library(AER)
library(MASS)
data(Boston)
# find the optimal polynomial order of the polylog model
# extract the R^2 from the selected model and assign it to R2
# find the optimal polynomial order of the polylog model
for(i in 4:1){
mod <- lm(medv ~ poly(log(lstat), i, raw = T), data = Boston)
pval <- coeftest(mod, vcov = vcovHC)[(i+1), 4]
if(pval < 0.05){
print(i)
break
}
}
# extract the R^2 from the selected model and assign it to R2
R2 <- summary(mod)$r.squared
ex() %>% check_for()
ex() %>% check_object("R2") %>% check_equal()
success_msg("Correct! Using the sequential testing approach we get an optimal order of r=2.")