Factor Analysis
“We will additionally conduct exploratory analyses examining whether there are differences in how much participants incorrectly estimate the age at which children reach various developmental milestones both within social categories and between social categories. We do not have specific hypotheses as to whether participant’s responses will differ either within or between social categories. To examine responses within social categories, we plan to conduct an exploratory factor analysis with oblimin rotation for each social category to determine the underlying factor structure for each social category. This will allow us to determine whether participant’s responses to questions within a social category hang together (i.e., show similar response patterns across questions for the same social categories). We will consider factor loadings greater than or equal to .40.”
Corplot to look at correlations overall between all items for all categories

Gender


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = genderData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      gender_cat_1    gender_label_1   gender_stereo_1 gender_identify_1 
##             0.005             0.264             0.558             0.448 
## gender_disclose_1 
##             0.476 
## 
## Loadings:
##                   Factor1
## gender_cat_1      0.998  
## gender_label_1    0.858  
## gender_stereo_1   0.665  
## gender_identify_1 0.743  
## gender_disclose_1 0.724  
## 
##                Factor1
## SS loadings      3.248
## Proportion Var   0.650
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 10.77 on 5 degrees of freedom.
## The p-value is 0.056
 
Race


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = raceData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      race_cat_1    race_label_1   race_stereo_1 race_identify_1 race_disclose_1 
##           0.213           0.381           0.296           0.035           0.126 
## 
## Loadings:
##                 Factor1
## race_cat_1      0.887  
## race_label_1    0.787  
## race_stereo_1   0.839  
## race_identify_1 0.982  
## race_disclose_1 0.935  
## 
##                Factor1
## SS loadings      3.948
## Proportion Var   0.790
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 10.44 on 5 degrees of freedom.
## The p-value is 0.0637
 
Sexual Orientation


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = sexorData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      sexor_cat_1    sexor_label_1   sexor_stereo_1 sexor_identify_1 
##            0.675            0.289            0.674            0.464 
## sexor_disclose_1 
##            0.390 
## 
## Loadings:
##                  Factor1
## sexor_cat_1      0.570  
## sexor_label_1    0.843  
## sexor_stereo_1   0.571  
## sexor_identify_1 0.732  
## sexor_disclose_1 0.781  
## 
##                Factor1
## SS loadings      2.508
## Proportion Var   0.502
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 4.33 on 5 degrees of freedom.
## The p-value is 0.503
 
Religion


## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = religionData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      religion_cat_1    religion_label_1   religion_stereo_1 religion_identify_1 
##               0.201               0.465               0.220               0.771 
## religion_disclose_1 
##               0.712 
## 
## Loadings:
##                     Factor1
## religion_cat_1      0.894  
## religion_label_1    0.731  
## religion_stereo_1   0.883  
## religion_identify_1 0.479  
## religion_disclose_1 0.537  
## 
##                Factor1
## SS loadings      2.631
## Proportion Var   0.526
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 17.85 on 5 degrees of freedom.
## The p-value is 0.00314
 
Political Orientation


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = polorData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      polor_cat_1    polor_label_1   polor_stereo_1 polor_identify_1 
##            0.647            0.142            0.276            0.005 
## polor_disclose_1 
##            0.410 
## 
## Loadings:
##                  Factor1
## polor_cat_1      0.594  
## polor_label_1    0.926  
## polor_stereo_1   0.851  
## polor_identify_1 0.998  
## polor_disclose_1 0.768  
## 
##                Factor1
## SS loadings      3.520
## Proportion Var   0.704
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 4.53 on 5 degrees of freedom.
## The p-value is 0.476
 
Social Class


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = socclassData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      socclass_cat_1    socclass_label_1   socclass_stereo_1 socclass_identify_1 
##               0.393               0.005               0.500               0.659 
## socclass_disclose_1 
##               0.380 
## 
## Loadings:
##                     Factor1
## socclass_cat_1      0.779  
## socclass_label_1    0.998  
## socclass_stereo_1   0.707  
## socclass_identify_1 0.584  
## socclass_disclose_1 0.787  
## 
##                Factor1
## SS loadings      3.063
## Proportion Var   0.613
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 6.6 on 5 degrees of freedom.
## The p-value is 0.252
 
Nationality


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = nationData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      nation_cat_1    nation_label_1   nation_stereo_1 nation_identify_1 
##             0.915             0.238             0.610             0.720 
## nation_disclose_1 
##             0.311 
## 
## Loadings:
##                   Factor1
## nation_cat_1      0.291  
## nation_label_1    0.873  
## nation_stereo_1   0.624  
## nation_identify_1 0.529  
## nation_disclose_1 0.830  
## 
##                Factor1
## SS loadings      2.205
## Proportion Var   0.441
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 7.55 on 5 degrees of freedom.
## The p-value is 0.183
 
Disability


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = disabilityData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      disability_cat_1    disability_label_1   disability_stereo_1 
##                 0.465                 0.274                 0.256 
## disability_identify_1 disability_disclose_1 
##                 0.196                 0.158 
## 
## Loadings:
##                       Factor1
## disability_cat_1      0.732  
## disability_label_1    0.852  
## disability_stereo_1   0.862  
## disability_identify_1 0.897  
## disability_disclose_1 0.918  
## 
##                Factor1
## SS loadings       3.65
## Proportion Var    0.73
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 4.01 on 5 degrees of freedom.
## The p-value is 0.548
 
 
Examining responses for each question type
“To examine responses between social categories, we plan to assess participant’s responses in two separate ways. First, we plan to examine whether participant’s responses differ across question type. We will fit a separate multilevel linear regression model for each of the five milestone question types with social category as a fixed effect, participant as a random effect (to control for the differing categories that participants will complete), and experience with children as a covariate to determine whether age difference scores for each milestone vary by social category.”
Categorization
## [1] "disability_cat_1" "gender_cat_1"     "nation_cat_1"     "polor_cat_1"     
## [5] "race_cat_1"       "religion_cat_1"   "sexor_cat_1"      "socclass_cat_1"
Estimates for the categorization model
| 
effect
 | 
group
 | 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
df
 | 
p.value
 | 
| 
fixed
 | 
NA
 | 
(Intercept)
 | 
91.0952
 | 
8.1121
 | 
11.2296
 | 
45.2517
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category1
 | 
-18.7158
 | 
5.6156
 | 
-3.3328
 | 
161.6005
 | 
0.0011
 | 
| 
fixed
 | 
NA
 | 
category2
 | 
0.5071
 | 
3.2525
 | 
0.1559
 | 
159.2480
 | 
0.8763
 | 
| 
fixed
 | 
NA
 | 
category3
 | 
24.3923
 | 
2.3449
 | 
10.4022
 | 
159.6889
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category4
 | 
-2.9079
 | 
1.8182
 | 
-1.5993
 | 
158.5663
 | 
0.1117
 | 
| 
fixed
 | 
NA
 | 
category5
 | 
6.0048
 | 
1.4683
 | 
4.0895
 | 
162.4211
 | 
0.0001
 | 
| 
fixed
 | 
NA
 | 
category6
 | 
7.2223
 | 
1.2105
 | 
5.9662
 | 
158.3545
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category7
 | 
4.1508
 | 
1.0718
 | 
3.8727
 | 
160.7523
 | 
0.0002
 | 
| 
fixed
 | 
NA
 | 
demo_expchildren
 | 
2.0042
 | 
1.3744
 | 
1.4582
 | 
45.2815
 | 
0.1517
 | 
| 
ran_pars
 | 
id
 | 
sd__(Intercept)
 | 
17.2512
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
| 
ran_pars
 | 
Residual
 | 
sd__Observation
 | 
37.0717
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
Summary for the categorization model
| 
nobs
 | 
sigma
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
| 
184
 | 
37.0717
 | 
-940.2
 | 
1902.4
 | 
1937.76
 | 
1880.4
 | 
173
 | 
 
Labeling
## [1] "disability_label_1" "gender_label_1"     "nation_label_1"    
## [4] "polor_label_1"      "race_label_1"       "religion_label_1"  
## [7] "sexor_label_1"      "socclass_label_1"
Estimates for the labeling model
| 
effect
 | 
group
 | 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
df
 | 
p.value
 | 
| 
fixed
 | 
NA
 | 
(Intercept)
 | 
108.1880
 | 
8.6038
 | 
12.5744
 | 
45.7701
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category1
 | 
-28.8659
 | 
4.7675
 | 
-6.0547
 | 
153.7321
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category2
 | 
3.6571
 | 
2.7564
 | 
1.3268
 | 
152.1641
 | 
0.1866
 | 
| 
fixed
 | 
NA
 | 
category3
 | 
17.6865
 | 
1.9878
 | 
8.8976
 | 
152.3635
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category4
 | 
0.2797
 | 
1.5402
 | 
0.1816
 | 
151.8585
 | 
0.8561
 | 
| 
fixed
 | 
NA
 | 
category5
 | 
1.1922
 | 
1.2475
 | 
0.9557
 | 
154.3620
 | 
0.3407
 | 
| 
fixed
 | 
NA
 | 
category6
 | 
5.6472
 | 
1.0251
 | 
5.5087
 | 
151.4862
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category7
 | 
2.6820
 | 
0.9096
 | 
2.9487
 | 
153.5584
 | 
0.0037
 | 
| 
fixed
 | 
NA
 | 
demo_expchildren
 | 
-0.1970
 | 
1.4577
 | 
-0.1352
 | 
45.7909
 | 
0.8931
 | 
| 
ran_pars
 | 
id
 | 
sd__(Intercept)
 | 
21.9750
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
| 
ran_pars
 | 
Residual
 | 
sd__Observation
 | 
30.9183
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
Summary for the labeling model
| 
nobs
 | 
sigma
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
| 
184
 | 
30.9183
 | 
-917.879
 | 
1857.76
 | 
1893.12
 | 
1835.76
 | 
173
 | 
 
Stereotypes
## [1] "disability_stereo_1" "gender_stereo_1"     "nation_stereo_1"    
## [4] "polor_stereo_1"      "race_stereo_1"       "religion_stereo_1"  
## [7] "sexor_stereo_1"      "socclass_stereo_1"
Estimates for the stereotype model
| 
effect
 | 
group
 | 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
df
 | 
p.value
 | 
| 
fixed
 | 
NA
 | 
(Intercept)
 | 
100.9677
 | 
9.6002
 | 
10.5173
 | 
45.8309
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category1
 | 
-16.1289
 | 
5.3083
 | 
-3.0384
 | 
153.7119
 | 
0.0028
 | 
| 
fixed
 | 
NA
 | 
category2
 | 
2.7951
 | 
3.0690
 | 
0.9108
 | 
152.1522
 | 
0.3639
 | 
| 
fixed
 | 
NA
 | 
category3
 | 
15.0677
 | 
2.2132
 | 
6.8081
 | 
152.3497
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category4
 | 
-1.0177
 | 
1.7148
 | 
-0.5935
 | 
151.8492
 | 
0.5537
 | 
| 
fixed
 | 
NA
 | 
category5
 | 
1.7738
 | 
1.3890
 | 
1.2771
 | 
154.3392
 | 
0.2035
 | 
| 
fixed
 | 
NA
 | 
category6
 | 
2.5089
 | 
1.1414
 | 
2.1982
 | 
151.4770
 | 
0.0295
 | 
| 
fixed
 | 
NA
 | 
category7
 | 
0.9365
 | 
1.0127
 | 
0.9247
 | 
153.5423
 | 
0.3566
 | 
| 
fixed
 | 
NA
 | 
demo_expchildren
 | 
1.2746
 | 
1.6265
 | 
0.7837
 | 
45.8516
 | 
0.4373
 | 
| 
ran_pars
 | 
id
 | 
sd__(Intercept)
 | 
24.5473
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
| 
ran_pars
 | 
Residual
 | 
sd__Observation
 | 
34.4206
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
Summary for the stereotype model
| 
nobs
 | 
sigma
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
| 
184
 | 
34.4206
 | 
-937.727
 | 
1897.46
 | 
1932.82
 | 
1875.46
 | 
173
 | 
 
Identification
## [1] "disability_identify_1" "gender_identify_1"     "nation_identify_1"    
## [4] "polor_identify_1"      "race_identify_1"       "religion_identify_1"  
## [7] "sexor_identify_1"      "socclass_identify_1"
Estimates for the identification model
| 
effect
 | 
group
 | 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
df
 | 
p.value
 | 
| 
fixed
 | 
NA
 | 
(Intercept)
 | 
99.2853
 | 
9.9226
 | 
10.0060
 | 
45.7857
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category1
 | 
-16.8778
 | 
5.5948
 | 
-3.0167
 | 
154.2811
 | 
0.0030
 | 
| 
fixed
 | 
NA
 | 
category2
 | 
-2.5998
 | 
3.2350
 | 
-0.8036
 | 
152.6610
 | 
0.4229
 | 
| 
fixed
 | 
NA
 | 
category3
 | 
20.0629
 | 
2.3329
 | 
8.5998
 | 
152.8737
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category4
 | 
-0.3149
 | 
1.8077
 | 
-0.1742
 | 
152.3354
 | 
0.8619
 | 
| 
fixed
 | 
NA
 | 
category5
 | 
-0.8079
 | 
1.4639
 | 
-0.5519
 | 
154.9263
 | 
0.5818
 | 
| 
fixed
 | 
NA
 | 
category6
 | 
6.5102
 | 
1.2032
 | 
5.4107
 | 
151.9666
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category7
 | 
3.2435
 | 
1.0674
 | 
3.0387
 | 
154.0746
 | 
0.0028
 | 
| 
fixed
 | 
NA
 | 
demo_expchildren
 | 
0.1473
 | 
1.6811
 | 
0.0876
 | 
45.8071
 | 
0.9306
 | 
| 
ran_pars
 | 
id
 | 
sd__(Intercept)
 | 
25.1045
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
| 
ran_pars
 | 
Residual
 | 
sd__Observation
 | 
36.3238
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
Summary for the identification model
| 
nobs
 | 
sigma
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
| 
184
 | 
36.3238
 | 
-946.672
 | 
1915.34
 | 
1950.71
 | 
1893.34
 | 
173
 | 
 
Disclosure
## [1] "disability_disclose_1" "gender_disclose_1"     "nation_disclose_1"    
## [4] "polor_disclose_1"      "race_disclose_1"       "religion_disclose_1"  
## [7] "sexor_disclose_1"      "socclass_disclose_1"
Estimates for the disclosure model
| 
effect
 | 
group
 | 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
df
 | 
p.value
 | 
| 
fixed
 | 
NA
 | 
(Intercept)
 | 
99.7901
 | 
9.2073
 | 
10.8382
 | 
45.2604
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category1
 | 
-20.4055
 | 
5.0772
 | 
-4.0190
 | 
153.2050
 | 
0.0001
 | 
| 
fixed
 | 
NA
 | 
category2
 | 
0.6920
 | 
2.9353
 | 
0.2357
 | 
151.6363
 | 
0.8139
 | 
| 
fixed
 | 
NA
 | 
category3
 | 
16.3968
 | 
2.1168
 | 
7.7459
 | 
151.8339
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category4
 | 
-1.3698
 | 
1.6401
 | 
-0.8352
 | 
151.3331
 | 
0.4049
 | 
| 
fixed
 | 
NA
 | 
category5
 | 
-1.3399
 | 
1.3285
 | 
-1.0086
 | 
153.8369
 | 
0.3147
 | 
| 
fixed
 | 
NA
 | 
category6
 | 
7.0390
 | 
1.0917
 | 
6.4479
 | 
150.9564
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category7
 | 
3.8933
 | 
0.9686
 | 
4.0194
 | 
153.0385
 | 
0.0001
 | 
| 
fixed
 | 
NA
 | 
demo_expchildren
 | 
0.8547
 | 
1.5599
 | 
0.5479
 | 
45.2808
 | 
0.5865
 | 
| 
ran_pars
 | 
id
 | 
sd__(Intercept)
 | 
23.5763
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
| 
ran_pars
 | 
Residual
 | 
sd__Observation
 | 
32.9165
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
Summary for the disclosure model
| 
nobs
 | 
sigma
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
| 
184
 | 
32.9165
 | 
-929.64
 | 
1881.28
 | 
1916.64
 | 
1859.28
 | 
173
 | 
 
 
Examining responses between social categories
“Next, we plan to examine whether participant’s responses differ across social categories as a whole. Specifically, we will calculate a composite variable for each social category. We will average participant’s age difference scores across all question types for a social category to calculate a single variable that represents participants average age difference score for a given social category. We will fit a single multilevel linear regression model with social category as a fixed effect, participant as a random effect, and experience with children as a covariate to determine whether the average age difference score varies by social category.”
## [1] "disability_mean" "gender_mean"     "nation_mean"     "polor_mean"     
## [5] "race_mean"       "religion_mean"   "sexor_mean"      "socclass_mean"
Estimates for the between category model
| 
effect
 | 
group
 | 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
df
 | 
p.value
 | 
| 
fixed
 | 
NA
 | 
(Intercept)
 | 
99.9051
 | 
8.2477
 | 
12.1131
 | 
45.6985
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category1
 | 
-19.7925
 | 
4.0575
 | 
-4.8780
 | 
150.4091
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category2
 | 
0.7853
 | 
2.3443
 | 
0.3350
 | 
149.1632
 | 
0.7381
 | 
| 
fixed
 | 
NA
 | 
category3
 | 
18.7397
 | 
1.6908
 | 
11.0836
 | 
149.2893
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category4
 | 
-0.9715
 | 
1.3098
 | 
-0.7418
 | 
148.9660
 | 
0.4594
 | 
| 
fixed
 | 
NA
 | 
category5
 | 
1.3501
 | 
1.0620
 | 
1.2714
 | 
150.9367
 | 
0.2056
 | 
| 
fixed
 | 
NA
 | 
category6
 | 
5.8477
 | 
0.8716
 | 
6.7089
 | 
148.5945
 | 
0.0000
 | 
| 
fixed
 | 
NA
 | 
category7
 | 
2.8900
 | 
0.7741
 | 
3.7336
 | 
150.3993
 | 
0.0003
 | 
| 
fixed
 | 
NA
 | 
demo_expchildren
 | 
0.8085
 | 
1.3973
 | 
0.5786
 | 
45.7153
 | 
0.5657
 | 
| 
ran_pars
 | 
id
 | 
sd__(Intercept)
 | 
22.1979
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
| 
ran_pars
 | 
Residual
 | 
sd__Observation
 | 
26.1405
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
Summary for the between category model
| 
nobs
 | 
sigma
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
| 
184
 | 
26.1405
 | 
-892.776
 | 
1807.55
 | 
1842.92
 | 
1785.55
 | 
173
 | 
 
Examining variance by key demographic factors
“We will additionally conduct exploratory analyses to examine whether participant responses vary by key demographic factors. For each of the eight social categories, we will fit a linear regression with the average age difference score for that social category as the outcome, the relevant demographic factors as predictor(s), and experience with children as a covariate. The relevant demographic factor(s) for each category are outline below. 1. Outcome: average age difference score for gender; Predictor: participant gender & transgender status 2. Outcome: average age difference score for race/ethnicity; Predictor: participant race/ethnicity 3. Outcome: average age difference score for sexual orientation; Predictor: participant sexual orientation 4. Outcome: average age difference score for religion; Predictor: participant religiosity 5. Outcome: average age difference score for political orientation; Predictor: participant political orientation 6. Outcome: average age difference score for social class; Predictor: participant income 7. Outcome: average age difference score for disability status; Predictor: participant disability status 8. Outcome: average age difference score for nationality; Predictor: whether participant was born in US or not”
Gender
Estimates for the gender demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
62.6543
 | 
24.3192
 | 
2.5763
 | 
0.0176
 | 
| 
demo_gender
 | 
-33.1962
 | 
14.5099
 | 
-2.2878
 | 
0.0326
 | 
| 
demo_trans
 | 
NA
 | 
NA
 | 
NA
 | 
NA
 | 
| 
demo_expchildren
 | 
8.6980
 | 
2.5815
 | 
3.3694
 | 
0.0029
 | 
Summary for the gender demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.3801
 | 
0.3211
 | 
31.5899
 | 
6.4386
 | 
0.0066
 | 
2
 | 
-115.32
 | 
238.641
 | 
243.353
 | 
20956.3
 | 
21
 | 
24
 | 
 
Race
Estimates for the race demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
82.9503
 | 
21.1778
 | 
3.9168
 | 
0.0009
 | 
| 
demo_race
 | 
0.3797
 | 
0.3502
 | 
1.0841
 | 
0.2919
 | 
| 
demo_expchildren
 | 
0.1810
 | 
3.6662
 | 
0.0494
 | 
0.9611
 | 
Summary for the race demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.0717
 | 
-0.026
 | 
44.8219
 | 
0.7335
 | 
0.4933
 | 
2
 | 
-113.263
 | 
234.527
 | 
238.891
 | 
38171
 | 
19
 | 
22
 | 
 
Sexual Orientation
Estimates for the sexor demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
128.4295
 | 
18.4356
 | 
6.9664
 | 
0.0000
 | 
| 
demo_sexor
 | 
2.5145
 | 
5.9577
 | 
0.4221
 | 
0.6773
 | 
| 
demo_expchildren
 | 
0.3054
 | 
2.3757
 | 
0.1286
 | 
0.8989
 | 
Summary for the sexor demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.0084
 | 
-0.086
 | 
31
 | 
0.0891
 | 
0.9151
 | 
2
 | 
-114.868
 | 
237.736
 | 
242.448
 | 
20181
 | 
21
 | 
24
 | 
 
Religion
Estimates for the religion demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
111.4616
 | 
25.7891
 | 
4.3220
 | 
0.0003
 | 
| 
demo_relig
 | 
-2.1152
 | 
3.7489
 | 
-0.5642
 | 
0.5789
 | 
| 
demo_expchildren
 | 
-0.1988
 | 
3.5841
 | 
-0.0555
 | 
0.9563
 | 
Summary for the religion demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.0157
 | 
-0.0828
 | 
37.9431
 | 
0.1592
 | 
0.8539
 | 
2
 | 
-114.658
 | 
237.317
 | 
241.859
 | 
28793.6
 | 
20
 | 
23
 | 
 
Political Orientation
Estimates for the polor demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
129.3728
 | 
22.4969
 | 
5.7507
 | 
0.0000
 | 
| 
demo_polor
 | 
3.8720
 | 
5.6423
 | 
0.6862
 | 
0.5008
 | 
| 
demo_expchildren
 | 
2.0945
 | 
2.1726
 | 
0.9641
 | 
0.3471
 | 
Summary for the polor demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.0576
 | 
-0.0416
 | 
27.2676
 | 
0.581
 | 
0.5689
 | 
2
 | 
-102.329
 | 
212.659
 | 
217.023
 | 
14127
 | 
19
 | 
22
 | 
 
Social Class
Estimates for the socclass demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
135.7111
 | 
26.7827
 | 
5.0671
 | 
0.0001
 | 
| 
demo_income
 | 
3.0308
 | 
3.4319
 | 
0.8831
 | 
0.3877
 | 
| 
demo_expchildren
 | 
-5.0175
 | 
2.7574
 | 
-1.8197
 | 
0.0838
 | 
Summary for the socclass demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.2245
 | 
0.147
 | 
30.9266
 | 
2.8957
 | 
0.0786
 | 
2
 | 
-109.956
 | 
227.911
 | 
232.453
 | 
19129.1
 | 
20
 | 
23
 | 
 
Nationality
Estimates for the nation demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
96.5032
 | 
19.1016
 | 
5.0521
 | 
0.0001
 | 
| 
demo_bornUS
 | 
-7.7953
 | 
10.8754
 | 
-0.7168
 | 
0.4818
 | 
| 
demo_expchildren
 | 
-1.0892
 | 
1.9154
 | 
-0.5686
 | 
0.5759
 | 
Summary for the nation demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.0388
 | 
-0.0573
 | 
25.4366
 | 
0.4038
 | 
0.6731
 | 
2
 | 
-105.461
 | 
218.921
 | 
223.463
 | 
12940.4
 | 
20
 | 
23
 | 
 
Disability
Estimates for the disability demo model
| 
term
 | 
estimate
 | 
std.error
 | 
statistic
 | 
p.value
 | 
| 
(Intercept)
 | 
62.5444
 | 
44.4139
 | 
1.4082
 | 
0.1744
 | 
| 
demo_disability
 | 
13.2295
 | 
22.2598
 | 
0.5943
 | 
0.5590
 | 
| 
demo_expchildren
 | 
1.6445
 | 
2.9194
 | 
0.5633
 | 
0.5795
 | 
Summary for the disability demo model
| 
r.squared
 | 
adj.r.squared
 | 
sigma
 | 
statistic
 | 
p.value
 | 
df
 | 
logLik
 | 
AIC
 | 
BIC
 | 
deviance
 | 
df.residual
 | 
nobs
 | 
| 
0.0367
 | 
-0.0596
 | 
43.2225
 | 
0.3812
 | 
0.6879
 | 
2
 | 
-117.655
 | 
243.309
 | 
247.851
 | 
37363.8
 | 
20
 | 
23
 | 
 
 
Social Class