1. Loading, setting up
2. Null models (ready)
3. Models for youth activity (ready)
video %>% 
    left_join(pm) %>% 
    count(program_name, youth_activity_rc) %>% 
    filter(!is.na(youth_activity_rc)) %>% 
    spread(youth_activity_rc, n, fill = 0) %>% 
    gather(youth_activity_rc, frequency, -program_name) %>% 
    group_by(program_name) %>% 
    mutate(frequency_prop = frequency / sum(frequency)) %>% 
    ggplot(aes(x = reorder(youth_activity_rc, frequency_prop), y = frequency_prop)) +
    facet_wrap( ~ program_name) +
    geom_col() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    ylab("Frequency Proportion") +
    xlab(NULL) +
    ggtitle("Frequency of Youth Activity (Recoded) Codes by Program")

df$youth_activity_rc_fac <- as.factor(df$youth_activity_rc)
dc <- as.tibble(psych::dummy.code(df$youth_activity_rc_fac))
df_ss <- bind_cols(df, dc)
df_ss %>% 
    select(challenge, relevance, learning, positive_affect, 
           `Not Focused`, `Basic Skills Activity`, `Creating Product`, 
           `Field Trip Speaker`, `Lab Activity`, `Program Staff Led`) %>% 
    correlate() %>% 
    shave() %>% 
    fashion()
##                  rowname challenge relevance learning positive_affect
## 1              challenge                                             
## 2              relevance       .39                                   
## 3               learning       .30       .65                         
## 4        positive_affect       .27       .52      .48                
## 5            Not Focused      -.02      -.06     -.05             .04
## 6  Basic Skills Activity      -.01      -.01      .04            -.06
## 7       Creating Product       .12       .08      .04             .05
## 8     Field Trip Speaker      -.04       .01     -.02             .02
## 9           Lab Activity       .00      -.03      .01             .02
## 10     Program Staff Led      -.06       .01     -.00            -.07
##    Not.Focused Basic.Skills.Activity Creating.Product Field.Trip.Speaker
## 1                                                                       
## 2                                                                       
## 3                                                                       
## 4                                                                       
## 5                                                                       
## 6         -.35                                                          
## 7         -.33                  -.25                                    
## 8         -.15                  -.11             -.11                   
## 9         -.14                  -.11             -.10               -.05
## 10        -.27                  -.21             -.20               -.09
##    Lab.Activity Program.Staff.Led
## 1                                
## 2                                
## 3                                
## 4                                
## 5                                
## 6                                
## 7                                
## 8                                
## 9                                
## 10         -.09
m1i <- lmer(challenge ~ 1 + 
                youth_activity_rc +
                (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
            data = df)
sjPlot::sjt.lmer(m1i, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.19
 | 
0.09
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.10
 | 
0.06
 | 
.117
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.37
 | 
0.06
 | 
<.001
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
-0.08
 | 
0.13
 | 
.550
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.20
 | 
0.12
 | 
.102
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
-0.10
 | 
0.07
 | 
.173
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.045
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.385
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.034
 | 
| 
Observations
 | 
 
 | 
2818
 | 
| 
R2 / Ω02
 | 
 
 | 
.529 / .522
 | 
m1ii <- lmer(relevance ~ 1 + 
                 youth_activity_rc +
                 (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
             data = df)
sjPlot::sjt.lmer(m1ii, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.46
 | 
0.07
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.15
 | 
0.04
 | 
<.001
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.23
 | 
0.04
 | 
<.001
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.29
 | 
0.07
 | 
<.001
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.11
 | 
0.07
 | 
.144
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
0.15
 | 
0.04
 | 
<.001
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.007
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.523
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.016
 | 
| 
Observations
 | 
 
 | 
2818
 | 
| 
R2 / Ω02
 | 
 
 | 
.586 / .583
 | 
m1iii <- lmer(learning ~ 1 + 
                  youth_activity_rc +
                  (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
              data = df)
sjPlot::sjt.lmer(m1iii, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.68
 | 
0.06
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.22
 | 
0.05
 | 
<.001
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.14
 | 
0.05
 | 
.009
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.10
 | 
0.10
 | 
.312
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.15
 | 
0.10
 | 
.111
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
0.07
 | 
0.06
 | 
.218
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.011
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.357
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.002
 | 
| 
Observations
 | 
 
 | 
2817
 | 
| 
R2 / Ω02
 | 
 
 | 
.428 / .421
 | 
df$positive_affect <- jmRtools::composite_mean_maker(df,
                                                     happy, excited)
m1iv <- lmer(positive_affect ~ 1 + 
                 youth_activity_rc +
                 (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
             data = df)
sjPlot::sjt.lmer(m1iv, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.70
 | 
0.12
 | 
<.001
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.03
 | 
0.05
 | 
.532
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.01
 | 
0.05
 | 
.802
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.01
 | 
0.10
 | 
.926
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.07
 | 
0.10
 | 
.510
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
-0.05
 | 
0.06
 | 
.380
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.023
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.421
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.091
 | 
| 
Observations
 | 
 
 | 
2818
 | 
| 
R2 / Ω02
 | 
 
 | 
.580 / .576
 | 
 
4. CLASS models (not ready)
df %>% 
    select(CLASS_EmotionalSupportEncouragement, CLASS_InstructionalSupport, CLASS_STEMConceptualDevelopment, CLASS_ActivityLeaderEnthusiasm, CLASS_Autonomy,
           challenge, relevance, learning, positive_affect) %>%  
    correlate() %>% 
    shave() %>% 
    fashion()
##                               rowname CLASS_EmotionalSupportEncouragement
## 1 CLASS_EmotionalSupportEncouragement                                    
## 2          CLASS_InstructionalSupport                                 .39
## 3     CLASS_STEMConceptualDevelopment                                 .28
## 4      CLASS_ActivityLeaderEnthusiasm                                 .63
## 5                      CLASS_Autonomy                                 .29
## 6                           challenge                                 .03
## 7                           relevance                                -.01
## 8                            learning                                 .00
## 9                     positive_affect                                 .01
##   CLASS_InstructionalSupport CLASS_STEMConceptualDevelopment
## 1                                                           
## 2                                                           
## 3                        .89                                
## 4                        .77                             .63
## 5                        .50                             .51
## 6                        .06                             .04
## 7                        .05                             .04
## 8                        .07                             .07
## 9                        .06                             .05
##   CLASS_ActivityLeaderEnthusiasm CLASS_Autonomy challenge relevance
## 1                                                                  
## 2                                                                  
## 3                                                                  
## 4                                                                  
## 5                            .52                                   
## 6                            .07            .06                    
## 7                            .04            .01       .39          
## 8                            .05            .02       .30       .65
## 9                            .09            .02       .27       .52
##   learning positive_affect
## 1                         
## 2                         
## 3                         
## 4                         
## 5                         
## 6                         
## 7                         
## 8                         
## 9      .48
m1v <- lmer(relevance ~ 1 + 
                # CLASS_EmotionalSupportEncouragement +
                # CLASS_InstructionalSupport +
                # CLASS_STEMConceptualDevelopment +
                # CLASS_ActivityLeaderEnthusiasm +
                CLASS_Autonomy +
                (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
            data = df)
sjPlot::sjt.lmer(m1v, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.48
 | 
0.07
 | 
<.001
 | 
| 
CLASS_Autonomy
 | 
 
 | 
0.03
 | 
0.01
 | 
.012
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.013
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.518
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.012
 | 
| 
Observations
 | 
 
 | 
2800
 | 
| 
R2 / Ω02
 | 
 
 | 
.588 / .585
 | 
m1vi <- lmer(challenge ~ 1 +
                 # CLASS_EmotionalSupportEncouragement +
                 #CLASS_InstructionalSupport +
                 # CLASS_STEMConceptualDevelopment +
                 #CLASS_ActivityLeaderEnthusiasm +
                 CLASS_Autonomy +
                 (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
             data = df)
sjPlot::sjt.lmer(m1vi, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.01
 | 
0.11
 | 
<.001
 | 
| 
CLASS_Autonomy
 | 
 
 | 
0.08
 | 
0.02
 | 
<.001
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.053
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.375
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.043
 | 
| 
Observations
 | 
 
 | 
2800
 | 
| 
R2 / Ω02
 | 
 
 | 
.531 / .523
 | 
m1viii <- lmer(learning ~ 1 +
                  # CLASS_EmotionalSupportEncouragement +
                  #CLASS_InstructionalSupport +
                  # CLASS_STEMConceptualDevelopment +
                  #CLASS_ActivityLeaderEnthusiasm +
                  CLASS_Autonomy +
                  (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
              data = df)
sjPlot::sjt.lmer(m1viii, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.68
 | 
0.07
 | 
<.001
 | 
| 
CLASS_Autonomy
 | 
 
 | 
0.03
 | 
0.01
 | 
.045
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.014
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.354
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.000
 | 
| 
Observations
 | 
 
 | 
2799
 | 
| 
R2 / Ω02
 | 
 
 | 
.428 / .421
 | 
m1viv <- lmer(positive_affect ~ 1 +
                   # CLASS_EmotionalSupportEncouragement +
                   #CLASS_InstructionalSupport +
                   # CLASS_STEMConceptualDevelopment +
                   #CLASS_ActivityLeaderEnthusiasm +
                   CLASS_Autonomy +
                   (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
               data = df)
sjPlot::sjt.lmer(m1viv, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.59
 | 
0.13
 | 
<.001
 | 
| 
CLASS_Autonomy
 | 
 
 | 
0.03
 | 
0.01
 | 
.021
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
236
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.022
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.424
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.093
 | 
| 
Observations
 | 
 
 | 
2800
 | 
| 
R2 / Ω02
 | 
 
 | 
.583 / .580
 | 
 
5. Pre-survey measures (ready)
df %>% 
    select(overall_pre_competence_beliefs, overall_pre_interest, overall_pre_utility_value,
           challenge, relevance, learning, positive_affect) %>%  
    correlate() %>% 
    shave() %>% 
    fashion()
##                          rowname overall_pre_competence_beliefs
## 1 overall_pre_competence_beliefs                               
## 2           overall_pre_interest                            .73
## 3      overall_pre_utility_value                            .68
## 4                      challenge                           -.12
## 5                      relevance                            .03
## 6                       learning                            .09
## 7                positive_affect                            .08
##   overall_pre_interest overall_pre_utility_value challenge relevance
## 1                                                                   
## 2                                                                   
## 3                  .65                                              
## 4                 -.00                      -.04                    
## 5                  .09                       .08       .39          
## 6                  .08                       .07       .30       .65
## 7                  .20                       .07       .27       .52
##   learning positive_affect
## 1                         
## 2                         
## 3                         
## 4                         
## 5                         
## 6                         
## 7      .48
m2i <- lmer(challenge ~ 1 + 
                overall_pre_competence_beliefs +
                overall_pre_interest +
                overall_pre_utility_value +
                classroom_versus_field_enrichment +
                #youth_activity_rc +
                (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
            data = df)
sjPlot::sjt.lmer(m2i, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.37
 | 
0.27
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
-0.25
 | 
0.12
 | 
.046
 | 
| 
overall_pre_interest
 | 
 
 | 
0.19
 | 
0.12
 | 
.120
 | 
| 
overall_pre_utility_value
 | 
 
 | 
0.00
 | 
0.11
 | 
.972
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
0.16
 | 
0.06
 | 
.012
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
238
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.064
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.375
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.039
 | 
| 
Observations
 | 
 
 | 
2602
 | 
| 
R2 / Ω02
 | 
 
 | 
.532 / .524
 | 
m2ib <- lmer(challenge ~ 1 +
                 overall_pre_competence_beliefs +
                 overall_pre_interest +
                 overall_pre_utility_value +
                 classroom_versus_field_enrichment +
                 youth_activity_rc +
                 (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
             data = df)
sjPlot::sjt.lmer(m2ib, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
challenge
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.37
 | 
0.27
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
-0.25
 | 
0.12
 | 
.047
 | 
| 
overall_pre_interest
 | 
 
 | 
0.17
 | 
0.12
 | 
.158
 | 
| 
overall_pre_utility_value
 | 
 
 | 
0.02
 | 
0.11
 | 
.891
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
0.06
 | 
0.06
 | 
.360
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.11
 | 
0.07
 | 
.109
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.34
 | 
0.07
 | 
<.001
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
-0.08
 | 
0.14
 | 
.562
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.17
 | 
0.13
 | 
.199
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
-0.13
 | 
0.08
 | 
.101
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.050
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.385
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.032
 | 
| 
Observations
 | 
 
 | 
2570
 | 
| 
R2 / Ω02
 | 
 
 | 
.528 / .521
 | 
m2ii <- lmer(relevance ~ 1 + 
                 overall_pre_competence_beliefs +
                 overall_pre_interest +
                 overall_pre_utility_value +
                 # youth_activity_rc +
                 classroom_versus_field_enrichment +
                 (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
             data = df)
sjPlot::sjt.lmer(m2ii, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.26
 | 
0.25
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
-0.11
 | 
0.12
 | 
.381
 | 
| 
overall_pre_interest
 | 
 
 | 
0.12
 | 
0.11
 | 
.271
 | 
| 
overall_pre_utility_value
 | 
 
 | 
0.09
 | 
0.11
 | 
.378
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
-0.04
 | 
0.04
 | 
.274
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
238
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.017
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.523
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.013
 | 
| 
Observations
 | 
 
 | 
2602
 | 
| 
R2 / Ω02
 | 
 
 | 
.595 / .592
 | 
m2iib <- lmer(relevance ~ 1 +
                  overall_pre_competence_beliefs +
                  overall_pre_interest +
                  overall_pre_utility_value +
                  youth_activity_rc +
                  classroom_versus_field_enrichment +
                  (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
              data = df)
sjPlot::sjt.lmer(m2iib, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
relevance
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.16
 | 
0.26
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
-0.10
 | 
0.12
 | 
.397
 | 
| 
overall_pre_interest
 | 
 
 | 
0.12
 | 
0.11
 | 
.309
 | 
| 
overall_pre_utility_value
 | 
 
 | 
0.10
 | 
0.11
 | 
.348
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.13
 | 
0.04
 | 
.001
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.24
 | 
0.04
 | 
<.001
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.24
 | 
0.08
 | 
.003
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.09
 | 
0.08
 | 
.243
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
0.15
 | 
0.05
 | 
.001
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
-0.08
 | 
0.04
 | 
.046
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.008
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.526
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.020
 | 
| 
Observations
 | 
 
 | 
2570
 | 
| 
R2 / Ω02
 | 
 
 | 
.593 / .591
 | 
m2iii <- lmer(learning ~ 1 + 
                  overall_pre_competence_beliefs +
                  overall_pre_interest +
                  overall_pre_utility_value +
                  classroom_versus_field_enrichment +
                  #youth_activity_rc +
                  (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
              data = df)
sjPlot::sjt.lmer(m2iii, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.44
 | 
0.23
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
0.00
 | 
0.11
 | 
.972
 | 
| 
overall_pre_interest
 | 
 
 | 
0.07
 | 
0.10
 | 
.513
 | 
| 
overall_pre_utility_value
 | 
 
 | 
0.03
 | 
0.10
 | 
.731
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
0.02
 | 
0.05
 | 
.671
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
238
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.014
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.355
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.000
 | 
| 
Observations
 | 
 
 | 
2601
 | 
| 
R2 / Ω02
 | 
 
 | 
.422 / .415
 | 
m2iiib <- lmer(learning ~ 1 + 
                  overall_pre_competence_beliefs +
                  overall_pre_interest +
                  overall_pre_utility_value +
                  classroom_versus_field_enrichment +
                  youth_activity_rc +
                  (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
              data = df)
sjPlot::sjt.lmer(m2iiib, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
learning
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.38
 | 
0.23
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
-0.01
 | 
0.11
 | 
.934
 | 
| 
overall_pre_interest
 | 
 
 | 
0.07
 | 
0.10
 | 
.475
 | 
| 
overall_pre_utility_value
 | 
 
 | 
0.03
 | 
0.10
 | 
.784
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
0.02
 | 
0.05
 | 
.658
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
0.22
 | 
0.05
 | 
<.001
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.12
 | 
0.06
 | 
.038
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
0.10
 | 
0.10
 | 
.300
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.20
 | 
0.10
 | 
.044
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
0.07
 | 
0.06
 | 
.217
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.010
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.362
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.000
 | 
| 
Observations
 | 
 
 | 
2569
 | 
| 
R2 / Ω02
 | 
 
 | 
.422 / .416
 | 
df$positive_affect <- jmRtools::composite_mean_maker(df, happy, excited)
m2iv <- lmer(positive_affect ~ 
                 overall_pre_competence_beliefs +
                 overall_pre_interest +
                 overall_pre_utility_value +
                 classroom_versus_field_enrichment +
                 # youth_activity_rc +
                 (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
             data = df)
sjPlot::sjt.lmer(m2iv, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.25
 | 
0.28
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
-0.05
 | 
0.13
 | 
.682
 | 
| 
overall_pre_interest
 | 
 
 | 
0.28
 | 
0.13
 | 
.024
 | 
| 
overall_pre_utility_value
 | 
 
 | 
-0.06
 | 
0.11
 | 
.592
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
-0.06
 | 
0.05
 | 
.241
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
238
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.028
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.450
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.055
 | 
| 
Observations
 | 
 
 | 
2602
 | 
| 
R2 / Ω02
 | 
 
 | 
.587 / .583
 | 
m2ivb <- lmer(positive_affect ~ 
                 overall_pre_competence_beliefs +
                 overall_pre_interest +
                 overall_pre_utility_value +
                 classroom_versus_field_enrichment +
                 youth_activity_rc +
                 (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
             data = df)
sjPlot::sjt.lmer(m2ivb, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
positive_affect
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
2.28
 | 
0.28
 | 
<.001
 | 
| 
overall_pre_competence_beliefs
 | 
 
 | 
-0.06
 | 
0.13
 | 
.660
 | 
| 
overall_pre_interest
 | 
 
 | 
0.28
 | 
0.12
 | 
.024
 | 
| 
overall_pre_utility_value
 | 
 
 | 
-0.06
 | 
0.11
 | 
.584
 | 
| 
classroom_versus_field_enrichment
 | 
 
 | 
-0.06
 | 
0.05
 | 
.229
 | 
| 
youth_activity_rc (Basic Skills Activity)
 | 
 
 | 
-0.00
 | 
0.06
 | 
.997
 | 
| 
youth_activity_rc (Creating Product)
 | 
 
 | 
0.01
 | 
0.06
 | 
.818
 | 
| 
youth_activity_rc (Field Trip Speaker)
 | 
 
 | 
-0.03
 | 
0.11
 | 
.800
 | 
| 
youth_activity_rc (Lab Activity)
 | 
 
 | 
0.07
 | 
0.11
 | 
.501
 | 
| 
youth_activity_rc (Program Staff Led)
 | 
 
 | 
-0.07
 | 
0.06
 | 
.250
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
235
 | 
| 
Nparticipant_ID
 | 
 
 | 
179
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.029
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.448
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.052
 | 
| 
Observations
 | 
 
 | 
2570
 | 
| 
R2 / Ω02
 | 
 
 | 
.586 / .582
 | 
 
6. Situational experiences (ready)
df$overall_engagement <- jmRtools::composite_mean_maker(df, hard_working, concentrating, enjoy)
df %>% 
    select(overall_engagement, interest, challenge, relevance, learning, positive_affect) %>%  
    correlate() %>% 
    shave() %>% 
    fashion()
##              rowname overall_engagement interest challenge relevance
## 1 overall_engagement                                                
## 2           interest                .69                             
## 3          challenge                .31      .28                    
## 4          relevance                .65      .61       .39          
## 5           learning                .68      .56       .30       .65
## 6    positive_affect                .65      .56       .27       .52
##   learning positive_affect
## 1                         
## 2                         
## 3                         
## 4                         
## 5                         
## 6      .48
m3i <- lmer(interest ~ 1 +
                challenge + relevance + learning + positive_affect +
                (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
            data = df)
sjPlot::sjt.lmer(m3i, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
interest
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
0.65
 | 
0.07
 | 
<.001
 | 
| 
challenge
 | 
 
 | 
0.02
 | 
0.01
 | 
.141
 | 
| 
relevance
 | 
 
 | 
0.36
 | 
0.02
 | 
<.001
 | 
| 
learning
 | 
 
 | 
0.17
 | 
0.02
 | 
<.001
 | 
| 
positive_affect
 | 
 
 | 
0.28
 | 
0.02
 | 
<.001
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
248
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.033
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.098
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.016
 | 
| 
Observations
 | 
 
 | 
2969
 | 
| 
R2 / Ω02
 | 
 
 | 
.583 / .582
 | 
m3v <- lmer(overall_engagement ~ 1 + 
                challenge + relevance + learning + positive_affect +
                (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
            data = df)
sjPlot::sjt.lmer(m3v, p.kr = F, show.re.var = F, show.ci = F, show.se = T)
| 
 
 | 
 
 | 
overall_engagement
 | 
| 
 
 | 
 
 | 
B
 | 
std. Error
 | 
p
 | 
| 
Fixed Parts
 | 
| 
(Intercept)
 | 
 
 | 
0.70
 | 
0.05
 | 
<.001
 | 
| 
challenge
 | 
 
 | 
0.03
 | 
0.01
 | 
<.001
 | 
| 
relevance
 | 
 
 | 
0.23
 | 
0.02
 | 
<.001
 | 
| 
learning
 | 
 
 | 
0.27
 | 
0.01
 | 
<.001
 | 
| 
positive_affect
 | 
 
 | 
0.28
 | 
0.01
 | 
<.001
 | 
| 
Random Parts
 | 
| 
Nbeep_ID_new
 | 
 
 | 
248
 | 
| 
Nparticipant_ID
 | 
 
 | 
203
 | 
| 
Nprogram_ID
 | 
 
 | 
9
 | 
| 
ICCbeep_ID_new
 | 
 
 | 
0.028
 | 
| 
ICCparticipant_ID
 | 
 
 | 
0.203
 | 
| 
ICCprogram_ID
 | 
 
 | 
0.000
 | 
| 
Observations
 | 
 
 | 
2969
 | 
| 
R2 / Ω02
 | 
 
 | 
.734 / .733
 | 
 
7. Outcomes (not ready)