

	RMRWR
	
	1 Preface
	1.1 Who This Book is For
	1.2 Prerequisites
	1.3 The (Upward) Spiral of Success Structure
	1.4 Motivation for this Book
	1.5 The Scientific Reproducibility Crisis
	1.6 Features of a Bookdown electronic book
	1.7 What this Book is Not
	1.7.1 This Book is Not A Statistics Text
	1.7.2 This Book Does Not Provide Comprehensive Coverage of the R Universe

	1.8 Some Guideposts
	1.9 Helpful Tools
	1.9.1 Demonstrations in Flipbooks
	1.9.2 Learnr Coding Exercises
	1.9.3 Coding

	2 Getting Started and Installing Your Tools
	2.1 Goals for this Chapter
	2.2 Website links needed for this Chapter
	2.3 Pathway for this Chapter
	2.4 Installing R on your Computer
	2.5 Windows-Specific Steps for Installing R
	2.5.1 Testing R on Windows

	2.6 Mac-specific Installation of R
	2.6.1 Testing R on the Mac
	2.6.2 Successful testing!

	2.7 Installing RStudio on your Computer
	2.7.1 Windows Install of RStudio
	2.7.2 Testing Windows RStudio
	2.7.3 Installing RStudio on the Mac
	2.7.4 Testing the Mac Installation of RStudio
	2.7.5 Critical Setup - Tuning Up Your RStudio Installation

	2.8 Installing Git on your Computer
	2.8.1 Installing Git on macOS
	2.8.2 Installing Git on Windows
	2.8.3 Installing Git on Linux

	2.9 Getting Acquainted with the RStudio IDE

	3 A Tasting Menu of R
	3.1 Setting the Table
	3.2 Goals for this Chapter
	3.3 Packages needed for this Chapter
	3.4 Website links needed for this Chapter
	3.5 Setting up RPubs
	3.6 Open a New Rmarkdown document
	3.7 Knitting your Rmarkdown document
	3.7.1 Installing Packages
	3.7.2 Loading Packages with library()

	3.8 Your Turn to Write Text
	3.9 Wrangle Your Data
	3.10 Summarize Your Data
	3.11 Visualize Your Data
	3.12 Statistical Testing of Differences
	3.13 Publish your work to RPubs
	3.14 The Dessert Cart
	3.14.1 Interactive Plots
	3.14.2 Animated Graphics
	3.14.3 A Clinical Trial Dashboard
	3.14.4 A Shiny App
	3.14.5 An Example of Synergy in the R Community

	4 Introduction to Reproducibility
	4.1 First Steps to Research Reproducibility
	4.1.1 Have a Plan
	4.1.2 Treat Your Raw Data Like Gold
	4.1.3 Cleaning and Analyzing Your Data
	4.1.4 The First Level of Reproducibility
	4.1.5 The Second Level of Reproducibility

	5 Importing Your Data into R
	5.1 Reading data with the {readr} package
	5.1.1 Test yourself on scurvy
	5.1.2 What is a path?

	5.1.3 Try it Yourself

	5.2 Reading Excel Files with readxl
	5.2.1 Test yourself on read_excel()

	5.3 Bringing in data from other Statistical Programs (SAS, Stata, SPSS) with the {haven} package
	5.4 Other strange file types with rio
	5.5 Data exploration with glimpse, str, and head/tail
	5.5.1 Taking a glimpse with glimpse()
	5.5.2 Try this out yourself.
	5.5.3 Test yourself on strep_tb
	5.5.4 Examining Structure with str()
	5.5.5 Test yourself on the scurvy dataset
	5.5.6 Examining a bit of data with head() and tail()
	5.5.7 Test yourself on the printing tibbles

	5.6 More exploration with skimr and DataExplorer
	5.6.1 Test yourself on the skim() results
	5.6.2 Test yourself on the create_report() results

	5.7 Practice loading data from multiple file types
	5.8 Practice saving (writing to disk) data objects in formats including csv, rds, xls, xlsx and statistical program formats
	5.9 How do readr and readxl parse columns?
	5.10 What are the variable types?
	5.11 Controlling Parsing
	5.12 Chapter Challenges
	5.13 Future forms of data ingestion

	6 Wrangling Rows in R with Filter
	6.1 Goals for this Chapter
	6.2 Packages needed for this Chapter
	6.3 Pathway for this Chapter
	6.4 Logical Statements in R
	6.5 Filtering on Numbers - Starting with A Flipbook
	6.5.1 Your Turn - learnr exercises

	6.6 Filtering on Multiple Criteria with Boolean Logic
	6.6.1 Your Turn - learnr exercises

	6.7 Filtering Strings
	6.7.1 Your Turn - learnr exercises

	6.8 Filtering Dates
	6.8.1 Your Turn - learnr exercises

	6.9 Filtering Out or Identifying Missing Data
	6.9.1 Working with Missing data
	6.9.2 Your Turn - learnr exercises

	6.10 Filtering Out Duplicate observations
	6.11 Slicing Data by Row
	6.12 Randomly Sampling Your Rows
	6.12.1 Your Turn - learnr exercises

	6.13 Further Challenges
	6.14 Explore More about Filtering

	7 Wrangling Columns in R with Select, Rename, and Relocate
	7.1 Goals for this Chapter
	7.2 Packages needed for this Chapter
	7.3 Pathway for this Chapter
	7.4 Tidyselect Helpers in R
	7.5 Selecting a Column Variables
	7.5.1 Try this out

	7.6 Selecting Columns that are Not Contiguous
	7.7 Selecting Columns With Logical Operators
	7.8 Further Challenges
	7.9 Explore More about Filtering

	8 Using Mutate to Make New Variables (Columns)
	8.1 Calculating BMI
	8.2 Recoding categorical or ordinal data
	8.3 Calculating Glomerular Filtration Rate

	9 Mutating Joins to Combine Data Sources
	9.1 What are Joins?
	9.2 What are Mutating Joins?
	9.3 Let’s Start with Left Joins
	9.4 Left Join in Action
	9.5 Left Join in Practice
	9.6 Quick Quiz
	9.7 Problem variable names
	9.8 Right Join in Action
	9.9 Right Join in Practice
	9.10 Inner Joins
	9.11 Quick Quiz
	9.12 Now Let’s take a Look at the result
	9.13 Full Joins
	9.14 Quick Quiz
	9.15 Now Let’s take a Look at the result

	10 Interpreting Error Messages
	10.1 The Common Errors Table
	10.2 Examples of Common Errors and How to fix them
	10.2.1 Missing Parenthesis
	10.2.2 An Extra Parenthesis
	10.2.3 Missing pipe %>% in a data wrangling pipeline
	10.2.4 Missing + in a ggplot pipeline
	10.2.5 Pipe %>% in Place of a +
	10.2.6 Missing Comma Within a Function()
	10.2.7 A Missing Object
	10.2.8 One Equals Sign When you Need Two
	10.2.9 Non-numeric argument to a binary operator

	10.3 Errors Beyond This List
	10.4 When Things Get Weird
	10.4.1 Restart your R Session (Shift-Cmd-F10)

	10.5 References:

	11 The Building Blocks of R: data types, data structures, functions, and packages.
	11.1 Data Types
	11.2 Data Structures
	11.3 Examining Data Types and Data Structures
	11.4 Functions
	11.5 Packages
	11.6 The Building Blocks of R

	12 Tips for Hashtag Debugging your Pipes and GGPlots
	12.1 Debugging
	12.2 The Quick Screen
	12.3 Systematic Hunting For Bugs in Pipes
	12.4 Systematic Hunting For Bugs in Plots
	12.5 Hashtag Debugging
	12.6 Pipe 2
	12.7 Plot 2
	12.8 Plot3
	12.9 Pipe 3

	13 Finding Help in R
	13.1 Programming in R
	13.2 Starting with Help!
	13.3 The Magic of Vignettes
	13.4 Googling the Error Message
	13.5 You Know What You Want to Do, but Don’t Know What Package or Function to Use
	13.5.1 CRAN Task Views
	13.5.2 Google is Your Friend

	13.6 Seeking Advanced Help with a Minimal REPREX

	14 The Basics of Base R
	14.1 Dimensions of Data Rectangles
	14.2 Naming columns
	14.3 Concatenation
	14.4 Sequences
	14.5 Constants
	14.6 Fancier Sequences
	14.7 Mathematical functions
	14.8 Handling missing data (NAs)
	14.9 Cutting Continuous data into Levels

	15 Updating R, RStudio, and Your Packages
	15.1 Installing Packages
	15.1.1 Installing Packages from Github
	15.1.2 Problems with Installing Packages

	15.2 Loading Packages with Library
	15.3 Updating R
	15.4 Updating RStudio
	15.5 Updating Your Packages

	16 Major R Updates (Where Are My Packages?)
	16.1 Preparing for a Minor or Major R Upgrade
	16.2 Saving a List of Your Packages
	16.3 Upgrading R (and RStudio)
	16.3.1 Reinstalling your list of Packages

	16.4 Now Check your list of Packages
	16.5 Updating Packages

	17 Intermediate Steps Toward Reproducibility
	17.1 Level 3 Reproducibility
	17.1.1 Creating a New Project in RStudio
	17.1.2 File paths and the {here} package

	17.2 Code Review with a Coding Partner
	17.2.1 Checklist for Code Review

	17.3 Sharing code on GitHub

	18 Comparing Two Measures of Centrality
	18.1 Common Problem
	18.1.1 How Skewed is Too Skewed?
	18.1.2 Visualize the Distribution of data variables in ggplot
	18.1.3 Visualize the Distribution of data$len in ggplot
	18.1.4 Results of Shapiro-Wilk
	18.1.5 Try it yourself
	18.1.6 Mammal sleep hours

	18.2 One Sample T test
	18.2.1 How to do One Sample T test
	18.2.2 Interpreting the One Sample T test
	18.2.3 What are the arguments of the t.test function?

	18.3 Insert flipbook for ttest here
	18.3.1 Flipbook Time!

	18.4 Fine, but what about 2 groups?
	18.4.1 Setting up 2 group t test
	18.4.2 Results of the 2 group t test
	18.4.3 Interpreting the 2 group t test
	18.4.4 2 group t test with wide data
	18.4.5 Results of 2 group t test with wide data

	18.5 3 Assumptions of Student’s t test
	18.5.1 Testing Assumptions of Student’s t test

	18.6 Getting results out of t.test
	18.6.1 Getting results out of t.test

	18.7 Reporting the results from t.test using inline code
	18.7.1 For Next Time

	19 Sample Size Calculations with {pwr}
	19.1 Sample Size for a Continuous Endpoint (t-test)
	19.2 One Sample t-test for Lowering Creatinine
	19.3 Paired t-tests (before vs after, or truly paired)
	19.4 2 Sample t tests with Unequal Study Arm Sizes
	19.5 Testing Multiple Options and Plotting Results
	19.6 Your Turn
	19.6.1 Scenario 1: FEV1 in COPD
	19.6.2 Scenario 2: BNP in CHF
	19.6.3 Scenario 3: Barthel Index in Stroke
	19.7 Sample Sizes for Proportions
	19.8 Sample size for two proportions, equal n
	19.9 Sample size for two proportions, unequal arms
	19.10 Your Turn
	19.10.1 Scenario 1: Mortality on Renal Dialysis
	19.10.2 Scenario 2: Intestinal anastomosis in Crohn’s disease
	19.10.3 Scenario 3: Metformin in Donuts
	19.11 add chi square
	19.12 add correlation test
	19.13 add anova
	19.14 add linear model
	19.15 add note on guessing effect sizes - cohen small, medium, large
	19.16 Explore More

	20 Randomization for Clinical Trials with R
	20.1 Printing these on Cards
	20.2 Now, try this yourself
	20.3 Now Freestyle

	21 Univariate ggplots to Visualize Distributions
	21.1 Histograms
	21.1.1 Comparisons of Distributions with Histograms
	21.1.2 Histograms and Categories

	21.2 Density Plots
	21.2.1 Comparisons with Density plots

	21.3 Comparing Distributions Across Categories
	21.4 Boxplots
	21.5 Violin Plots
	21.6 Ridgeline Plots
	21.6.1 Including Plots
	21.6.2 Including Points
	21.6.3 Including Points
	21.6.4 Including Points
	21.6.5 Including Points

	22 Bivariate ggplot2 Scatterplots to Visualize Relationships Between Variables
	22.1 Packages used in this Chapter
	22.2 Data Exploration and Validation (DEV)
	22.3 Scatterplots
	22.3.1 Micro-quiz!

	22.4 Mapping More Variables
	22.5 Inheritance and Layering in ggplot2
	22.6 Aesthetic mapping Micro-Quiz!
	22.7 Controlling Point Shape, Size, and Color Manually
	22.7.1 Manual Shapes
	22.7.2 Manual Sizes
	22.7.3 Manual Color

	23 Extensions to ggplot
	23.1 Goals for this Chapter
	23.2 Packages Needed for this chapter
	23.3 A Flipbook of Where We Are Going With ggplot Extensions
	23.3.1 MAKE FLIPBOOK

	23.4 A Waffle Plot
	23.5 An Alluvial Plot
	23.6 Lollipop Plots
	23.7 Dumbbell Plots
	23.8 Spaghetti Plots with Summary Smoothed Lines for Change Over Time
	23.9 Swimmer Plots
	23.10 Adding Significance Comparisons with {ggsignif}

	24 Customizing Plot Scales
	24.1 Goals for this Chapter
	24.2 Packages Needed for this chapter
	24.3 A Flipbook of Where We Are Going With Scales
	24.4 A Basic Scatterplot
	24.5 But what if you want the scale for risk to start at 0?
	24.6 But this axis does not really start at Exactly 0
	24.7 Control the Limits and the Breaks
	24.8 Test what you have learned
	24.9 Continuous vs. Discrete Plots and Scales
	24.10 Using Scales to Customize a Legend
	24.11 Test what you have learned
	24.11.1 More Examples with Flipbooks

	25 Helping out with ggplot
	25.1 ggx::gghelp()
	25.2 Getting more help with theming with ggThemeAssist
	25.3 Website helpers for ggplot
	25.4 Getting Even more help with esquisse

	26 Functions
	26.1 Don’t repeat yourself
	26.2 Your Turn
	26.3 Freestyle
	26.3.1 Acknowledgement

	26.4 Read More

	27 Linear Regression and Broom for Tidying Models
	27.1 Packages needed
	27.2 Building a simple base model with {lm}
	27.2.1 Producing manuscript-quality tables with {gtsummary}

	27.3 Is Your Model Valid?
	27.4 Making Predictions with Your Model
	27.4.1 Predictions from new data

	27.5 Choosing predictors for multivariate modeling – testing, dealing with collinearity
	27.5.1 Challenges

	27.6 presenting model results with RMarkdown
	27.6.1 Challenges

	27.7 presenting model results with a Shiny App
	27.7.1 Challenges

	28 Logistic Regression and Broom for Tidying Models
	28.1 The Model Summary
	28.2 Evaluating your Model Assumptions
	28.3 Converting between logit, odds ratios, and probability

	29 A Gentle Introduction to Shiny
	29.1 What is Shiny?
	29.2 The Basic Structure of a Shiny App
	29.2.1 The weirdness of a Shiny app

	29.3 The User Interface Section Structure
	29.4 The Server Section Structure
	29.5 How to Run an App
	29.5.1 How to Stop an App

	29.6 Building a Very Simple App (Version 1)
	29.6.1 The ui section
	29.6.2 The server section

	29.7 Edit this App (Version 2)
	29.8 Building a User Interface for Inputs and Outputs
	29.8.1 Inputs
	29.8.2 Outputs

	29.9 Building a Functioning Server Section
	29.9.1 Using the input values & Data
	29.9.2 Wrangling and Calculating
	29.9.3 Rendering to HTML Outputs

	29.10 Building a Simple Shiny App (Version 3)
	29.11 Publishing Your Shiny App on the Web
	29.12 More to Explore

	30 Sharing Models with Shiny
	30.0.1 Packages Needed for this Chapter
	30.1 Setting up and Saving Models
	30.1.1 Linear Model
	30.1.2 Logistic Model
	30.1.3 Random Forest Model

	30.2 Building a Shiny App for the Linear Model
	30.2.1 The Default Shiny App
	30.2.2 Editing the ui sidebarPanel for the Input Predictor Variables
	30.2.3 Editing the server section to make Predictions
	30.2.4 Editing the mainPanel in the ui section to display your Prediction

	30.3 Building a Shiny App for the Logistic Model
	30.3.1 The Default Shiny App
	30.3.2 Editing the ui sidebarPanel for the Input Predictor Variables
	30.3.3 Editing the server section to make Predictions
	30.3.4 Editing the mainPanel in the ui section to display your Prediction

	30.4 Building a Shiny App for the Random Forest Model
	30.5 Challenge Yourself

	31 Introduction to R Markdown
	31.1 What Makes an Rmarkdown document?
	31.2 Trying out RMarkdown with a Mock Manuscript
	31.3 Inserting Code Chunks
	31.3.1 Code Chunk Icons

	31.4 Including Plots
	31.5 Including Tables
	31.6 Including Links and Images
	31.6.1 Links
	31.6.2 Images

	31.7 Other languages in code chunks
	31.8 Code Chunk Options
	31.9 How It All (Rmarkdown + {knitr} + Pandoc) Works
	31.10 Knitting and Editing (and re-Knitting() Your Rmd document
	31.11 Try Out Other Chunk Options
	31.12 The setup chunk
	31.13 Markdown syntax
	31.14 2nd Header
	31.14.1 3rd Header

	31.15 Line Breaks and Page Breaks
	31.16 Making Lists
	31.16.1 Ordered Lists
	31.16.2 Un-ordered lists
	31.16.3 Nested Lists

	31.17 The Easy Button - Visual Markdown Editing
	31.17.1 Try inserting a list, a table and a block-quote

	31.18 Inline Code
	31.18.1 Try inserting some in-line R code

	31.19 A Quick Quiz

	32 Rmarkdown Output Options
	32.1 Microsoft Word Output from Rmarkdown
	32.1.1 Making a Styles Reference File for Microsoft Word
	32.1.2 Let’s Practice This.
	32.1.3 Re-formatting Your Template
	32.1.4 Using Your New Styles Template
	32.1.5 Now you are ready!

	32.2 PDF Output from RMarkdown
	32.2.1 LaTeX and tinytex
	32.2.2 Knitting to PDF

	32.3 Microsoft Powerpoint Output from Rmarkdown
	32.3.1 Tables in Powerpoint
	32.3.2 Images in Powerpoint
	32.3.3 Plots in Powerpoint

	33 Adding Citations to your RMarkdown
	34 Quarto is a Next-Generation RMarkdown
	34.1 Goals for this Chapter
	34.2 Packages Needed for this chapter
	34.3 Introducing Quarto
	34.4 A Tour of Quarto
	34.5 Opening a New Quarto Document
	34.6 Annotating code in Quarto
	34.7 The Visual Editor vs. Source Editor in Quarto
	34.8 Adding Code Chunks
	34.9 Organized Options in Code Chunks with the Hash-Pipe #|
	34.10 Stating Global Options in Your YAML Header
	34.10.1 Code Options and Code Folding
	34.10.2 Parameters

	34.11 Figures
	34.12 Tables
	34.13 Inline Code and Caching
	34.14 Quarto at the Command Line
	34.15 Citations in Quarto
	34.16 Challenge Yourself
	34.17 Exploring further

	35 Running R from the UNIX Command Line
	35.1 What is the UNIX Command line?
	35.2 Why run R from the command line?
	35.3 How do you get started?
	35.3.1 On a Mac
	35.3.2 On a Windows PC

	35.4 The Yawning Blackness of the Terminal Window
	35.5 Where Are We?
	35.6 Cleaning Up
	35.7 Other helpful file commands
	35.8 What about R?
	35.9 What about just a few lines of R?
	35.10 Running an R Script from the Terminal
	35.11 Rendering an Rmarkdown file from the Terminal

	Title holder
	References
	
	Published with bookdown

 Reproducible Medical Research with R

Chapter 32 Rmarkdown Output Options

While HTML is convenient for rapid output and iteration, most end-products for medical research are either Word documents, PDFs, or PowerPoint slides.

There are many options for Rmarkdown output, including the markdown(*.md) document that results from Knitting. The *.md document is then translated by pandoc into options including:

	MS Word word_document
	PDF pdf_document
	PowerPoint powerpoint_presentation
	Rich Text Format document - rtf_document
	OpenDocument file odt_document
	LaTeX typesetting document latex_document
	ConTeXt typesetting document context_document
	HTML html_document
	Github-formatted markdown github_document
	And some other presentation formats
	xaringan::moon_reader
	slidy_presentation
	beamer_presentation
	ioslides_presentation

32.1 Microsoft Word Output from Rmarkdown

Changing the output of a Rmarkdown document to Microsoft Word is easy - you can either:

	click on the dropdown arrow next to the Knit button, and select, Knit to Word, or
	change the output: option in the YAML header to word_document

These will use the default formatting for Microsoft Word, which is OK, but may not produce the font, text color (too much blue!), or the heading sizes that you want.

This is fixable, by using your own MS Word template document (aka style reference document). If you have a Word document named “my-styles.docx”, this can serve as your styles template. You just have to :

	Have the file in the same folder as the *.Rmd document, or in a nearby folder, preferably in the same project.
	Change the output: field of your YAML header to look like this:

title: "My Title"
author: Me
date: January 7, 2027
output:
 word_document:
 reference_docx: my-styles.docx

Note that the placement of the new-lines (returns), colons, and indents are critical to make this output format work. And if your reference.docx template is in a folder within your project, you need to put the path - i.e. styles-template/reference.docx if it is in the styles-template folder.

32.1.1 Making a Styles Reference File for Microsoft Word

The easiest way to make a reference_docx file is to knit a new rmarkdown file to Microsoft Word, then reformat the resulting Word document to the format that you want. Then save the resulting word document as my-styles.docx in your project folder, usually near your Rmarkdown file.

It is often helpful to have each level of heading (1-5) present in your template *.docx file, so that you can make sure that all of the header levels and the body text are formatted the way that you want them.

32.1.2 Let’s Practice This.

Open RStudio.

Open the rmd4medicine project that you created in the previous chapter (if you did not, go back and do this, then return here).

Click on the Git tab in the top right in RStudio.

Click on the downward green arrow icon to pull down the latest files in this project from GitHub.

Open the prep folder, then open the style-rmd.Rmd file.

Knit this document to Microsoft Word.

Save the resulting document as word-styles.docx
in the same directory as your Rmd file
We will use this docx document as a template (after we reformat)

32.1.3 Re-formatting Your Template

Open the word document, Select the Home ribbon, then the Styles window launcher (Styles Pane) in the Styles group.

Select the Title.
It has the Title style. Scroll down to Title style in the Styles Window.

Change the font, the color, the size, etc. until you like the look.

Then click on the dropdown arrow to the right of the Title style, and select ‘Update Title to Match Selection’.

Then repeat the process for body text, Heading1, Heading2, Heading3, etc.
There is a nice video walkthrough of where to click here.

When you are happy with the formatting, then save this document as word-styles.docx.

32.1.4 Using Your New Styles Template

Use File/New File/Rmarkdown to open a new *.Rmd file.

Go to the top of your Rmarkdown document, to the YAML Header

It should have 2 lines of 3 dashes, with a title, author, date, and

output: html_document

between them

You need to change this to (note that these are real indent tabs)

output:

(indent)word_document:

(indent)(indent)reference_docx: word-styles.docx

Note the placement of the colons, what is on each line, and the number of indents are critical to making this work.

32.1.5 Now you are ready!

Now save this document and knit - you will get the format that you intended. And you can use this template for any future Rmarkdown document - just be sure that you have

word-styles.docx

in the same folder where your Rmarkdown document lives.

32.2 PDF Output from RMarkdown

Most of the time, you will not need PDF output. Many journals prefer that you submit MS Word files in *.docx format and image files in tiff, bmp, or jpeg formats. Then their web server will generate the PDF.

But if you are determined to make your own PDFs from Rmarkdown files, you can. It just takes a bit of setup.

32.2.1 LaTeX and tinytex

First, you need a translator for all of the things PDFs can do. A complete version uses TeX or LaTeX to get all kinds of typesetting functions. Most of the time, you need a much smaller subset of TeX, which is where the {tinytex} package comes in handy.

To use {tinytex}, copy the code chunk below, and run it in your local RStudio console (once only).

install.packages('tinytex')
tinytex::install_tinytex()

More details on how to use and maintain {tinytex} can be found here.

32.2.2 Knitting to PDF

Now that the installation of {tinytex} is complete, you can Knit to PDF. Open your favorite Rmarkdown document, and knit to PDF in one of two ways:

	Click on the dropdown arrow next to the Knit button, and select Knit to PDF.
	Edit the YAML output: key to pdf_document (with no quotes). Then click on the Knit button.

This will open up a new window with your auto-generated PDF document.

32.3 Microsoft Powerpoint Output from Rmarkdown

To get Powerpoint output, you can simply change the output: key to powerpoint_presentation.

You can even add a formatted powerpoint template (like my-styles.pptx) to get the fonts and colors and headings the way you like them (remember to use the indents, like this:

title: "My Title"
author: Me
date: January 7, 2027
output:
 powerpoint_presentatino:
 reference_docx: my-styles.pptx

A simple Powerpoint template can be found [here](https://github.com/mfherman/mattherman/blob/master/static/ppt/template-no-title.pptx.

But the knitted result often won’t be quite right out of the gate, as slides, unlike word documents, need explicit separators between slides.

You will create a new slide each time you insert a Level1/2 Heading, or (more commonly) each time you have 3 or more dashes on a single line.

Since most Word Documents don’t have a lot of Level1 Headings, an Rmd document that works well for MS Word will usually have way too many words/lines per Powerpoint slide.

You will usually have to

	Start After the YAML with a Level 1 header
	Divide up your slides with 3-dash breaks ---.
	Start Each new slide with a Level 1 or Level 2 header
	Convert the text into pithy bullet points (usually level 3 and 4 headers and body text)
	Insert only one image or plot per slide (you can reformat them later in PPT)
	Set up your template pptx file - often enlarging the area for the image, and removing the separate title slide is helpful (as in the example template above).

Oftentimes, you will just be wanting to get the images and plots from your project into PPT, and add text and formatting later. This will be less than completely reproducible, but can be faster than writing a whole PowerPoint presentation in Rmd.

32.3.1 Tables in Powerpoint

You can use the {flextable} package to make formatted tables for Powerpoint. This package can be found here.

Alternatively, many people use knitr::kable() to print out tables on PowerPoint slides. If you want more than basic formatting, you can use the {kableExtra} package, found here to style your kable tables.

32.3.2 Images in Powerpoint

You can add a code chunk and create a plot on a slide with code in the code chunk, using fig.width and fig.height chunk options to control the dimensions of the plot.

You can include a graphic (picture, other plot, etc.) in a code chunk with knitr::include_graphics("path/to/filename"), with a code chunk like this:

knitr::include_graphics(here("images/echocardiogram.jpg"))

This is often helpful if you have already created your images or graphics, and just need to pull them into powerpoint from a folder.

You can use chunk options like fig.width=12 and fig.height=7 to control the size of the image on the slide.

Note that if you are using these options frequently, it may be easier to set these globally (for the whole presentation) in the setup chunk, as options in knitr:opts_chunk$set(), rather than in each code chunk.

32.3.3 Plots in Powerpoint

Note that plots come in from R to Powerpoint as included graphics. They can be re-sized, but not edited, once they are in Powerpoint. This is good for reproducibility, but if you are still fiddling with your plots, it may be best to save the conversion to Powerpoint until the final version.

You can put multiple plots on one slide if you use the {patchwork} package to set them up as a multipanel figure.

If you want plots in PPT that are editable (less reproducible, but sometimes handy), you will want to use the {mschart} package, which will output charts in Microsoft format that can be included in PowerPoint slides and will still be editable within PowerPoint.

	title: “Customizing Plot Scales”
	author: “Peter Higgins”
	date: “10/21/2021”
	output: html_document

install.packages('tidyverse')
install.packages('tidyverse')
install.packages('tidyverse')
install.packages('tidyverse')

library(tidyverse)

── Attaching core tidyverse packages ──── tidyverse 2.0.0 ──
✔ dplyr 1.1.2 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.3 ✔ tibble 3.2.1
✔ lubridate 1.9.2 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(medicaldata)
library(webexercises)
library(scales)

Attaching package: 'scales'

The following object is masked from 'package:purrr':

discard

The following object is masked from 'package:readr':

col_factor

indo_rct <- medicaldata::indo_rct

