How this document is organized
- The outcomes are numbered 1 - 4 (challenge, relevance, learning, and positive affect)
 
- Within the section for each outcome, four models are specified (just youth activity, PQA counts, PQA dummy codes, and select activities with select PQA counts)
 
library(tidyverse)
library(lme4)
library(corrr)
library(jmRtools)
library(sjPlot)
esm <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-esm.csv")
pre_survey_data_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pre-survey.csv")
post_survey_data_partially_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-post-survey.csv")
video <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-video.csv")
pqa <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pqa.csv")
attendance <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-attendance.csv")
class_data <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-class-video.csv")
demographics <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-demographics.csv")
pm <- read_csv("/Volumes/SCHMIDTLAB/PSE/Data/STEM-IE/STEM-IE-program-match.csv")
attendance <- rename(attendance, participant_ID = ParticipantID)
attendance <- mutate(attendance, prop_attend = DaysAttended / DaysScheduled, 
                     participant_ID = as.integer(participant_ID))
attendance <- select(attendance, participant_ID, prop_attend)
demographics <- filter(demographics, participant_ID!= 7187)
demographics <- left_join(demographics, attendance)
esm$overall_engagement <- jmRtools::composite_mean_maker(esm, hard_working, concentrating, enjoy, interest)
df <- left_join(esm, pre_survey_data_processed, by = "participant_ID") # df & post-survey
df <- left_join(df, video, by = c("program_ID", "response_date", "sociedad_class", "signal_number")) # df & video
df <- left_join(df, demographics, by = c("participant_ID", "program_ID")) # df and demographics
pqa <- mutate(pqa, 
              active = active_part_1 + active_part_2,
              ho_thinking = ho_thinking_1 + ho_thinking_2 + ho_thinking_3,
              belonging = belonging_1 + belonging_2,
              agency = agency_1 + agency_2 + agency_3 + agency_4,
              youth_development_overall = active_part_1 + active_part_2 + ho_thinking_1 + ho_thinking_2 + ho_thinking_3 + belonging_1 + belonging_2 + agency_1 + agency_2 + agency_3 + agency_4,
              making_observations = stem_sb_8,
              data_modeling = stem_sb_2 + stem_sb_3 + stem_sb_9,
              interpreting_communicating = stem_sb_6,
              generating_data = stem_sb_4,
              asking_questions = stem_sb_1,
              stem_sb = stem_sb_1 + stem_sb_2 + stem_sb_3 + stem_sb_4 + stem_sb_5 + stem_sb_6 + stem_sb_7 + stem_sb_8 + stem_sb_9)
# pqa <- rename(pqa, sixth_math_sociedad = sixth_math)
# pqa <- rename(pqa, seventh_math_sociedad = seventh_math)
# pqa <- rename(pqa, eighth_math_sociedad = eighth_math)
# pqa <- rename(pqa, dance_sociedad = dance)
# pqa <- rename(pqa, robotics_sociedad = robotics)
pqa$sociedad_class <- ifelse(pqa$eighth_math == 1, "8th Math",
                             ifelse(pqa$seventh_math == 1, "7th Math",
                                    ifelse(pqa$sixth_math == 1, "6th Math",
                                           ifelse(pqa$robotics == 1, "Robotics",
                                                  ifelse(pqa$dance == 1, "Dance", NA)))))
pqa <- rename(pqa, 
              program_ID = SiteIDNumeric,
              response_date = resp_date,
              signal_number = signal)
pqa$program_ID <- as.character(pqa$program_ID)
df <- left_join(df, pqa, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))
df <- df %>% 
    mutate(youth_activity_three = case_when(
        youth_activity_rc == "Creating Product" ~ "Creating Product",
        youth_activity_rc == "Basic Skills Activity" ~ "Basic Skills Activity",
        TRUE ~ "Other"
    ))
df$youth_activity_three <- fct_relevel(df$youth_activity_three, 
                                       "Other")
 
Correlations
df %>% 
    select(challenge, relevance, learning, positive_affect, ho_thinking, stem_sb, agency, active, belonging) %>% 
    correlate() %>% 
    shave() %>% 
    fashion() %>% 
    knitr::kable()
| challenge | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| relevance | 
.39 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| learning | 
.30 | 
.65 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| positive_affect | 
.27 | 
.52 | 
.48 | 
 | 
 | 
 | 
 | 
 | 
 | 
| ho_thinking | 
-.04 | 
.02 | 
.02 | 
.04 | 
 | 
 | 
 | 
 | 
 | 
| stem_sb | 
.00 | 
.02 | 
.04 | 
-.04 | 
.54 | 
 | 
 | 
 | 
 | 
| agency | 
.06 | 
.02 | 
.04 | 
.04 | 
.38 | 
.39 | 
 | 
 | 
 | 
| active | 
.01 | 
.02 | 
.03 | 
.00 | 
.44 | 
.56 | 
.16 | 
 | 
 | 
| belonging | 
.03 | 
-.02 | 
.03 | 
-.01 | 
.36 | 
.42 | 
.54 | 
.22 | 
 | 
df <- df %>% 
    mutate(ho_thinking_dummy = ifelse(ho_thinking > 0, 1, 0),
           agency_dummy = ifelse(agency > 0, 1, 0),
           active_dummy = ifelse(active > 0, 1, 0),
           belonging_dummy = ifelse(belonging > 0, 1, 0),
           stem_sb_dummy = ifelse(stem_sb > 0, 1, 0))
 
1. Challenge
1A: Just youth activity
m <- lmer(challenge ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.19
 | 
0.09
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.10
 | 
0.06
 | 
.151
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.37
 | 
0.06
 | 
<.001
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
-0.08
 | 
0.13
 | 
.565
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.20
 | 
0.12
 | 
.136
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
-0.10
 | 
0.07
 | 
.205
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.045
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.385
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.034
 | 
| 
Observations
 | 
 
 | 
2818
 | 
| 
R2 / Ω02
 | 
 
 | 
.529 / .522
 | 
 
1B: Just STEM-SB as counts
m <- lmer(challenge ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.17
 | 
0.12
 | 
<.001
 | 
| 
active
 | 
 
 | 
0.03
 | 
0.06
 | 
.642
 | 
| 
ho_thinking
 | 
 
 | 
-0.09
 | 
0.03
 | 
.004
 | 
| 
belonging
 | 
 
 | 
0.05
 | 
0.04
 | 
.221
 | 
| 
agency
 | 
 
 | 
0.07
 | 
0.02
 | 
.005
 | 
| 
stem_sb
 | 
 
 | 
0.02
 | 
0.01
 | 
.181
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.051
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.375
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.042
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.529 / .521
 | 
 
1C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(challenge ~ 
              active_dummy +
              ho_thinking_dummy +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
1.98
 | 
0.21
 | 
<.001
 | 
| 
active_dummy
 | 
 
 | 
0.12
 | 
0.19
 | 
.532
 | 
| 
ho_thinking_dummy
 | 
 
 | 
-0.15
 | 
0.08
 | 
.047
 | 
| 
belonging_dummy
 | 
 
 | 
0.11
 | 
0.07
 | 
.084
 | 
| 
agency_dummy
 | 
 
 | 
0.14
 | 
0.07
 | 
.056
 | 
| 
stem_sb_dummy
 | 
 
 | 
0.14
 | 
0.07
 | 
.056
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.057
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.373
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.041
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.530 / .523
 | 
 
1D: Only select activities and STEM-SB dummy codes
m <- lmer(challenge ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.08
 | 
0.11
 | 
<.001
 | 
| 
youth_activity_three (Basic Skills Activity)
 | 
 
 | 
0.13
 | 
0.06
 | 
.047
 | 
| 
youth_activity_three (Creating Product)
 | 
 
 | 
0.36
 | 
0.06
 | 
<.001
 | 
| 
agency_dummy
 | 
 
 | 
0.08
 | 
0.06
 | 
.195
 | 
| 
stem_sb_dummy
 | 
 
 | 
0.04
 | 
0.06
 | 
.546
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.047
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.379
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.039
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.528 / .521
 | 
 
 
2. Relevance
2A: Just youth activity
m <- lmer(relevance ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.46
 | 
0.07
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.15
 | 
0.04
 | 
.005
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.23
 | 
0.04
 | 
<.001
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.29
 | 
0.07
 | 
.004
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.11
 | 
0.07
 | 
.182
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
0.15
 | 
0.04
 | 
.009
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.007
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.523
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.016
 | 
| 
Observations
 | 
 
 | 
2818
 | 
| 
R2 / Ω02
 | 
 
 | 
.586 / .583
 | 
 
2B: Just STEM-SB as counts
m <- lmer(relevance ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.50
 | 
0.08
 | 
<.001
 | 
| 
active
 | 
 
 | 
0.02
 | 
0.03
 | 
.552
 | 
| 
ho_thinking
 | 
 
 | 
0.01
 | 
0.02
 | 
.479
 | 
| 
belonging
 | 
 
 | 
-0.04
 | 
0.02
 | 
.144
 | 
| 
agency
 | 
 
 | 
0.01
 | 
0.01
 | 
.644
 | 
| 
stem_sb
 | 
 
 | 
0.02
 | 
0.01
 | 
.072
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.012
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.516
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.014
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.586 / .584
 | 
 
2C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(relevance ~ 
              active_dummy +
              ho_thinking_dummy +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.32
 | 
0.13
 | 
<.001
 | 
| 
active_dummy
 | 
 
 | 
0.21
 | 
0.12
 | 
.082
 | 
| 
ho_thinking_dummy
 | 
 
 | 
-0.08
 | 
0.05
 | 
.109
 | 
| 
belonging_dummy
 | 
 
 | 
0.01
 | 
0.04
 | 
.707
 | 
| 
agency_dummy
 | 
 
 | 
-0.00
 | 
0.04
 | 
.955
 | 
| 
stem_sb_dummy
 | 
 
 | 
0.13
 | 
0.04
 | 
.003
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.012
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.520
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.009
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.587 / .584
 | 
 
2D: Only select activities and STEM-SB dummy codes
m <- lmer(relevance ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.49
 | 
0.07
 | 
<.001
 | 
| 
youth_activity_three (Basic Skills Activity)
 | 
 
 | 
0.05
 | 
0.04
 | 
.157
 | 
| 
youth_activity_three (Creating Product)
 | 
 
 | 
0.15
 | 
0.04
 | 
.001
 | 
| 
agency_dummy
 | 
 
 | 
-0.04
 | 
0.04
 | 
.300
 | 
| 
stem_sb_dummy
 | 
 
 | 
0.10
 | 
0.04
 | 
.022
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.010
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.522
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.008
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.586 / .583
 | 
 
 
3. Learning
3A: Just youth activity
m <- lmer(learning ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.68
 | 
0.06
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.22
 | 
0.05
 | 
.002
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.14
 | 
0.05
 | 
.028
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.10
 | 
0.10
 | 
.339
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.15
 | 
0.10
 | 
.145
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
0.07
 | 
0.06
 | 
.250
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.011
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.357
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.002
 | 
| 
Observations
 | 
 
 | 
2817
 | 
| 
R2 / Ω02
 | 
 
 | 
.428 / .421
 | 
 
3B: Just STEM-SB as counts
m <- lmer(learning ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.63
 | 
0.08
 | 
<.001
 | 
| 
active
 | 
 
 | 
0.08
 | 
0.04
 | 
.071
 | 
| 
ho_thinking
 | 
 
 | 
-0.03
 | 
0.02
 | 
.241
 | 
| 
belonging
 | 
 
 | 
0.03
 | 
0.03
 | 
.280
 | 
| 
agency
 | 
 
 | 
0.01
 | 
0.02
 | 
.547
 | 
| 
stem_sb
 | 
 
 | 
0.01
 | 
0.01
 | 
.491
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.012
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.356
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.000
 | 
| 
Observations
 | 
 
 | 
2798
 | 
| 
R2 / Ω02
 | 
 
 | 
.427 / .420
 | 
 
3C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(learning ~ 
              active_dummy +
              ho_thinking_dummy +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.33
 | 
0.15
 | 
<.001
 | 
| 
active_dummy
 | 
 
 | 
0.34
 | 
0.15
 | 
.022
 | 
| 
ho_thinking_dummy
 | 
 
 | 
-0.09
 | 
0.06
 | 
.123
 | 
| 
belonging_dummy
 | 
 
 | 
0.08
 | 
0.05
 | 
.116
 | 
| 
agency_dummy
 | 
 
 | 
0.02
 | 
0.05
 | 
.664
 | 
| 
stem_sb_dummy
 | 
 
 | 
0.13
 | 
0.05
 | 
.015
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.011
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.357
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.000
 | 
| 
Observations
 | 
 
 | 
2798
 | 
| 
R2 / Ω02
 | 
 
 | 
.428 / .421
 | 
 
3D: Only select activities and STEM-SB dummy codes
m <- lmer(learning ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.62
 | 
0.07
 | 
<.001
 | 
| 
youth_activity_three (Basic Skills Activity)
 | 
 
 | 
0.16
 | 
0.05
 | 
.002
 | 
| 
youth_activity_three (Creating Product)
 | 
 
 | 
0.06
 | 
0.05
 | 
.208
 | 
| 
agency_dummy
 | 
 
 | 
0.04
 | 
0.05
 | 
.435
 | 
| 
stem_sb_dummy
 | 
 
 | 
0.10
 | 
0.05
 | 
.062
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.010
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.357
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.001
 | 
| 
Observations
 | 
 
 | 
2798
 | 
| 
R2 / Ω02
 | 
 
 | 
.426 / .420
 | 
 
 
4. Affect
4A: Just youth activity
m <- lmer(positive_affect ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.70
 | 
0.12
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.03
 | 
0.05
 | 
.548
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.01
 | 
0.05
 | 
.808
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.01
 | 
0.10
 | 
.928
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.07
 | 
0.10
 | 
.527
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
-0.05
 | 
0.06
 | 
.403
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.023
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.421
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.091
 | 
| 
Observations
 | 
 
 | 
2818
 | 
| 
R2 / Ω02
 | 
 
 | 
.580 / .576
 | 
 
4B: Just STEM-SB as counts
m <- lmer(positive_affect ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.63
 | 
0.13
 | 
<.001
 | 
| 
active
 | 
 
 | 
0.05
 | 
0.04
 | 
.300
 | 
| 
ho_thinking
 | 
 
 | 
-0.00
 | 
0.02
 | 
.880
 | 
| 
belonging
 | 
 
 | 
0.03
 | 
0.03
 | 
.300
 | 
| 
agency
 | 
 
 | 
0.02
 | 
0.02
 | 
.346
 | 
| 
stem_sb
 | 
 
 | 
-0.02
 | 
0.01
 | 
.107
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.023
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.424
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.091
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.584 / .580
 | 
 
4C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)
m <- lmer(positive_affect ~ 
              active_dummy +
              ho_thinking +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.62
 | 
0.19
 | 
<.001
 | 
| 
active_dummy
 | 
 
 | 
-0.00
 | 
0.15
 | 
.975
 | 
| 
ho_thinking
 | 
 
 | 
-0.01
 | 
0.02
 | 
.531
 | 
| 
belonging_dummy
 | 
 
 | 
0.04
 | 
0.05
 | 
.403
 | 
| 
agency_dummy
 | 
 
 | 
0.13
 | 
0.05
 | 
.021
 | 
| 
stem_sb_dummy
 | 
 
 | 
-0.03
 | 
0.06
 | 
.611
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.023
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.423
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.093
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.584 / .580
 | 
 
4D: Only select activities and STEM-SB dummy codes
m <- lmer(positive_affect ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)
sjPlot::sjt.lmer(m, p.kr = T, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.62
 | 
0.13
 | 
<.001
 | 
| 
youth_activity_three (Basic Skills Activity)
 | 
 
 | 
0.04
 | 
0.05
 | 
.434
 | 
| 
youth_activity_three (Creating Product)
 | 
 
 | 
-0.03
 | 
0.05
 | 
.590
 | 
| 
agency_dummy
 | 
 
 | 
0.15
 | 
0.05
 | 
.012
 | 
| 
stem_sb_dummy
 | 
 
 | 
-0.05
 | 
0.05
 | 
.366
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.022
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.423
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.095
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.584 / .580
 |