Gender Development
Cisgender
## 
## Cronbach's alpha for the 'pcsiData[, c("gender_cat_cis_1", "gender_label_cis_1", "gender_stereo_cis_1", ' '    "gender_identify_cis_1", "gender_disclose_cis_1")]' data-set
## 
## Items: 5
## Sample units: 223
## alpha: 0.907
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.855 0.939


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = cisdevData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##      gender_cat_cis_1    gender_label_cis_1   gender_stereo_cis_1 
##                 0.127                 0.241                 0.493 
## gender_identify_cis_1 gender_disclose_cis_1 
##                 0.347                 0.416 
## 
## Loadings:
##                       Factor1
## gender_cat_cis_1      0.935  
## gender_label_cis_1    0.871  
## gender_stereo_cis_1   0.712  
## gender_identify_cis_1 0.808  
## gender_disclose_cis_1 0.764  
## 
##                Factor1
## SS loadings      3.376
## Proportion Var   0.675
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 13.55 on 5 degrees of freedom.
## The p-value is 0.0187
 
Transgender
## 
## Cronbach's alpha for the 'pcsiData[, c("gender_cat_trans_1", "gender_label_trans_1", "gender_stereo_trans_1", ' '    "gender_identify_tran_1", "gender_disclose_tran_1")]' data-set
## 
## Items: 5
## Sample units: 223
## alpha: 0.892
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.854 0.920


## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = transdevData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##     gender_cat_trans_1   gender_label_trans_1  gender_stereo_trans_1 
##                  0.215                  0.296                  0.215 
## gender_identify_tran_1 gender_disclose_tran_1 
##                  0.005                  0.528 
## 
## Loadings:
##                        Factor1 Factor2
## gender_cat_trans_1     0.811   0.356  
## gender_label_trans_1   0.689   0.478  
## gender_stereo_trans_1  0.803   0.376  
## gender_identify_tran_1 0.366   0.928  
## gender_disclose_tran_1 0.410   0.552  
## 
##                Factor1 Factor2
## SS loadings      2.080   1.662
## Proportion Var   0.416   0.332
## Cumulative Var   0.416   0.748
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 9.03 on 1 degree of freedom.
## The p-value is 0.00266
 
 
Autonomy
General Autonomy
## 
## Cronbach's alpha for the 'pcsiData[, c("autonomy_gen_1", "autonomy_gen_2", "autonomy_gen_3", ' '    "autonomy_gen_4", "autonomy_gen_5", "autonomy_gen_6", "autonomy_gen_8", ' '    "autonomy_gen_9", "autonomy_gen_10")]' data-set
## 
## Items: 9
## Sample units: 223
## alpha: 0.942
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.920 0.959


## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = autongenData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  autonomy_gen_1  autonomy_gen_2  autonomy_gen_3  autonomy_gen_4  autonomy_gen_5 
##           0.470           0.232           0.272           0.303           0.611 
##  autonomy_gen_6  autonomy_gen_8  autonomy_gen_9 autonomy_gen_10 
##           0.255           0.358           0.239           0.282 
## 
## Loadings:
##                 Factor1
## autonomy_gen_1  0.728  
## autonomy_gen_2  0.876  
## autonomy_gen_3  0.853  
## autonomy_gen_4  0.835  
## autonomy_gen_5  0.624  
## autonomy_gen_6  0.863  
## autonomy_gen_8  0.801  
## autonomy_gen_9  0.872  
## autonomy_gen_10 0.848  
## 
##                Factor1
## SS loadings      5.979
## Proportion Var   0.664
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 119.08 on 27 degrees of freedom.
## The p-value is 0.000000000000157
 
Medical Autonomy
## 
## Cronbach's alpha for the 'pcsiData[, c("autonomy_med_1", "autonomy_med_2", "autonomy_med_3", ' '    "autonomy_med_4", "autonomy_med_5", "autonomy_med_6", "autonomy_med_7", ' '    "autonomy_med_8")]' data-set
## 
## Items: 8
## Sample units: 223
## alpha: 0.944
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.928 0.959


## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = autonmedData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
## autonomy_med_1 autonomy_med_2 autonomy_med_3 autonomy_med_4 autonomy_med_5 
##          0.298          0.259          0.185          0.121          0.226 
## autonomy_med_6 autonomy_med_7 autonomy_med_8 
##          0.248          0.124          0.306 
## 
## Loadings:
##                Factor1 Factor2
## autonomy_med_1 0.715   0.437  
## autonomy_med_2 0.622   0.595  
## autonomy_med_3 0.473   0.769  
## autonomy_med_4 0.308   0.886  
## autonomy_med_5 0.379   0.794  
## autonomy_med_6 0.790   0.358  
## autonomy_med_7 0.885   0.304  
## autonomy_med_8 0.752   0.359  
## 
##                Factor1 Factor2
## SS loadings      3.334   2.900
## Proportion Var   0.417   0.362
## Cumulative Var   0.417   0.779
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 32 on 13 degrees of freedom.
## The p-value is 0.0024
 
Gender Identity Autonomy
## 
## Cronbach's alpha for the 'pcsiData[, c("autonomy_geniden_1", "autonomy_geniden_2", "autonomy_geniden_3", ' '    "autonomy_geniden_4", "autonomy_geniden_5", "autonomy_geniden_6")]' data-set
## 
## Items: 6
## Sample units: 223
## alpha: 0.969
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.957 0.977


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = autongenidenData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
## autonomy_geniden_1 autonomy_geniden_2 autonomy_geniden_3 autonomy_geniden_4 
##              0.232              0.388              0.109              0.061 
## autonomy_geniden_5 autonomy_geniden_6 
##              0.102              0.064 
## 
## Loadings:
##                    Factor1
## autonomy_geniden_1 0.876  
## autonomy_geniden_2 0.782  
## autonomy_geniden_3 0.944  
## autonomy_geniden_4 0.969  
## autonomy_geniden_5 0.948  
## autonomy_geniden_6 0.967  
## 
##                Factor1
## SS loadings      5.044
## Proportion Var   0.841
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 40.82 on 9 degrees of freedom.
## The p-value is 0.0000054
 
All scales together


## Parallel analysis suggests that the number of factors =  4  and the number of components =  3
## 
## Call:
## factanal(x = autonData, factors = 3, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##     autonomy_gen_1     autonomy_gen_2     autonomy_gen_3     autonomy_gen_4 
##              0.412              0.243              0.280              0.314 
##     autonomy_gen_5     autonomy_gen_6     autonomy_gen_8     autonomy_gen_9 
##              0.471              0.249              0.357              0.206 
##    autonomy_gen_10     autonomy_med_1     autonomy_med_2     autonomy_med_3 
##              0.254              0.270              0.251              0.257 
##     autonomy_med_4     autonomy_med_5     autonomy_med_6     autonomy_med_7 
##              0.320              0.373              0.309              0.245 
##     autonomy_med_8    autonomy_med_9r autonomy_geniden_1 autonomy_geniden_2 
##              0.348              0.969              0.225              0.390 
## autonomy_geniden_3 autonomy_geniden_4 autonomy_geniden_5 autonomy_geniden_6 
##              0.099              0.060              0.104              0.067 
## 
## Loadings:
##                    Factor1 Factor2 Factor3
## autonomy_gen_1     0.512   0.425   0.382  
## autonomy_gen_2     0.785   0.293   0.236  
## autonomy_gen_3     0.707   0.397   0.251  
## autonomy_gen_4     0.765   0.190   0.253  
## autonomy_gen_5     0.361   0.493   0.393  
## autonomy_gen_6     0.800   0.222   0.251  
## autonomy_gen_8     0.685   0.307   0.281  
## autonomy_gen_9     0.822   0.272   0.210  
## autonomy_gen_10    0.798   0.210   0.255  
## autonomy_med_1     0.262   0.712   0.394  
## autonomy_med_2     0.297   0.762   0.282  
## autonomy_med_3     0.425   0.714   0.229  
## autonomy_med_4     0.521   0.594   0.236  
## autonomy_med_5     0.389   0.649   0.234  
## autonomy_med_6     0.223   0.740   0.306  
## autonomy_med_7     0.183   0.781   0.333  
## autonomy_med_8     0.201   0.709   0.329  
## autonomy_med_9r    0.107           0.131  
## autonomy_geniden_1 0.261   0.318   0.778  
## autonomy_geniden_2 0.286   0.258   0.680  
## autonomy_geniden_3 0.218   0.341   0.858  
## autonomy_geniden_4 0.277   0.325   0.870  
## autonomy_geniden_5 0.321   0.375   0.808  
## autonomy_geniden_6 0.290   0.376   0.841  
## 
##                Factor1 Factor2 Factor3
## SS loadings      5.872   5.673   5.382
## Proportion Var   0.245   0.236   0.224
## Cumulative Var   0.245   0.481   0.705
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 618.64 on 207 degrees of freedom.
## The p-value is 1.31e-42
 
 
Prejudice (TABS)
Entire Scale
## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_1", "Q198_2r", "Q198_3r", "Q198_4", "Q198_5", ' '    "Q198_6", "Q198_7", "Q198_8r", "Q198_9r", "Q198_10r", "Q198_11", ' '    "Q198_12", "Q198_13", "Q198_14r", "Q198_15", "Q198_16r", ' '    "Q198_17r", "Q198_18r", "Q198_19r", "Q198_20r", "Q198_22", ' '    "Q198_23r", "Q198_24r", "Q198_25", "Q198_26r", "Q198_27r", ' '    "Q198_28", "Q198_29", "Q198_30")]' data-set
## 
## Items: 29
## Sample units: 223
## alpha: 0.972
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.964 0.978


## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
## 
## Call:
## factanal(x = tabsData, factors = 3, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##   Q198_1  Q198_2r  Q198_3r   Q198_4   Q198_5   Q198_6   Q198_7  Q198_8r 
##    0.451    0.435    0.239    0.169    0.513    0.495    0.150    0.348 
##  Q198_9r Q198_10r  Q198_11  Q198_12  Q198_13 Q198_14r  Q198_15 Q198_16r 
##    0.354    0.173    0.253    0.242    0.213    0.239    0.379    0.559 
## Q198_17r Q198_18r Q198_19r Q198_20r  Q198_22 Q198_23r Q198_24r  Q198_25 
##    0.300    0.180    0.184    0.191    0.116    0.347    0.323    0.205 
## Q198_26r Q198_27r  Q198_28  Q198_29  Q198_30 
##    0.367    0.148    0.308    0.272    0.565 
## 
## Loadings:
##          Factor1 Factor2 Factor3
## Q198_1   0.454   0.460   0.361  
## Q198_2r  0.489   0.412   0.395  
## Q198_3r  0.701   0.271   0.443  
## Q198_4   0.336   0.839   0.120  
## Q198_5   0.505   0.318   0.362  
## Q198_6   0.221   0.641   0.211  
## Q198_7   0.324   0.844   0.179  
## Q198_8r  0.343           0.725  
## Q198_9r  0.291   0.748          
## Q198_10r 0.791   0.328   0.308  
## Q198_11  0.683   0.475   0.235  
## Q198_12  0.703   0.490   0.152  
## Q198_13  0.777   0.403   0.143  
## Q198_14r 0.213           0.842  
## Q198_15  0.468   0.600   0.204  
## Q198_16r 0.526   0.195   0.356  
## Q198_17r 0.269   0.769   0.191  
## Q198_18r 0.777   0.402   0.233  
## Q198_19r 0.730   0.335   0.413  
## Q198_20r 0.694   0.290   0.493  
## Q198_22  0.309   0.867   0.189  
## Q198_23r 0.406   0.632   0.298  
## Q198_24r 0.195   0.220   0.769  
## Q198_25  0.727   0.373   0.356  
## Q198_26r 0.255   0.195   0.728  
## Q198_27r 0.339   0.180   0.840  
## Q198_28  0.662   0.346   0.366  
## Q198_29  0.272   0.792   0.161  
## Q198_30  0.542   0.293   0.235  
## 
##                Factor1 Factor2 Factor3
## SS loadings      7.898   7.285   5.098
## Proportion Var   0.272   0.251   0.176
## Cumulative Var   0.272   0.524   0.699
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 595.46 on 322 degrees of freedom.
## The p-value is 0.00000000000000000147
 
Interpersonal Comfort Subscale
## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_1", "Q198_3r", "Q198_5", "Q198_10r", "Q198_11", ' '    "Q198_12", "Q198_13", "Q198_16r", "Q198_18r", "Q198_19r", ' '    "Q198_20r", "Q198_25", "Q198_28", "Q198_30")]' data-set
## 
## Items: 14
## Sample units: 223
## alpha: 0.964
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.953 0.972


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = tabsincomData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##   Q198_1  Q198_3r   Q198_5 Q198_10r  Q198_11  Q198_12  Q198_13 Q198_16r 
##    0.502    0.264    0.527    0.178    0.279    0.294    0.255    0.572 
## Q198_18r Q198_19r Q198_20r  Q198_25  Q198_28  Q198_30 
##    0.190    0.191    0.230    0.206    0.306    0.564 
## 
## Loadings:
##          Factor1
## Q198_1   0.706  
## Q198_3r  0.858  
## Q198_5   0.688  
## Q198_10r 0.906  
## Q198_11  0.849  
## Q198_12  0.840  
## Q198_13  0.863  
## Q198_16r 0.654  
## Q198_18r 0.900  
## Q198_19r 0.899  
## Q198_20r 0.878  
## Q198_25  0.891  
## Q198_28  0.833  
## Q198_30  0.660  
## 
##                Factor1
## SS loadings      9.442
## Proportion Var   0.674
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 281.6 on 77 degrees of freedom.
## The p-value is 4.26e-25
 
Sex/Gender Beliefs Subscale
## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_2r", "Q198_4", "Q198_6", "Q198_7", "Q198_9r", ' '    "Q198_15", "Q198_17r", "Q198_22", "Q198_23r", "Q198_29")]' data-set
## 
## Items: 10
## Sample units: 223
## alpha: 0.952
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.943 0.960


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = tabssgbelData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q198_2r   Q198_4   Q198_6   Q198_7  Q198_9r  Q198_15 Q198_17r  Q198_22 
##    0.598    0.178    0.499    0.150    0.368    0.430    0.299    0.119 
## Q198_23r  Q198_29 
##    0.385    0.274 
## 
## Loadings:
##          Factor1
## Q198_2r  0.634  
## Q198_4   0.907  
## Q198_6   0.708  
## Q198_7   0.922  
## Q198_9r  0.795  
## Q198_15  0.755  
## Q198_17r 0.837  
## Q198_22  0.939  
## Q198_23r 0.784  
## Q198_29  0.852  
## 
##                Factor1
## SS loadings      6.699
## Proportion Var   0.670
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 76.97 on 35 degrees of freedom.
## The p-value is 0.0000551
 
Human Value Subscale
## 
## Cronbach's alpha for the 'pcsiData[, c("Q198_8r", "Q198_14r", "Q198_24r", "Q198_26r", "Q198_27r")]' data-set
## 
## Items: 5
## Sample units: 223
## alpha: 0.918
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.869 0.947


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = tabshvData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q198_8r Q198_14r Q198_24r Q198_26r Q198_27r 
##    0.364    0.249    0.340    0.358    0.142 
## 
## Loadings:
##          Factor1
## Q198_8r  0.797  
## Q198_14r 0.866  
## Q198_24r 0.812  
## Q198_26r 0.801  
## Q198_27r 0.926  
## 
##                Factor1
## SS loadings      3.547
## Proportion Var   0.709
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 10.84 on 5 degrees of freedom.
## The p-value is 0.0546
 
 
Anti-trans Legislation
Entire Scale
## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_1", "Q197_2", "Q197_3", "Q197_4", "Q197_5", ' '    "Q197_6", "Q197_7", "Q197_8", "Q197_10", "Q197_11", "Q197_12", ' '    "Q197_13", "Q197_14", "Q197_15", "Q197_16")]' data-set
## 
## Items: 15
## Sample units: 223
## alpha: 0.965
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.957 0.971


## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = legislationData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_1  Q197_2  Q197_3  Q197_4  Q197_5  Q197_6  Q197_7  Q197_8 Q197_10 Q197_11 
##   0.402   0.418   0.180   0.270   0.153   0.107   0.238   0.488   0.105   0.307 
## Q197_12 Q197_13 Q197_14 Q197_15 Q197_16 
##   0.243   0.409   0.614   0.117   0.380 
## 
## Loadings:
##         Factor1 Factor2
## Q197_1  0.664   0.395  
## Q197_2  0.706   0.289  
## Q197_3  0.780   0.460  
## Q197_4  0.745   0.418  
## Q197_5  0.371   0.842  
## Q197_6  0.347   0.879  
## Q197_7  0.767   0.417  
## Q197_8  0.488   0.524  
## Q197_10 0.841   0.433  
## Q197_11 0.759   0.342  
## Q197_12 0.659   0.569  
## Q197_13 0.449   0.624  
## Q197_14 0.268   0.561  
## Q197_15 0.818   0.462  
## Q197_16 0.438   0.654  
## 
##                Factor1 Factor2
## SS loadings      6.038   4.530
## Proportion Var   0.403   0.302
## Cumulative Var   0.403   0.705
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 226.48 on 76 degrees of freedom.
## The p-value is 0.0000000000000000705
 
Civil Rights
## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_1", "Q197_2", "Q197_3", "Q197_5", "Q197_6", ' '    "Q197_14")]' data-set
## 
## Items: 6
## Sample units: 223
## alpha: 0.897
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.874 0.916


## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = legcivData, factors = 2, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_1  Q197_2  Q197_3  Q197_5  Q197_6 Q197_14 
##   0.336   0.406   0.207   0.183   0.035   0.633 
## 
## Loadings:
##         Factor1 Factor2
## Q197_1  0.353   0.734  
## Q197_2  0.260   0.725  
## Q197_3  0.449   0.769  
## Q197_5  0.810   0.401  
## Q197_6  0.923   0.336  
## Q197_14 0.488   0.358  
## 
##                Factor1 Factor2
## SS loadings      2.140   2.058
## Proportion Var   0.357   0.343
## Cumulative Var   0.357   0.700
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 3.43 on 4 degrees of freedom.
## The p-value is 0.488
 
Healthcare
## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_7", "Q197_10", "Q197_15")]' data-set
## 
## Items: 3
## Sample units: 223
## alpha: 0.95
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.933 0.964


## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
## 
## Call:
## factanal(x = leghealthData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_7 Q197_10 Q197_15 
##   0.230   0.111   0.066 
## 
## Loadings:
##         Factor1
## Q197_7  0.877  
## Q197_10 0.943  
## Q197_15 0.967  
## 
##                Factor1
## SS loadings      2.594
## Proportion Var   0.865
## 
## The degrees of freedom for the model is 0 and the fit was 0
 
Schools & Educations
## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_4", "Q197_8", "Q197_11", "Q197_12", "Q197_13", ' '    "Q197_16")]' data-set
## 
## Items: 6
## Sample units: 223
## alpha: 0.917
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.895 0.935


## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
## 
## Call:
## factanal(x = legeduData, factors = 1, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##  Q197_4  Q197_8 Q197_11 Q197_12 Q197_13 Q197_16 
##   0.314   0.424   0.358   0.179   0.407   0.413 
## 
## Loadings:
##         Factor1
## Q197_4  0.828  
## Q197_8  0.759  
## Q197_11 0.801  
## Q197_12 0.906  
## Q197_13 0.770  
## Q197_16 0.766  
## 
##                Factor1
## SS loadings      3.905
## Proportion Var   0.651
## 
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 56.64 on 9 degrees of freedom.
## The p-value is 0.00000000593
 
 
Prejudice (TABS) & Legislation Together
All items
## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_1", "Q197_2", "Q197_3", "Q197_4", "Q197_5", ' '    "Q197_6", "Q197_7", "Q197_8", "Q197_10", "Q197_11", "Q197_12", ' '    "Q197_13", "Q197_14", "Q197_15", "Q197_16", "Q198_1", "Q198_2r", ' '    "Q198_3r", "Q198_4", "Q198_5", "Q198_6", "Q198_7", "Q198_8r", ' '    "Q198_9r", "Q198_10r", "Q198_11", "Q198_12", "Q198_13", "Q198_14r", ' '    "Q198_15", "Q198_16r", "Q198_17r", "Q198_18r", "Q198_19r", ' '    "Q198_20r", "Q198_22", "Q198_23r", "Q198_24r", "Q198_25", ' '    "Q198_26r", "Q198_27r", "Q198_28", "Q198_29", "Q198_30")]' data-set
## 
## Items: 44
## Sample units: 223
## alpha: 0.98
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.976 0.984


## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
## 
## Call:
## factanal(x = legtabsData, factors = 3, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##   Q197_1   Q197_2   Q197_3   Q197_4   Q197_5   Q197_6   Q197_7   Q197_8 
##    0.365    0.434    0.183    0.272    0.396    0.337    0.277    0.455 
##  Q197_10  Q197_11  Q197_12  Q197_13  Q197_14  Q197_15  Q197_16   Q198_1 
##    0.160    0.329    0.203    0.444    0.507    0.168    0.448    0.448 
##  Q198_2r  Q198_3r   Q198_4   Q198_5   Q198_6   Q198_7  Q198_8r  Q198_9r 
##    0.422    0.243    0.245    0.516    0.508    0.233    0.347    0.395 
## Q198_10r  Q198_11  Q198_12  Q198_13 Q198_14r  Q198_15 Q198_16r Q198_17r 
##    0.183    0.255    0.242    0.220    0.246    0.392    0.561    0.365 
## Q198_18r Q198_19r Q198_20r  Q198_22 Q198_23r Q198_24r  Q198_25 Q198_26r 
##    0.181    0.177    0.194    0.213    0.371    0.318    0.200    0.375 
## Q198_27r  Q198_28  Q198_29  Q198_30 
##    0.142    0.307    0.311    0.562 
## 
## Loadings:
##          Factor1 Factor2 Factor3
## Q197_1   0.727   0.149   0.290  
## Q197_2   0.725   0.184          
## Q197_3   0.867   0.230   0.109  
## Q197_4   0.820   0.227          
## Q197_5   0.664   0.376   0.148  
## Q197_6   0.664   0.444   0.156  
## Q197_7   0.831   0.171          
## Q197_8   0.650   0.248   0.249  
## Q197_10  0.894   0.182          
## Q197_11  0.787   0.226          
## Q197_12  0.835   0.293   0.117  
## Q197_13  0.662   0.264   0.218  
## Q197_14  0.393   0.458   0.358  
## Q197_15  0.889   0.197          
## Q197_16  0.673   0.273   0.158  
## Q198_1   0.426   0.497   0.351  
## Q198_2r  0.407   0.516   0.382  
## Q198_3r  0.248   0.729   0.405  
## Q198_4   0.757   0.406   0.130  
## Q198_5   0.281   0.537   0.342  
## Q198_6   0.611   0.258   0.229  
## Q198_7   0.755   0.402   0.186  
## Q198_8r          0.391   0.704  
## Q198_9r  0.701   0.336          
## Q198_10r 0.308   0.807   0.268  
## Q198_11  0.467   0.693   0.217  
## Q198_12  0.483   0.714   0.127  
## Q198_13  0.392   0.783   0.114  
## Q198_14r         0.259   0.827  
## Q198_15  0.561   0.502   0.201  
## Q198_16r 0.167   0.553   0.324  
## Q198_17r 0.694   0.340   0.192  
## Q198_18r 0.388   0.794   0.193  
## Q198_19r 0.277   0.780   0.372  
## Q198_20r 0.251   0.731   0.456  
## Q198_22  0.772   0.392   0.196  
## Q198_23r 0.574   0.463   0.290  
## Q198_24r 0.196   0.239   0.766  
## Q198_25  0.317   0.772   0.323  
## Q198_26r 0.137   0.320   0.710  
## Q198_27r 0.138   0.396   0.826  
## Q198_28  0.310   0.698   0.331  
## Q198_29  0.745   0.326   0.169  
## Q198_30  0.314   0.542   0.214  
## 
##                Factor1 Factor2 Factor3
## SS loadings     14.595  10.079   5.175
## Proportion Var   0.332   0.229   0.118
## Cumulative Var   0.332   0.561   0.678
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 1856.04 on 817 degrees of freedom.
## The p-value is 1.38e-82
 
Just the sex/gender beliefs subscale from TABS with the legislation
items
## 
## Cronbach's alpha for the 'pcsiData[, c("Q197_1", "Q197_2", "Q197_3", "Q197_4", "Q197_5", ' '    "Q197_6", "Q197_7", "Q197_8", "Q197_10", "Q197_11", "Q197_12", ' '    "Q197_13", "Q197_14", "Q197_15", "Q197_16", "Q198_2r", "Q198_4", ' '    "Q198_6", "Q198_7", "Q198_9r", "Q198_15", "Q198_17r", "Q198_22", ' '    "Q198_23r", "Q198_29")]' data-set
## 
## Items: 25
## Sample units: 223
## alpha: 0.977
## 
## Bootstrap 95% CI based on 1000 samples
##  2.5% 97.5% 
## 0.973 0.981


## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
## 
## Call:
## factanal(x = legtabsData, factors = 3, scores = c("regression"),     rotation = "varimax")
## 
## Uniquenesses:
##   Q197_1   Q197_2   Q197_3   Q197_4   Q197_5   Q197_6   Q197_7   Q197_8 
##    0.402    0.412    0.181    0.276    0.112    0.116    0.224    0.462 
##  Q197_10  Q197_11  Q197_12  Q197_13  Q197_14  Q197_15  Q197_16  Q198_2r 
##    0.098    0.305    0.195    0.409    0.573    0.096    0.378    0.520 
##   Q198_4   Q198_6   Q198_7  Q198_9r  Q198_15 Q198_17r  Q198_22 Q198_23r 
##    0.170    0.496    0.156    0.360    0.443    0.294    0.117    0.383 
##  Q198_29 
##    0.266 
## 
## Loadings:
##          Factor1 Factor2 Factor3
## Q197_1   0.605   0.369   0.311  
## Q197_2   0.615   0.418   0.185  
## Q197_3   0.709   0.442   0.348  
## Q197_4   0.670   0.420   0.315  
## Q197_5   0.401   0.223   0.823  
## Q197_6   0.338   0.355   0.803  
## Q197_7   0.757   0.292   0.343  
## Q197_8   0.389   0.470   0.408  
## Q197_10  0.813   0.359   0.334  
## Q197_11  0.695   0.396   0.233  
## Q197_12  0.546   0.573   0.423  
## Q197_13  0.378   0.424   0.518  
## Q197_14  0.183   0.395   0.487  
## Q197_15  0.811   0.315   0.383  
## Q197_16  0.396   0.370   0.573  
## Q198_2r  0.186   0.454   0.489  
## Q198_4   0.411   0.726   0.366  
## Q198_6   0.369   0.540   0.276  
## Q198_7   0.402   0.727   0.393  
## Q198_9r  0.456   0.612   0.241  
## Q198_15  0.371   0.571   0.306  
## Q198_17r 0.400   0.682   0.285  
## Q198_22  0.428   0.762   0.345  
## Q198_23r 0.307   0.599   0.405  
## Q198_29  0.459   0.653   0.312  
## 
##                Factor1 Factor2 Factor3
## SS loadings      6.622   6.435   4.500
## Proportion Var   0.265   0.257   0.180
## Cumulative Var   0.265   0.522   0.702
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 489.54 on 228 degrees of freedom.
## The p-value is 0.00000000000000000000351