How this document is organized
- The outcomes are numbered 1 - 4 (challenge, relevance, learning, and positive affect)
- Within the section for each outcome, four models are specified (just youth activity, PQA counts, PQA dummy codes, and select activities with select PQA counts)
library(tidyverse)
library(lme4)
library(corrr)
library(jmRtools)
library(sjPlot)
esm <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-esm.csv")
pre_survey_data_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pre-survey.csv")
post_survey_data_partially_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-post-survey.csv")
video <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-video.csv")
pqa <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pqa.csv")
attendance <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-attendance.csv")
class_data <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-class-video.csv")
demographics <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-demographics.csv")
pm <- read_csv("/Volumes/SCHMIDTLAB/PSE/Data/STEM-IE/STEM-IE-program-match.csv")
attendance <- rename(attendance, participant_ID = ParticipantID)
attendance <- mutate(attendance, prop_attend = DaysAttended / DaysScheduled,
participant_ID = as.integer(participant_ID))
attendance <- select(attendance, participant_ID, prop_attend)
demographics <- filter(demographics, participant_ID!= 7187)
demographics <- left_join(demographics, attendance)
esm$overall_engagement <- jmRtools::composite_mean_maker(esm, hard_working, concentrating, enjoy, interest)
df <- left_join(esm, pre_survey_data_processed, by = "participant_ID") # df & post-survey
df <- left_join(df, video, by = c("program_ID", "response_date", "sociedad_class", "signal_number")) # df & video
df <- left_join(df, demographics, by = c("participant_ID", "program_ID")) # df and demographics
pqa <- mutate(pqa,
active = active_part_1 + active_part_2,
ho_thinking = ho_thinking_1 + ho_thinking_2 + ho_thinking_3,
belonging = belonging_1 + belonging_2,
agency = agency_1 + agency_2 + agency_3 + agency_4,
youth_development_overall = active_part_1 + active_part_2 + ho_thinking_1 + ho_thinking_2 + ho_thinking_3 + belonging_1 + belonging_2 + agency_1 + agency_2 + agency_3 + agency_4,
making_observations = stem_sb_8,
data_modeling = stem_sb_2 + stem_sb_3 + stem_sb_9,
interpreting_communicating = stem_sb_6,
generating_data = stem_sb_4,
asking_questions = stem_sb_1,
stem_sb = stem_sb_1 + stem_sb_2 + stem_sb_3 + stem_sb_4 + stem_sb_5 + stem_sb_6 + stem_sb_7 + stem_sb_8 + stem_sb_9)
# pqa <- rename(pqa, sixth_math_sociedad = sixth_math)
# pqa <- rename(pqa, seventh_math_sociedad = seventh_math)
# pqa <- rename(pqa, eighth_math_sociedad = eighth_math)
# pqa <- rename(pqa, dance_sociedad = dance)
# pqa <- rename(pqa, robotics_sociedad = robotics)
pqa$sociedad_class <- ifelse(pqa$eighth_math == 1, "8th Math",
ifelse(pqa$seventh_math == 1, "7th Math",
ifelse(pqa$sixth_math == 1, "6th Math",
ifelse(pqa$robotics == 1, "Robotics",
ifelse(pqa$dance == 1, "Dance", NA)))))
pqa <- rename(pqa,
program_ID = SiteIDNumeric,
response_date = resp_date,
signal_number = signal)
pqa$program_ID <- as.character(pqa$program_ID)
df <- left_join(df, pqa, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))
df <- df %>%
mutate(youth_activity_three = case_when(
youth_activity_rc == "Creating Product" ~ "Creating Product",
youth_activity_rc == "Basic Skills Activity" ~ "Basic Skills Activity",
TRUE ~ "Other"
))
df$youth_activity_three <- fct_relevel(df$youth_activity_three,
"Other")
Correlations
df %>%
select(challenge, relevance, learning, positive_affect, ho_thinking, stem_sb, agency, active, belonging) %>%
correlate() %>%
shave() %>%
fashion() %>%
knitr::kable()
challenge |
|
|
|
|
|
|
|
|
|
relevance |
.39 |
|
|
|
|
|
|
|
|
learning |
.30 |
.65 |
|
|
|
|
|
|
|
positive_affect |
.27 |
.52 |
.48 |
|
|
|
|
|
|
ho_thinking |
-.04 |
.02 |
.02 |
.04 |
|
|
|
|
|
stem_sb |
.00 |
.02 |
.04 |
-.04 |
.54 |
|
|
|
|
agency |
.06 |
.02 |
.04 |
.04 |
.38 |
.39 |
|
|
|
active |
.01 |
.02 |
.03 |
.00 |
.44 |
.56 |
.16 |
|
|
belonging |
.03 |
-.02 |
.03 |
-.01 |
.36 |
.42 |
.54 |
.22 |
|
df <- df %>%
mutate(ho_thinking_dummy = ifelse(ho_thinking > 0, 1, 0),
agency_dummy = ifelse(agency > 0, 1, 0),
active_dummy = ifelse(active > 0, 1, 0),
belonging_dummy = ifelse(belonging > 0, 1, 0),
stem_sb_dummy = ifelse(stem_sb > 0, 1, 0))
1. Challenge
1A: Just youth activity
m <- lmer(challenge ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
challenge
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.19
|
0.09
|
<.001
|
youth_activity_rc (Basic Skills Activity)
|
|
0.10
|
0.06
|
.151
|
youth_activity_rc (Creating Product)
|
|
0.37
|
0.06
|
<.001
|
youth_activity_rc (Field Trip Speaker)
|
|
-0.08
|
0.13
|
.565
|
youth_activity_rc (Lab Activity)
|
|
0.20
|
0.12
|
.136
|
youth_activity_rc (Program Staff Led)
|
|
-0.10
|
0.07
|
.205
|
Random Parts
|
Nbeep_ID_new
|
|
235
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.045
|
ICCparticipant_ID
|
|
0.385
|
ICCprogram_ID
|
|
0.034
|
Observations
|
|
2818
|
R2 / Ω02
|
|
.529 / .522
|
1B: Just STEM-SB as counts
m <- lmer(challenge ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
challenge
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.17
|
0.12
|
<.001
|
active
|
|
0.03
|
0.06
|
.642
|
ho_thinking
|
|
-0.09
|
0.03
|
.004
|
belonging
|
|
0.05
|
0.04
|
.221
|
agency
|
|
0.07
|
0.02
|
.005
|
stem_sb
|
|
0.02
|
0.01
|
.181
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.051
|
ICCparticipant_ID
|
|
0.375
|
ICCprogram_ID
|
|
0.042
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.529 / .521
|
1C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(challenge ~
active_dummy +
ho_thinking_dummy +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
challenge
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
1.98
|
0.21
|
<.001
|
active_dummy
|
|
0.12
|
0.19
|
.532
|
ho_thinking_dummy
|
|
-0.15
|
0.08
|
.047
|
belonging_dummy
|
|
0.11
|
0.07
|
.084
|
agency_dummy
|
|
0.14
|
0.07
|
.056
|
stem_sb_dummy
|
|
0.14
|
0.07
|
.056
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.057
|
ICCparticipant_ID
|
|
0.373
|
ICCprogram_ID
|
|
0.041
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.530 / .523
|
1D: Only select activities and STEM-SB dummy codes
m <- lmer(challenge ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
challenge
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.08
|
0.11
|
<.001
|
youth_activity_three (Basic Skills Activity)
|
|
0.13
|
0.06
|
.047
|
youth_activity_three (Creating Product)
|
|
0.36
|
0.06
|
<.001
|
agency_dummy
|
|
0.08
|
0.06
|
.195
|
stem_sb_dummy
|
|
0.04
|
0.06
|
.546
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.047
|
ICCparticipant_ID
|
|
0.379
|
ICCprogram_ID
|
|
0.039
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.528 / .521
|
2. Relevance
2A: Just youth activity
m <- lmer(relevance ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
relevance
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.46
|
0.07
|
<.001
|
youth_activity_rc (Basic Skills Activity)
|
|
0.15
|
0.04
|
.005
|
youth_activity_rc (Creating Product)
|
|
0.23
|
0.04
|
<.001
|
youth_activity_rc (Field Trip Speaker)
|
|
0.29
|
0.07
|
.004
|
youth_activity_rc (Lab Activity)
|
|
0.11
|
0.07
|
.182
|
youth_activity_rc (Program Staff Led)
|
|
0.15
|
0.04
|
.009
|
Random Parts
|
Nbeep_ID_new
|
|
235
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.007
|
ICCparticipant_ID
|
|
0.523
|
ICCprogram_ID
|
|
0.016
|
Observations
|
|
2818
|
R2 / Ω02
|
|
.586 / .583
|
2B: Just STEM-SB as counts
m <- lmer(relevance ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
relevance
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.50
|
0.08
|
<.001
|
active
|
|
0.02
|
0.03
|
.552
|
ho_thinking
|
|
0.01
|
0.02
|
.479
|
belonging
|
|
-0.04
|
0.02
|
.144
|
agency
|
|
0.01
|
0.01
|
.644
|
stem_sb
|
|
0.02
|
0.01
|
.072
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.012
|
ICCparticipant_ID
|
|
0.516
|
ICCprogram_ID
|
|
0.014
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.586 / .584
|
2C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(relevance ~
active_dummy +
ho_thinking_dummy +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
relevance
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.32
|
0.13
|
<.001
|
active_dummy
|
|
0.21
|
0.12
|
.082
|
ho_thinking_dummy
|
|
-0.08
|
0.05
|
.109
|
belonging_dummy
|
|
0.01
|
0.04
|
.707
|
agency_dummy
|
|
-0.00
|
0.04
|
.955
|
stem_sb_dummy
|
|
0.13
|
0.04
|
.003
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.012
|
ICCparticipant_ID
|
|
0.520
|
ICCprogram_ID
|
|
0.009
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.587 / .584
|
2D: Only select activities and STEM-SB dummy codes
m <- lmer(relevance ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
relevance
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.49
|
0.07
|
<.001
|
youth_activity_three (Basic Skills Activity)
|
|
0.05
|
0.04
|
.157
|
youth_activity_three (Creating Product)
|
|
0.15
|
0.04
|
.001
|
agency_dummy
|
|
-0.04
|
0.04
|
.300
|
stem_sb_dummy
|
|
0.10
|
0.04
|
.022
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.010
|
ICCparticipant_ID
|
|
0.522
|
ICCprogram_ID
|
|
0.008
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.586 / .583
|
3. Learning
3A: Just youth activity
m <- lmer(learning ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
learning
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.68
|
0.06
|
<.001
|
youth_activity_rc (Basic Skills Activity)
|
|
0.22
|
0.05
|
.002
|
youth_activity_rc (Creating Product)
|
|
0.14
|
0.05
|
.028
|
youth_activity_rc (Field Trip Speaker)
|
|
0.10
|
0.10
|
.339
|
youth_activity_rc (Lab Activity)
|
|
0.15
|
0.10
|
.145
|
youth_activity_rc (Program Staff Led)
|
|
0.07
|
0.06
|
.250
|
Random Parts
|
Nbeep_ID_new
|
|
235
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.011
|
ICCparticipant_ID
|
|
0.357
|
ICCprogram_ID
|
|
0.002
|
Observations
|
|
2817
|
R2 / Ω02
|
|
.428 / .421
|
3B: Just STEM-SB as counts
m <- lmer(learning ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
learning
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.63
|
0.08
|
<.001
|
active
|
|
0.08
|
0.04
|
.071
|
ho_thinking
|
|
-0.03
|
0.02
|
.241
|
belonging
|
|
0.03
|
0.03
|
.280
|
agency
|
|
0.01
|
0.02
|
.547
|
stem_sb
|
|
0.01
|
0.01
|
.491
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.012
|
ICCparticipant_ID
|
|
0.356
|
ICCprogram_ID
|
|
0.000
|
Observations
|
|
2798
|
R2 / Ω02
|
|
.427 / .420
|
3C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(learning ~
active_dummy +
ho_thinking_dummy +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
learning
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.33
|
0.15
|
<.001
|
active_dummy
|
|
0.34
|
0.15
|
.022
|
ho_thinking_dummy
|
|
-0.09
|
0.06
|
.123
|
belonging_dummy
|
|
0.08
|
0.05
|
.116
|
agency_dummy
|
|
0.02
|
0.05
|
.664
|
stem_sb_dummy
|
|
0.13
|
0.05
|
.015
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.011
|
ICCparticipant_ID
|
|
0.357
|
ICCprogram_ID
|
|
0.000
|
Observations
|
|
2798
|
R2 / Ω02
|
|
.428 / .421
|
3D: Only select activities and STEM-SB dummy codes
m <- lmer(learning ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
learning
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.62
|
0.07
|
<.001
|
youth_activity_three (Basic Skills Activity)
|
|
0.16
|
0.05
|
.002
|
youth_activity_three (Creating Product)
|
|
0.06
|
0.05
|
.208
|
agency_dummy
|
|
0.04
|
0.05
|
.435
|
stem_sb_dummy
|
|
0.10
|
0.05
|
.062
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.010
|
ICCparticipant_ID
|
|
0.357
|
ICCprogram_ID
|
|
0.001
|
Observations
|
|
2798
|
R2 / Ω02
|
|
.426 / .420
|
4. Affect
4A: Just youth activity
m <- lmer(positive_affect ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
positive_affect
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.70
|
0.12
|
<.001
|
youth_activity_rc (Basic Skills Activity)
|
|
0.03
|
0.05
|
.548
|
youth_activity_rc (Creating Product)
|
|
0.01
|
0.05
|
.808
|
youth_activity_rc (Field Trip Speaker)
|
|
0.01
|
0.10
|
.928
|
youth_activity_rc (Lab Activity)
|
|
0.07
|
0.10
|
.527
|
youth_activity_rc (Program Staff Led)
|
|
-0.05
|
0.06
|
.403
|
Random Parts
|
Nbeep_ID_new
|
|
235
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.023
|
ICCparticipant_ID
|
|
0.421
|
ICCprogram_ID
|
|
0.091
|
Observations
|
|
2818
|
R2 / Ω02
|
|
.580 / .576
|
4B: Just STEM-SB as counts
m <- lmer(positive_affect ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
positive_affect
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.63
|
0.13
|
<.001
|
active
|
|
0.05
|
0.04
|
.300
|
ho_thinking
|
|
-0.00
|
0.02
|
.880
|
belonging
|
|
0.03
|
0.03
|
.300
|
agency
|
|
0.02
|
0.02
|
.346
|
stem_sb
|
|
-0.02
|
0.01
|
.107
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.023
|
ICCparticipant_ID
|
|
0.424
|
ICCprogram_ID
|
|
0.091
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.584 / .580
|
4C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(positive_affect ~
active_dummy +
ho_thinking +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
positive_affect
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.62
|
0.19
|
<.001
|
active_dummy
|
|
-0.00
|
0.15
|
.975
|
ho_thinking
|
|
-0.01
|
0.02
|
.531
|
belonging_dummy
|
|
0.04
|
0.05
|
.403
|
agency_dummy
|
|
0.13
|
0.05
|
.021
|
stem_sb_dummy
|
|
-0.03
|
0.06
|
.611
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.023
|
ICCparticipant_ID
|
|
0.423
|
ICCprogram_ID
|
|
0.093
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.584 / .580
|
4D: Only select activities and STEM-SB dummy codes
m <- lmer(positive_affect ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
|
|
positive_affect
|
|
|
B
|
std. Error
|
p
|
Fixed Parts
|
(Intercept)
|
|
2.62
|
0.13
|
<.001
|
youth_activity_three (Basic Skills Activity)
|
|
0.04
|
0.05
|
.434
|
youth_activity_three (Creating Product)
|
|
-0.03
|
0.05
|
.590
|
agency_dummy
|
|
0.15
|
0.05
|
.012
|
stem_sb_dummy
|
|
-0.05
|
0.05
|
.366
|
Random Parts
|
Nbeep_ID_new
|
|
236
|
Nparticipant_ID
|
|
203
|
Nprogram_ID
|
|
9
|
ICCbeep_ID_new
|
|
0.022
|
ICCparticipant_ID
|
|
0.423
|
ICCprogram_ID
|
|
0.095
|
Observations
|
|
2799
|
R2 / Ω02
|
|
.584 / .580
|