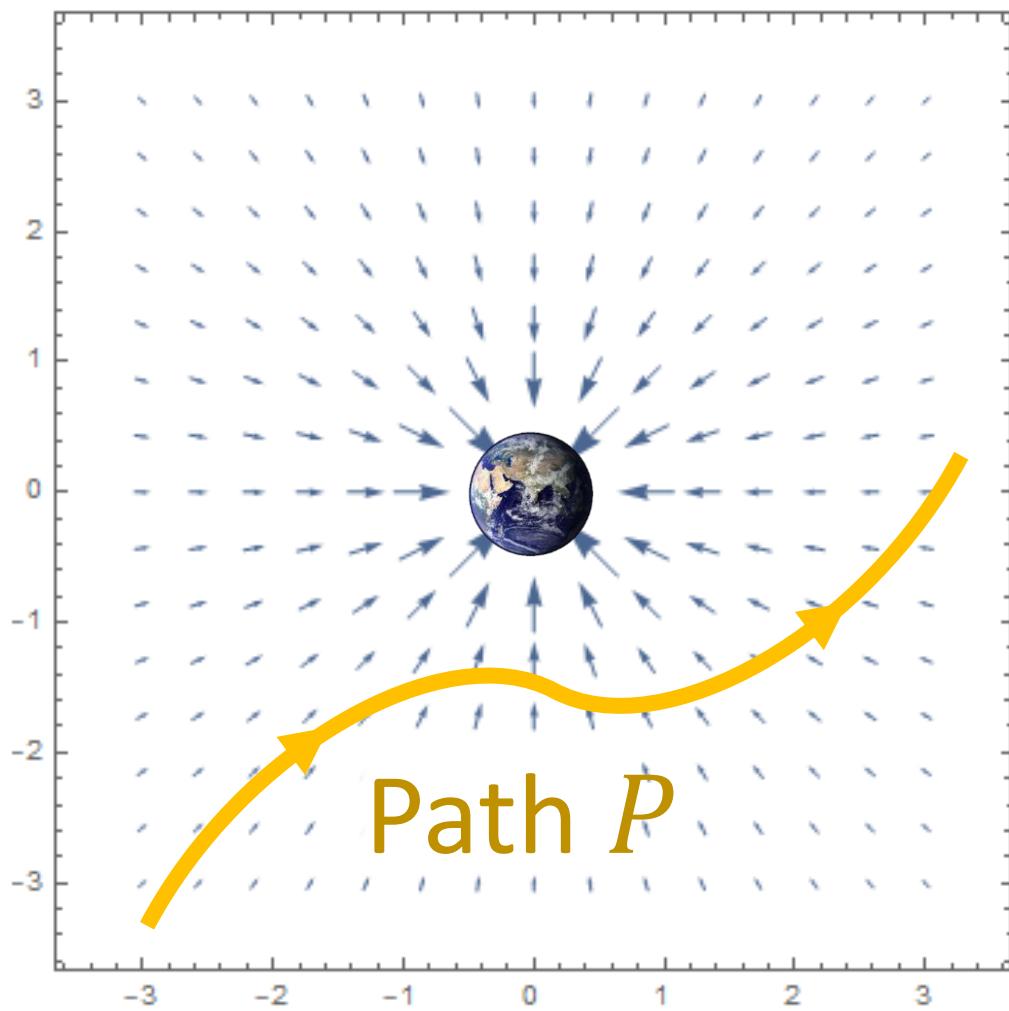
$$\vec{F}_G = m(-\nabla\phi)$$



$$W = \int_P \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$
$$W = \int_P m(-\nabla\phi) \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$
$$W = -m \int_P \frac{d\phi}{d\lambda} d\lambda$$
$$W = -m \int_P d\phi$$

Gravitational Force Field

$$\vec{F}_G = m(-\nabla\phi)$$



$$W = \int_C \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

$$W = \int_P m(-\nabla\phi) \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

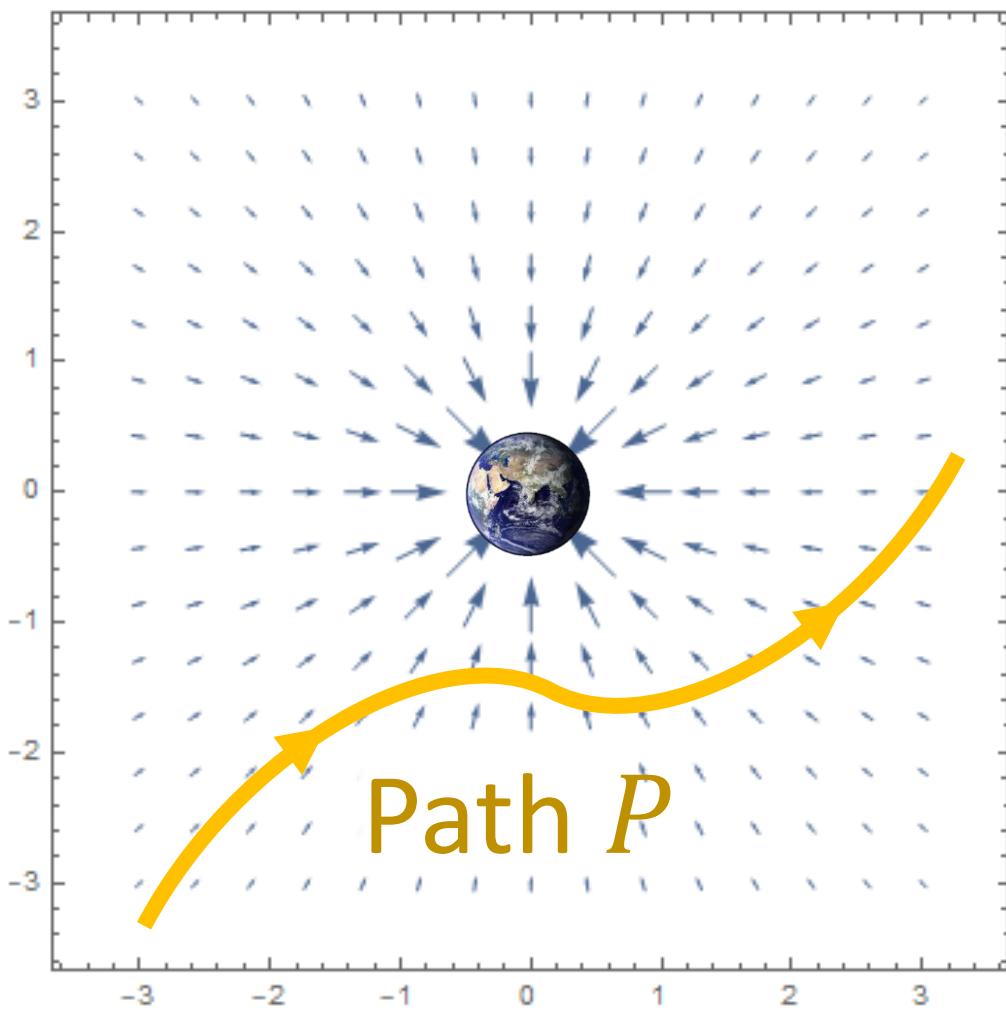
$$W = -m \int_P \frac{d\phi}{d\lambda} d\lambda$$

$$W = -m \int_P \underline{d\phi}$$

$$W = -m[\phi(P_{end}) - \phi(P_{start})]$$

Gravitational Force Field

$$\vec{F}_G = m(-\nabla\phi)$$



$$W = \int_C \vec{F}_G \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

$$W = \int_P m(-\nabla\phi) \cdot \frac{d\vec{R}}{d\lambda} d\lambda$$

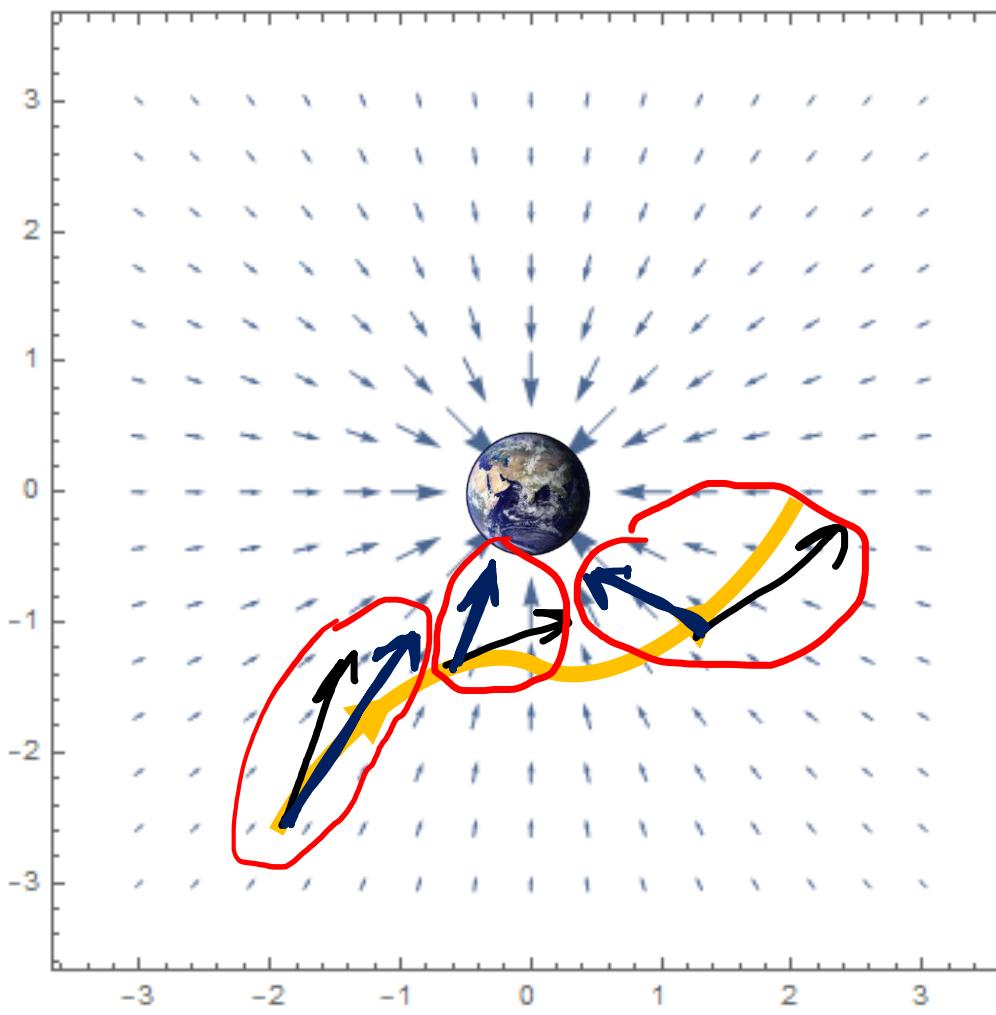
$$W = -m \int_P \frac{d\phi}{d\lambda} d\lambda$$

$$W = -m \int_P d\phi$$

$$W = -m[\phi(P_{end}) - \phi(P_{start})]$$

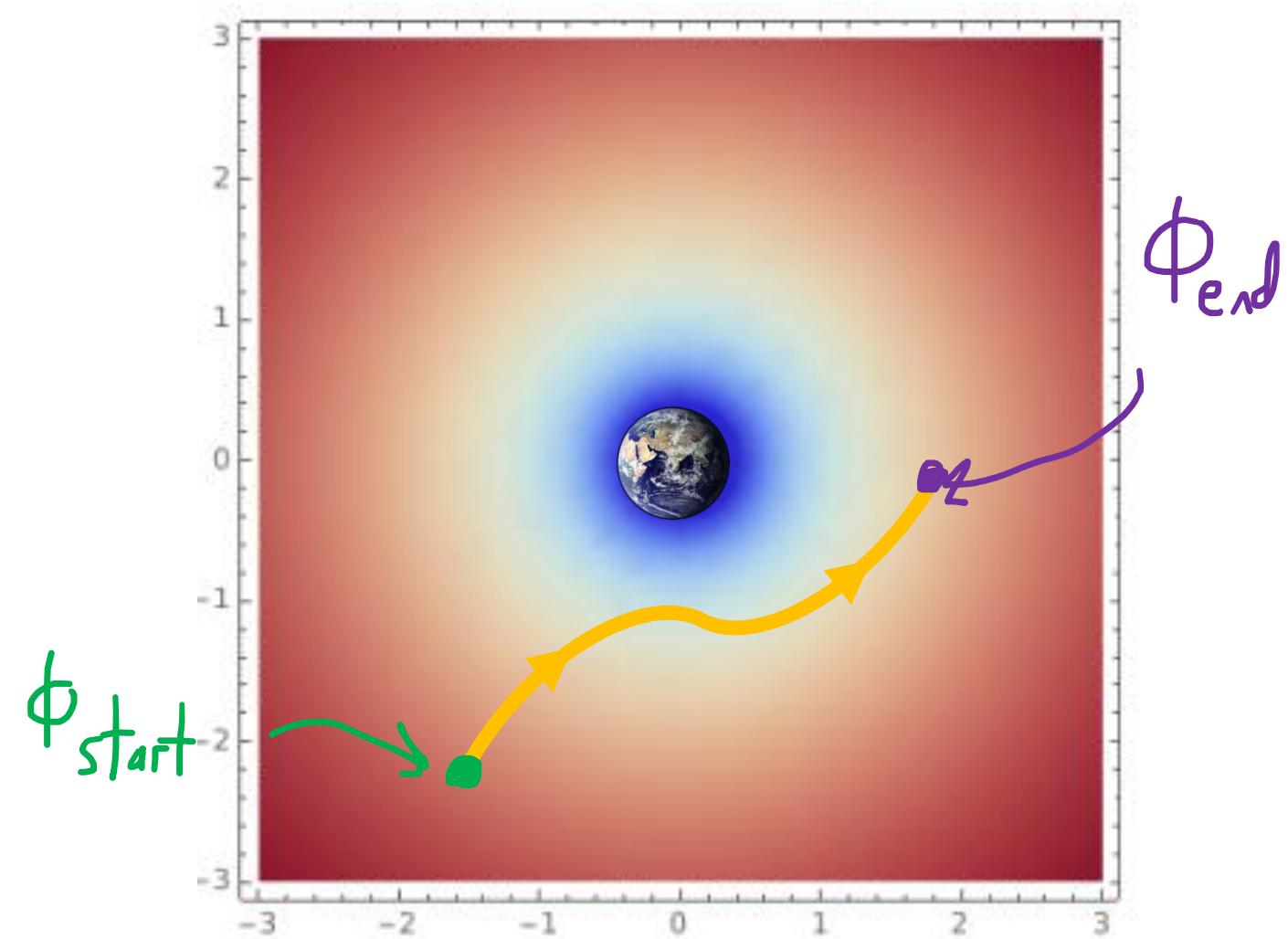
Gravitational Force Field

$$\vec{F}_G = m(-\nabla\phi)$$



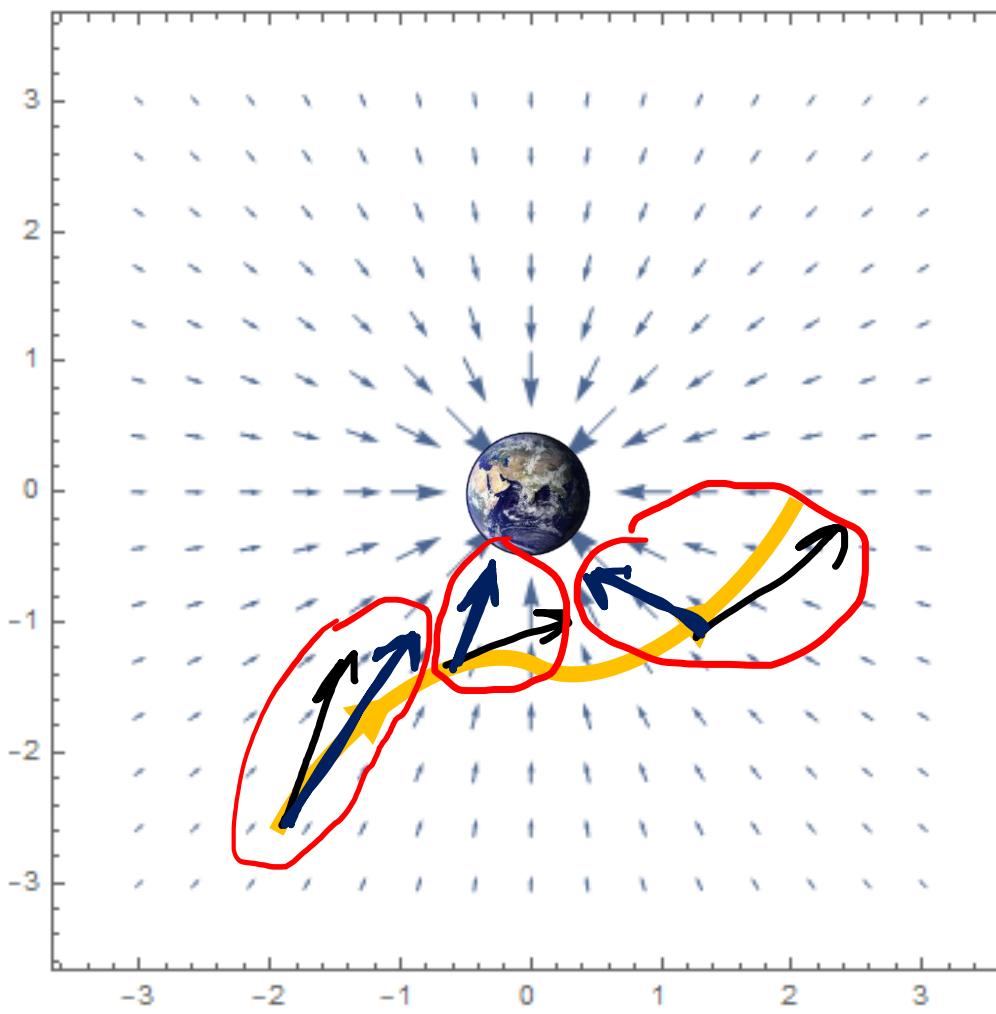
Gravitational Potential

$$\phi$$



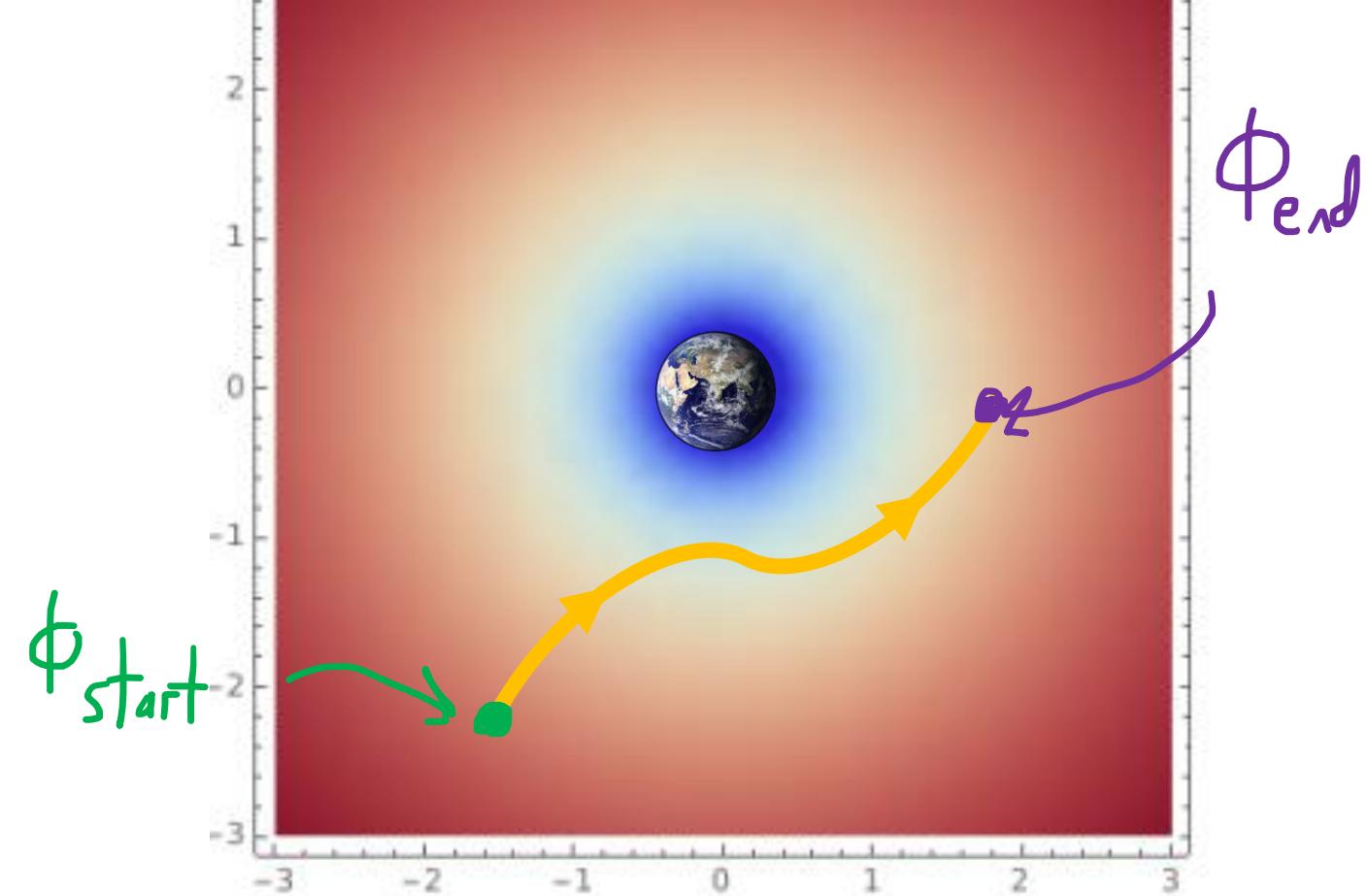
Gravitational Force Field

$$\vec{F}_G = m(-\nabla\phi)$$

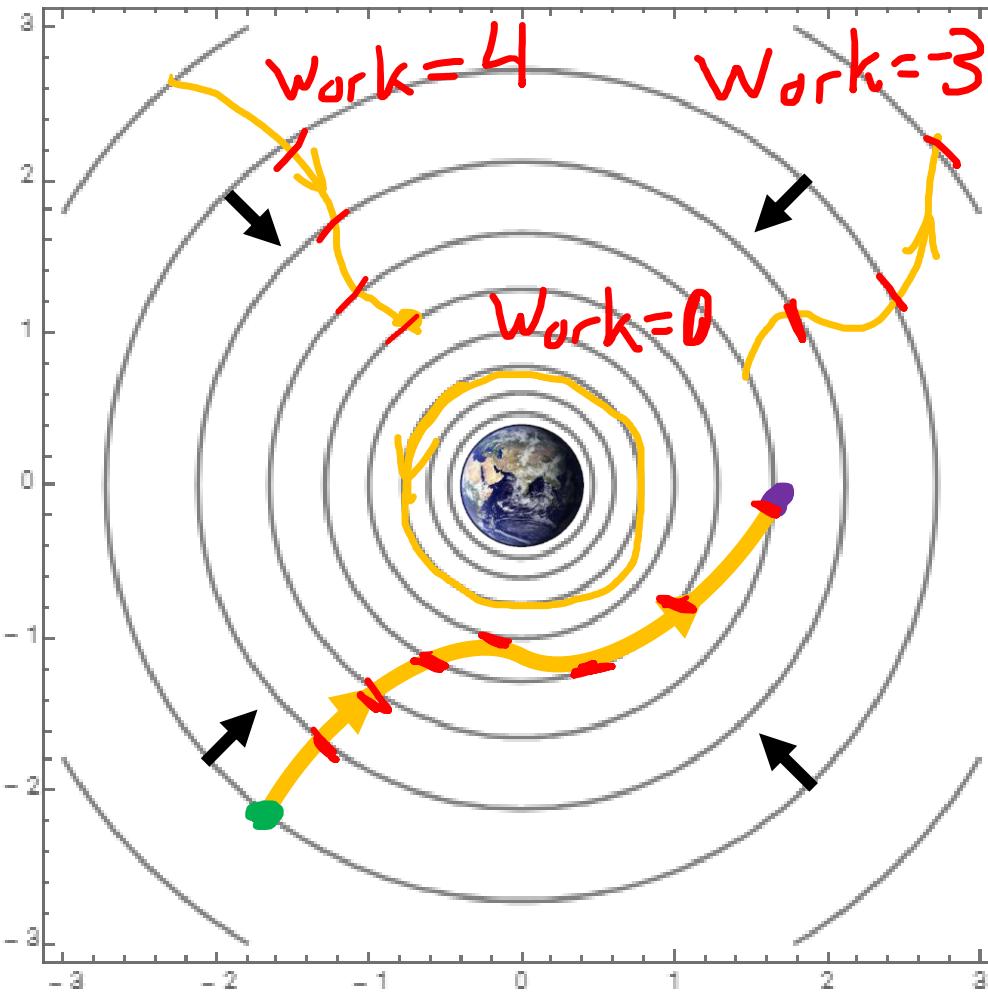


Gravitational Potential

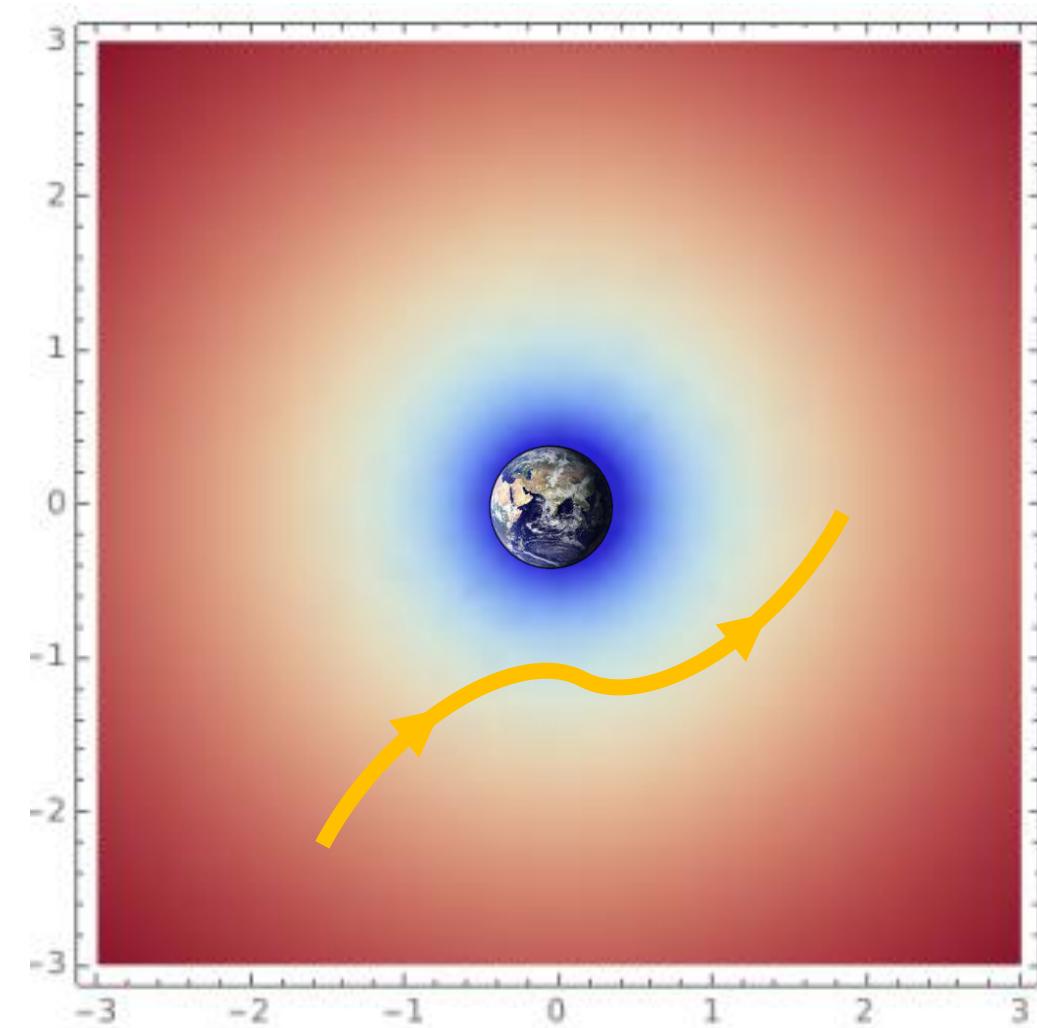
$$\text{Work} = \phi_{\text{end}} - \phi_{\text{start}} \quad (\text{if } m=1)$$



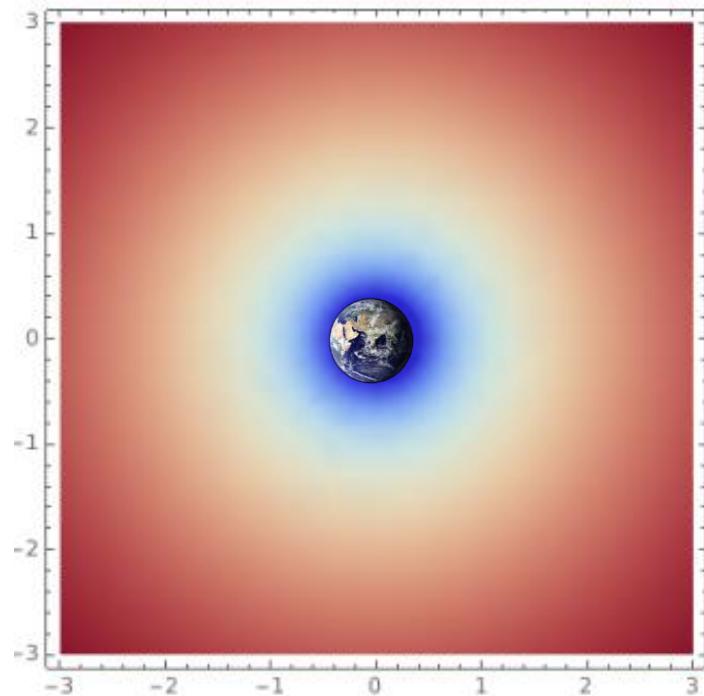
Gravitational Force (Covector) Field

$$dF_G = m(-d\phi)$$


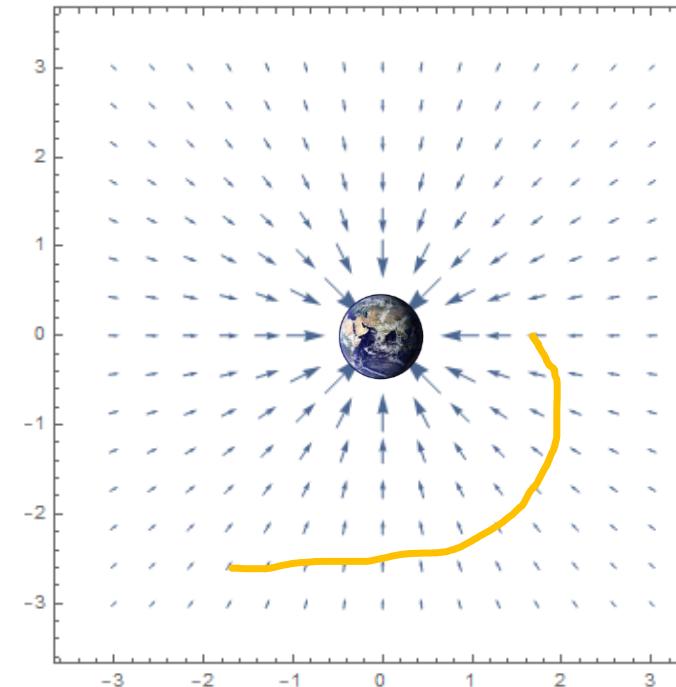
Gravitational Potential ϕ



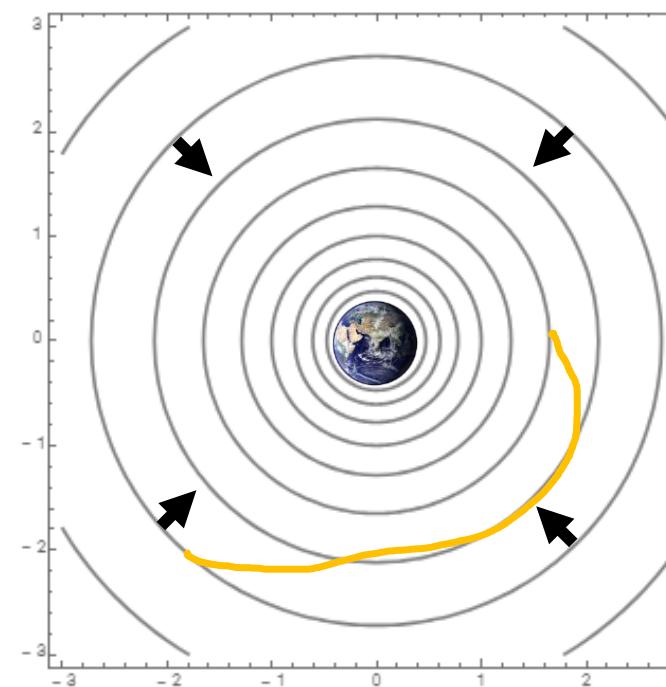
Gravitational Potential ϕ



$$-\nabla \phi$$



$$-d\phi$$



Gravitational Force Vector Field

$$\vec{F}_G = m(-\nabla \phi)$$

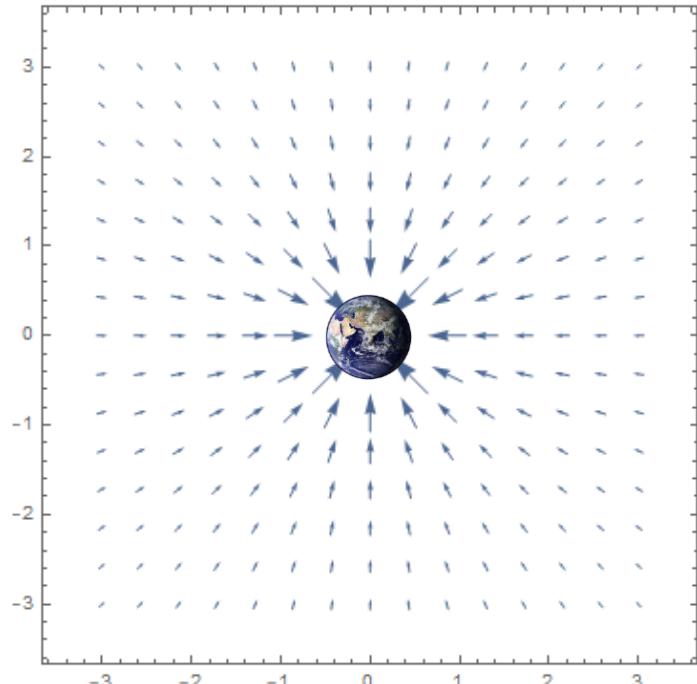
Gravitational Force Covector Field

$$dF_G = m(-d\phi)$$

Fundamental Theorem of Calculus for Line Integrals ("Gradient Theorem")

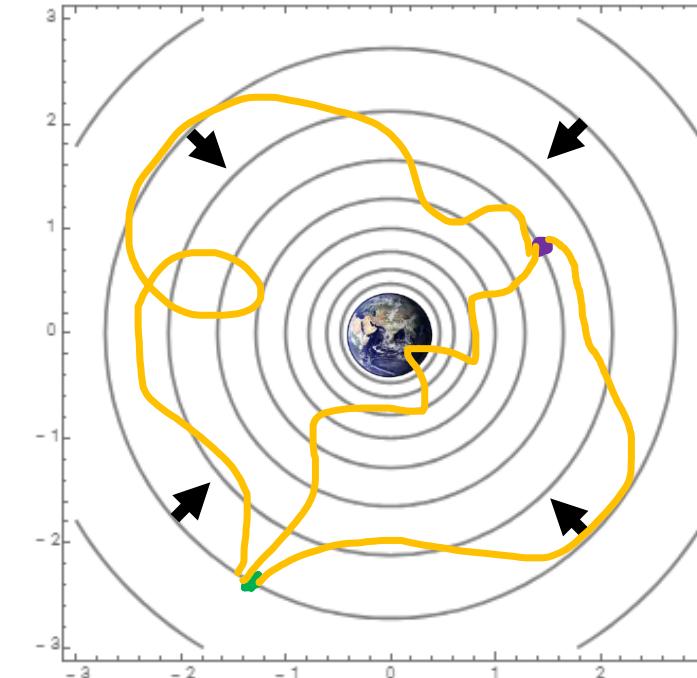
Old way (hard)

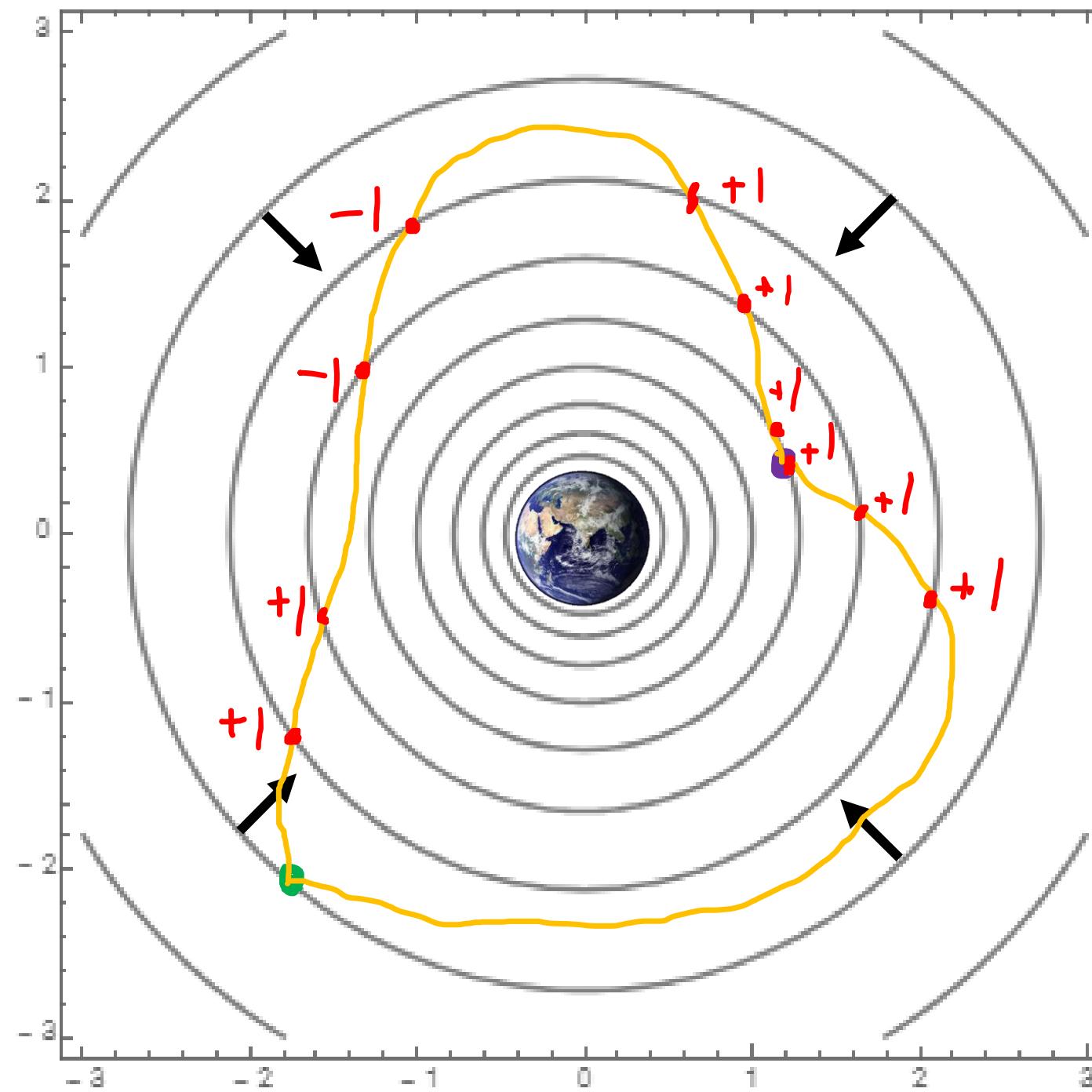
$$\int_{P[a, b]} \nabla \phi \cdot d\vec{R} = \phi(b) - \phi(a)$$

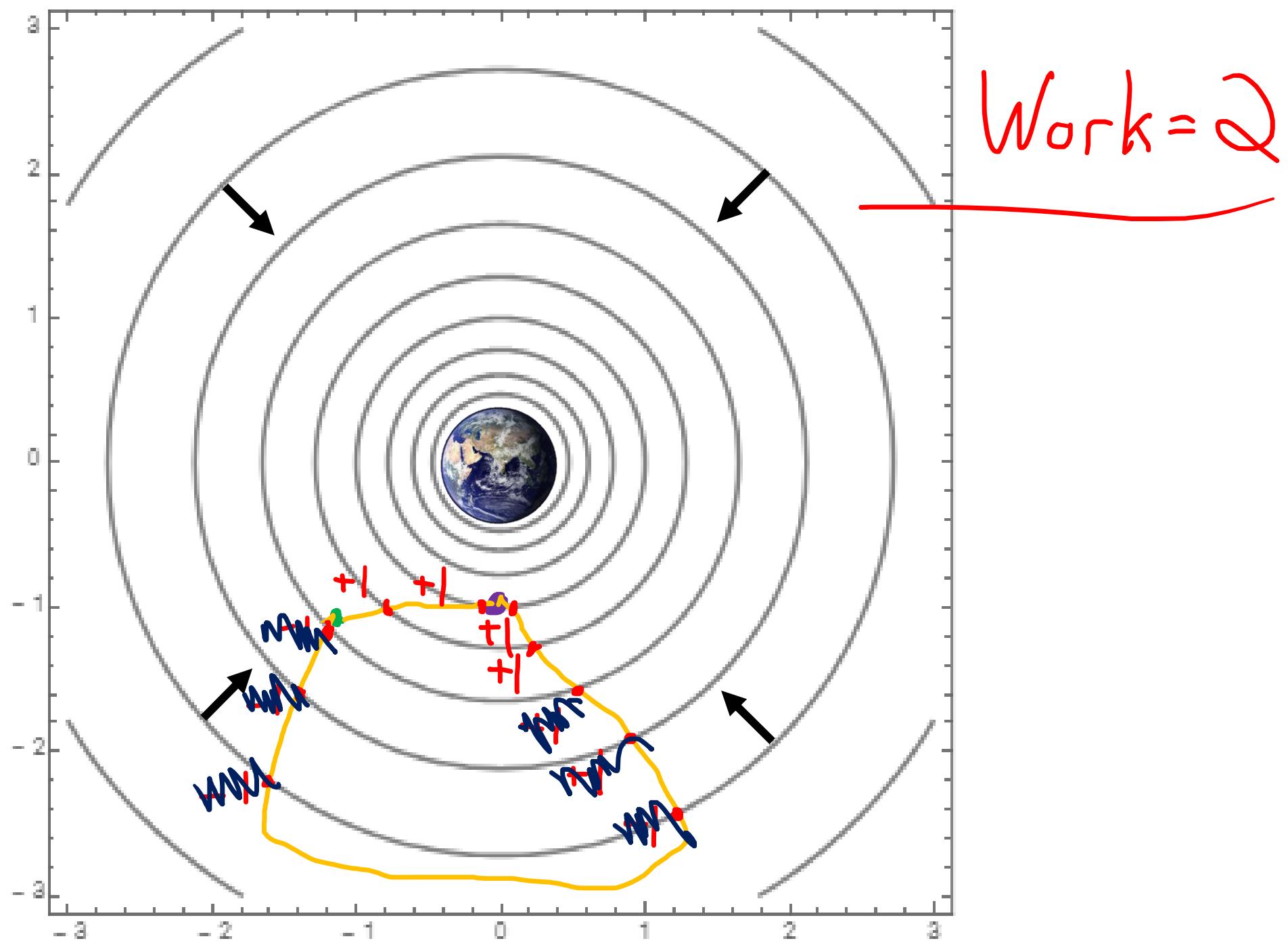


New way (easy)

$$\int_{P[a, b]} d\phi = \phi(b) - \phi(a)$$



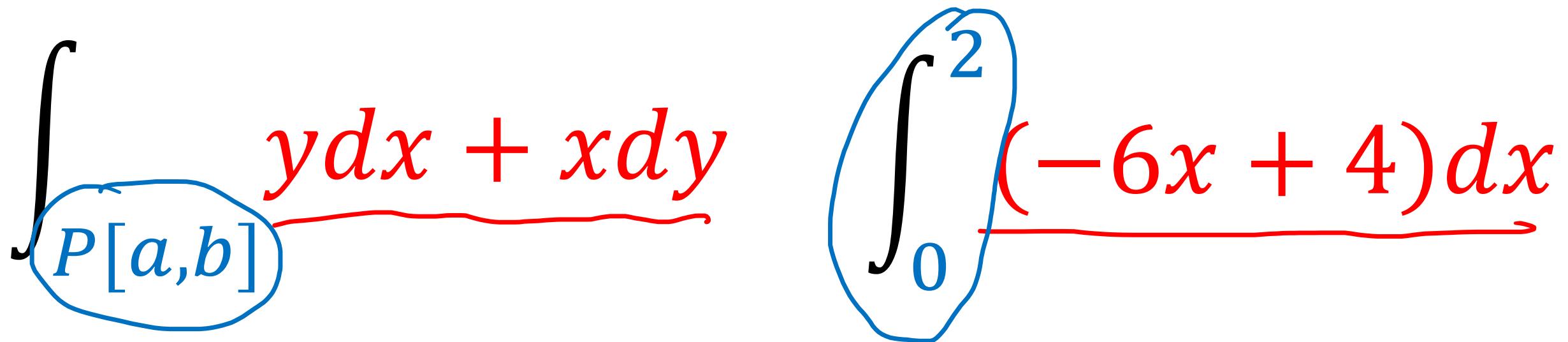




Differential Form interpretation of Integrals

Every (single) integral involves

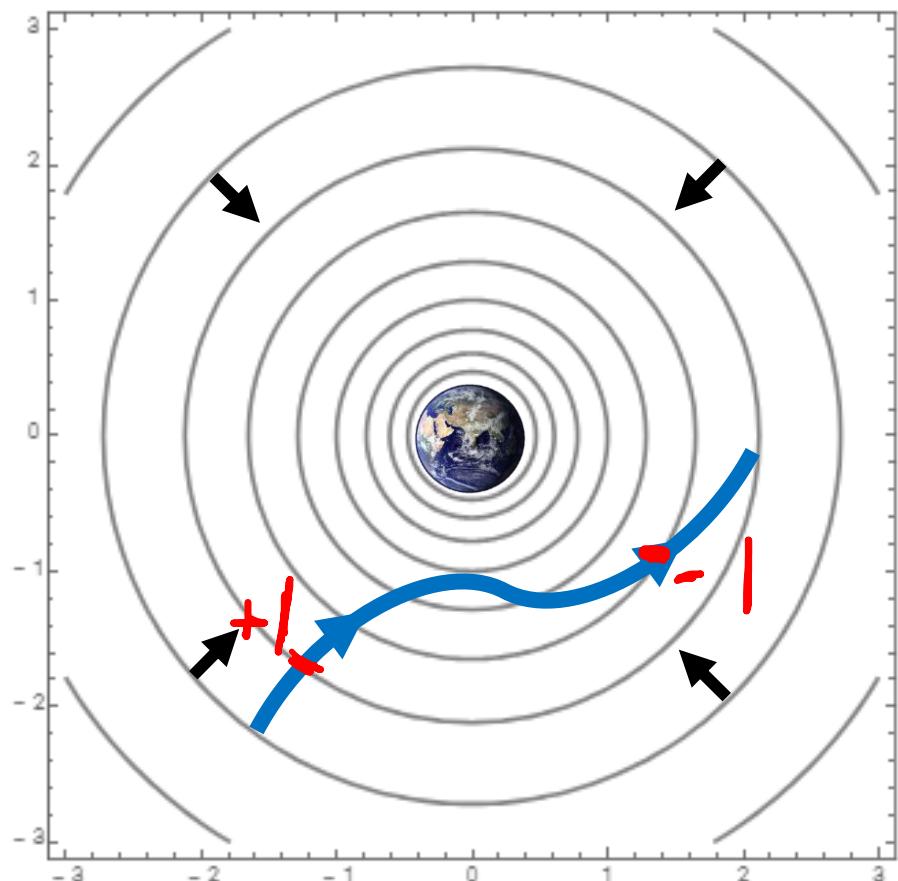
- a **path**
- a **covector field** (differential form)



Differential Form interpretation of Integrals

Every (single) integral involves

- a **path**
- a **covector field** (differential form)



$$\int_{P[a,b]} d\phi$$

The result of the integral is just the number of **covector stacks** pierced* by the path.

*(In the aligned direction.)