PCSI Gender Intervention Study TESS Analyses

Descriptive Statistics

Full Sample Together

## pcsi2Data[, c("gender_identify_cis", "gender_identify_trans", "gender_comp", "autonomy_geniden", "legislation", "trust_scientists")] 
## 
##  6  Variables      1563  Observations
## --------------------------------------------------------------------------------
## gender_identify_cis 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1480       83      131     0.97    53.96    46.07        6       12 
##      .25      .50      .75      .90      .95 
##       26       36       60      122      180 
## 
## lowest :   0   1   3   4   6, highest: 220 221 222 225 227
## --------------------------------------------------------------------------------
## gender_identify_trans 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1496       67      150    0.984    84.84    69.16       13       24 
##      .25      .50      .75      .90      .95 
##       36       60      130      192      216 
## 
## lowest :   0   1   3   4   5, highest: 222 223 225 226 227
## --------------------------------------------------------------------------------
## gender_comp 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1452      111      180    0.892    30.24    56.72    -12.9      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      0.0     48.0    120.0    164.7 
## 
## lowest : -211 -203 -191 -168 -156, highest:  209  210  214  215  226
## --------------------------------------------------------------------------------
## autonomy_geniden 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1540       23       19    0.994    4.399    1.998    1.000    1.667 
##      .25      .50      .75      .90      .95 
##    3.333    4.333    6.000    7.000    7.000 
## 
## lowest : 1.00000 1.33333 1.66667 2.00000 2.33333
## highest: 5.66667 6.00000 6.33333 6.66667 7.00000
## 
## 1 (112, 0.073), 1.33333333333333 (29, 0.019), 1.66666666666667 (21, 0.014), 2
## (45, 0.029), 2.33333333333333 (38, 0.025), 2.66666666666667 (32, 0.021), 3 (92,
## 0.060), 3.33333333333333 (73, 0.047), 3.66666666666667 (75, 0.049), 4 (172,
## 0.112), 4.33333333333333 (100, 0.065), 4.66666666666667 (97, 0.063), 5 (138,
## 0.090), 5.33333333333333 (70, 0.045), 5.66666666666667 (43, 0.028), 6 (116,
## 0.075), 6.33333333333333 (63, 0.041), 6.66666666666667 (42, 0.027), 7 (182,
## 0.118)
## --------------------------------------------------------------------------------
## legislation 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1545       18       37    0.995    4.913     1.84    2.000    2.667 
##      .25      .50      .75      .90      .95 
##    3.833    5.000    6.333    7.000    7.000 
## 
## lowest : 1.00000 1.16667 1.33333 1.50000 1.66667
## highest: 6.33333 6.50000 6.66667 6.83333 7.00000
## --------------------------------------------------------------------------------
## trust_scientists 
##        n  missing distinct     Info     Mean      Gmd 
##     1547       16        7    0.966    4.546    1.919 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency    125    97   139   363   280   357   186
## Proportion 0.081 0.063 0.090 0.235 0.181 0.231 0.120
## --------------------------------------------------------------------------------

Descriptives by Condition

## 
##  Descriptive statistics by group 
## group: Control
##                       vars   n   mean    sd median trimmed   mad  min max range
## gender_identify_cis      1 751  59.66 52.81  45.00   50.01 31.13    0 227   227
## gender_identify_trans    2 757 108.89 63.59 108.00  106.61 71.16    0 227   227
## gender_comp              3 738  48.69 68.26  24.00   41.95 35.58 -191 226   417
## autonomy_geniden         4 779   4.38  1.81   4.33    4.47  1.98    1   7     6
## legislation              5 786   4.90  1.65   5.00    5.02  1.98    1   7     6
## trust_scientists         6 784   4.53  1.73   5.00    4.64  1.48    1   7     6
##                        skew kurtosis   se
## gender_identify_cis    1.62     2.05 1.93
## gender_identify_trans  0.27    -1.09 2.31
## gender_comp            0.58     0.33 2.51
## autonomy_geniden      -0.30    -0.83 0.06
## legislation           -0.39    -0.75 0.06
## trust_scientists      -0.47    -0.61 0.06
## ------------------------------------------------------------ 
## group: Experiment
##                       vars   n  mean    sd median trimmed  mad  min max range
## gender_identify_cis      1 729 48.09 44.55  36.00   38.71 4.45    0 227   227
## gender_identify_trans    2 739 60.21 53.65  36.00   49.41 7.41    0 227   227
## gender_comp              3 714 11.18 40.10   0.00    4.36 0.00 -211 205   416
## autonomy_geniden         4 761  4.42  1.70   4.33    4.49 1.98    1   7     6
## legislation              5 759  4.92  1.59   5.00    5.03 1.73    1   7     6
## trust_scientists         6 763  4.56  1.71   5.00    4.67 1.48    1   7     6
##                        skew kurtosis   se
## gender_identify_cis    2.53     6.37 1.65
## gender_identify_trans  1.82     2.35 1.97
## gender_comp            1.77     9.77 1.50
## autonomy_geniden      -0.26    -0.67 0.06
## legislation           -0.39    -0.77 0.06
## trust_scientists      -0.52    -0.52 0.06

Manipulation Check

“As a manipulation check, we will first conduct an independent samples t-test to determine whether perceptions of the age at which transgender youth can identify their gender relative to cisgender youth differs by condition using the age difference score outlined above as the dependent variable.”

Non-weighted

Manipulation Check (continued below)
Test statistic df P value Alternative hypothesis
12.82 1199 2.501e-35 * * * two.sided
mean in group Control mean in group Experiment
48.69 11.18

Weighted

  • test: Two Sample Weighted T-Test (Welch)

  • coefficients:

    t.value df p.value
    11.22 1239 0
  • additional:

    Difference Mean.x Mean.y Std. Err
    34.55 47.18 12.63 3.078

Serial Mediation Model

“Next, we will test a serial mediation model in which both the perceived gender development age gap and autonomy support mediate the relationship between condition and support for anti-transgender legislation, such that condition will influence the perceived gender development age gap, which will influence autonomy support, and then finally support for anti-trans legislation.”

Non-weighted

## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                          1422        1563
## 
## Model Test User Model:
##                                                       
##   Test statistic                                59.738
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1488.349
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.962
##   Tucker-Lewis Index (TLI)                       0.923
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12630.926
##   Loglikelihood unrestricted model (H1)     -12601.057
##                                                       
##   Akaike (AIC)                               25279.851
##   Bayesian (BIC)                             25327.189
##   Sample-size adjusted Bayesian (SABIC)      25298.600
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.115
##   90 Percent confidence interval - lower         0.091
##   90 Percent confidence interval - upper         0.142
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.991
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   gender_comp ~                                                           
##     conditin  (a1)    -37.726    2.980  -12.658    0.000  -43.567  -31.884
##   autonomy_geniden ~                                                      
##     gndr_cmp (d21)     -0.008    0.001  -10.264    0.000   -0.009   -0.006
##   legislation ~                                                           
##     atnmy_gn  (b2)     -0.697    0.016  -42.748    0.000   -0.729   -0.665
##    Std.lv  Std.all
##                   
##   -37.726   -0.318
##                   
##    -0.008   -0.263
##                   
##    -0.697   -0.750
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .gender_comp      86.587    4.692   18.453    0.000   77.390   95.784
##    .autonomy_gendn    4.661    0.050   92.722    0.000    4.562    4.759
##    .legislation       7.980    0.078  102.793    0.000    7.828    8.132
##    Std.lv  Std.all
##    86.587    1.461
##     4.661    2.664
##     7.980    4.905
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .gender_comp    3157.015  118.397   26.665    0.000 2924.961 3389.070
##    .autonomy_gendn    2.850    0.107   26.665    0.000    2.640    3.059
##    .legislation       1.158    0.043   26.665    0.000    1.073    1.243
##    Std.lv  Std.all
##  3157.015    0.899
##     2.850    0.931
##     1.158    0.438
## 
## R-Square:
##                    Estimate
##     gender_comp       0.101
##     autonomy_gendn    0.069
##     legislation       0.562
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind_eff          -0.204    0.026   -7.837    0.000   -0.255   -0.153
##    Std.lv  Std.all
##    -0.204   -0.063
##                 lhs op              rhs     mi    epc sepc.lv sepc.all sepc.nox
## 14      gender_comp  ~      legislation 57.223 10.177  10.177    0.279    0.279
## 17      legislation  ~      gender_comp 40.044  0.003   0.003    0.115    0.115
## 15 autonomy_geniden  ~      legislation 40.043  1.002   1.002    0.932    0.932
## 13      gender_comp  ~ autonomy_geniden  9.712 -8.644  -8.644   -0.255   -0.255
## 16 autonomy_geniden  ~        condition  9.712 -0.294  -0.294   -0.084   -0.168

Weighted

## lavaan 0.6.15 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                          1422        1563
##   Sampling weights variable                    weights            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                61.407      31.270
##   Degrees of freedom                                 3           3
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.964
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1338.359     572.177
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.339
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.956       0.950
##   Tucker-Lewis Index (TLI)                       0.912       0.900
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.958
##   Robust Tucker-Lewis Index (TLI)                            0.916
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12683.904  -12683.904
##   Scaling correction factor                                  2.214
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -12653.200  -12653.200
##   Scaling correction factor                                  2.151
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               25385.808   25385.808
##   Bayesian (BIC)                             25433.146   25433.146
##   Sample-size adjusted Bayesian (SABIC)      25404.556   25404.556
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.117       0.081
##   90 Percent confidence interval - lower         0.093       0.064
##   90 Percent confidence interval - upper         0.143       0.100
##   P-value H_0: RMSEA <= 0.050                    0.000       0.002
##   P-value H_0: RMSEA >= 0.080                    0.993       0.575
##                                                                   
##   Robust RMSEA                                               0.114
##   90 Percent confidence interval - lower                     0.080
##   90 Percent confidence interval - upper                     0.152
##   P-value H_0: Robust RMSEA <= 0.050                         0.001
##   P-value H_0: Robust RMSEA >= 0.080                         0.950
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.039       0.039
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   gender_comp ~                                                           
##     conditin  (a1)    -35.336    4.296   -8.226    0.000  -43.755  -26.916
##   autonomy_geniden ~                                                      
##     gndr_cmp (d21)     -0.006    0.001   -6.525    0.000   -0.008   -0.004
##   legislation ~                                                           
##     atnmy_gn  (b2)     -0.668    0.022  -30.383    0.000   -0.711   -0.625
##    Std.lv  Std.all
##                   
##   -35.336   -0.288
##                   
##    -0.006   -0.225
##                   
##    -0.668   -0.729
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .gender_comp      83.210    7.700   10.807    0.000   68.119   98.302
##    .autonomy_gendn    4.526    0.072   62.645    0.000    4.384    4.667
##    .legislation       7.893    0.094   84.084    0.000    7.709    8.076
##    Std.lv  Std.all
##    83.210    1.355
##     4.526    2.634
##     7.893    5.017
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .gender_comp    3458.625  291.014   11.885    0.000 2888.249 4029.002
##    .autonomy_gendn    2.803    0.118   23.690    0.000    2.571    3.035
##    .legislation       1.158    0.068   17.070    0.000    1.025    1.291
##    Std.lv  Std.all
##  3458.625    0.917
##     2.803    0.949
##     1.158    0.468
## 
## R-Square:
##                    Estimate
##     gender_comp       0.083
##     autonomy_gendn    0.051
##     legislation       0.532
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind_eff          -0.149    0.031   -4.756    0.000   -0.210   -0.087
##    Std.lv  Std.all
##    -0.149   -0.047
##                 lhs op         rhs     mi    epc sepc.lv sepc.all sepc.nox
## 14      gender_comp  ~ legislation 56.219 10.641  10.641    0.273    0.273
## 15 autonomy_geniden  ~ legislation 39.528  1.152   1.152    1.055    1.055
## 17      legislation  ~ gender_comp 39.528  0.003   0.003    0.117    0.117
## 21        condition  ~ legislation  8.869  0.026   0.026    0.082    0.082
## 16 autonomy_geniden  ~   condition  5.196 -0.211  -0.211   -0.061   -0.123

Weighted with order as a covariate

## lavaan 0.6.15 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##                                                   Used       Total
##   Number of observations                          1422        1563
##   Sampling weights variable                    weights            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                68.046      35.447
##   Degrees of freedom                                 3           3
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.920
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1377.657     631.508
##   Degrees of freedom                                 9           9
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.182
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.952       0.948
##   Tucker-Lewis Index (TLI)                       0.857       0.844
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.954
##   Robust Tucker-Lewis Index (TLI)                            0.862
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12667.574  -12667.574
##   Scaling correction factor                                  2.138
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -12633.551  -12633.551
##   Scaling correction factor                                  2.094
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               25359.147   25359.147
##   Bayesian (BIC)                             25422.265   25422.265
##   Sample-size adjusted Bayesian (SABIC)      25384.145   25384.145
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.123       0.087
##   90 Percent confidence interval - lower         0.099       0.069
##   90 Percent confidence interval - upper         0.150       0.106
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.998       0.758
##                                                                   
##   Robust RMSEA                                               0.121
##   90 Percent confidence interval - lower                     0.087
##   90 Percent confidence interval - upper                     0.158
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.976
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.034       0.034
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   gender_comp ~                                                           
##     conditin  (a1)    -35.586    4.252   -8.368    0.000  -43.921  -27.252
##     gndr_dn_          -15.875    4.250   -3.735    0.000  -24.205   -7.546
##   autonomy_geniden ~                                                      
##     gndr_cmp (d21)     -0.006    0.001   -6.349    0.000   -0.008   -0.004
##     gndr_dn_            0.015    0.123    0.118    0.906   -0.226    0.255
##   legislation ~                                                           
##     atnmy_gn  (b2)     -0.669    0.022  -30.646    0.000   -0.712   -0.626
##     gndr_dn_            0.146    0.081    1.798    0.072   -0.013    0.304
##    Std.lv  Std.all
##                   
##   -35.586   -0.290
##   -15.875   -0.129
##                   
##    -0.006   -0.225
##     0.015    0.004
##                   
##    -0.669   -0.731
##     0.146    0.046
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .gender_comp     107.189    9.866   10.864    0.000   87.851  126.526
##    .autonomy_gendn    4.504    0.210   21.447    0.000    4.092    4.915
##    .legislation       7.682    0.150   51.049    0.000    7.387    7.977
##    Std.lv  Std.all
##   107.189    1.746
##     4.504    2.621
##     7.682    4.883
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .gender_comp    3395.679  286.099   11.869    0.000 2834.936 3956.423
##    .autonomy_gendn    2.803    0.118   23.690    0.000    2.571    3.035
##    .legislation       1.153    0.067   17.109    0.000    1.021    1.285
##    Std.lv  Std.all
##  3395.679    0.901
##     2.803    0.949
##     1.153    0.466
## 
## R-Square:
##                    Estimate
##     gender_comp       0.099
##     autonomy_gendn    0.051
##     legislation       0.534
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind_eff          -0.150    0.032   -4.694    0.000   -0.212   -0.087
##    Std.lv  Std.all
##    -0.150   -0.048
##                      lhs op         rhs     mi    epc sepc.lv sepc.all sepc.nox
## 20           gender_comp  ~ legislation 62.364 11.107  11.107    0.285    0.285
## 21      autonomy_geniden  ~ legislation 44.331  1.235   1.235    1.131    1.131
## 23           legislation  ~ gender_comp 44.331  0.003   0.003    0.125    0.125
## 31 gender_identify_order  ~ legislation 11.780  2.167   2.167    6.820    6.820
## 27             condition  ~ legislation  9.024  0.026   0.026    0.083    0.083

Secondary Analyses

Additional Moderation Models

“We will measure a secondary dependent variable which will be used for additional analyses (see below). We will measure participants’ trust in scientists on a single-item scale in which participants will be asked to indicate on a scale from 1 (strongly distrust) to 7 (strongly trust) how much they trust or distrust scientists as a source of information about gender development (adapted from Hmielowski et al., 2014).”

“In addition to our planned serial mediation model, we will also test two moderation models. As described above, we expect participants who receive the intervention (relative to those who do not) will show a reduced age gap in their perception of gender identity development. We further predict that this effect will be greater for participants who express more trust in scientists, as has been the case in previous work examining motivated reasoning about scientific findings (Drummond & Fischhoff, 2017).”.

“Additionally, because transgender rights are a highly politicized topic (Hatch et al., 2022), we expect the predicted effect will be greater among more highly educated liberal participants, in line with research from other similarly politicized domains (e.g., global warming; Drummond & Fischhoff, 2017). Thus, we will test moderation by these variables through two linear regression models (one model with condition and trust in scientists and another with condition, political ideology, and education).”

Moderation by trust in scientists

Non-weighted

Estimates for the trust moderation model
term estimate std.error statistic p.value
(Intercept) 50.2563 4.2177 11.9156 0.0000
condition1 -23.4851 4.2177 -5.5683 0.0000
trust_scientists -4.4168 0.8597 -5.1375 0.0000
condition1:trust_scientists 0.9885 0.8597 1.1498 0.2504
Summary for the trust moderation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1201 0.1182 55.5897 65.3108 0 3 -7827.19 15664.4 15690.7 4437551 1436 1440

Weighted

Estimates for the trust moderation model
term estimate std.error statistic p.value
(Intercept) 46.7758 4.4034 10.6226 0.0000
condition1 -14.9555 4.4034 -3.3963 0.0007
trust_scientists -3.7260 0.9098 -4.0954 0.0000
condition1:trust_scientists -0.5108 0.9098 -0.5615 0.5746
Summary for the trust moderation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0912 0.0893 58.2123 48.0086 0 3 -8151.79 16313.6 16339.9 4866137 1436 1440

Weighted with order as covariate

Estimates for the trust moderation model
term estimate std.error statistic p.value
(Intercept) 46.9074 4.3699 10.7342 0.0000
condition1 -14.7021 4.3701 -3.3642 0.0008
trust_scientists -3.8162 0.9031 -4.2258 0.0000
gender_identify_order1 -7.3626 1.5299 -4.8124 0.0000
condition1:trust_scientists -0.5944 0.9030 -0.6583 0.5105
Summary for the trust moderation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1056 0.1031 57.7683 42.3517 0 4 -8140.26 16292.5 16324.2 4788852 1435 1440

Moderation by political ideology and education

A higher score in political ideology is more conservative

1 Very liberal 2 Somewhat liberal 3 Moderate 4 Somewhat conservative 5 Very conservative

Less than high school is the reference level for education

Non-weighted

## 
##                        Less than HS           HS graduate or equivalent 
##                                  60                                 278 
##     Some college/ associates degree                   Bachelor's degree 
##                                 618                                 338 
## Post grad study/professional degree 
##                                 269
Estimates for the political ideology and education moderation model
term estimate std.error statistic p.value
(Intercept) 14.5013 6.4332 2.2541 0.0243
condition1 -16.7280 6.4332 -2.6003 0.0094
pol_ideology_missing 4.8176 2.0547 2.3447 0.0192
education_factor1 -11.7953 14.5171 -0.8125 0.4166
education_factor2 -8.0771 5.3722 -1.5035 0.1329
education_factor3 -6.1683 3.2342 -1.9072 0.0567
education_factor4 -4.7703 2.3189 -2.0571 0.0399
condition1:pol_ideology_missing -0.2635 2.0547 -0.1282 0.8980
condition1:education_factor1 26.7706 14.5171 1.8441 0.0654
condition1:education_factor2 10.6964 5.3722 1.9911 0.0467
condition1:education_factor3 6.4658 3.2342 1.9992 0.0458
condition1:education_factor4 2.4490 2.3189 1.0561 0.2911
pol_ideology_missing:education_factor1 4.3549 4.5971 0.9473 0.3436
pol_ideology_missing:education_factor2 3.1209 1.6934 1.8429 0.0655
pol_ideology_missing:education_factor3 2.0300 1.0359 1.9596 0.0502
pol_ideology_missing:education_factor4 1.1234 0.7772 1.4454 0.1486
condition1:pol_ideology_missing:education_factor1 -8.0585 4.5971 -1.7529 0.0798
condition1:pol_ideology_missing:education_factor2 -4.3794 1.6934 -2.5861 0.0098
condition1:pol_ideology_missing:education_factor3 -2.6485 1.0359 -2.5566 0.0107
condition1:pol_ideology_missing:education_factor4 -0.5600 0.7772 -0.7206 0.4713
Summary for the political ideology and education moderation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1508 0.1395 54.7193 13.2752 0 19 -7796.39 15634.8 15745.5 4251765 1420 1440

Weighted

## 
##                        Less than HS           HS graduate or equivalent 
##                                  60                                 278 
##     Some college/ associates degree                   Bachelor's degree 
##                                 618                                 338 
## Post grad study/professional degree 
##                                 269
Estimates for the political ideology and education moderation model
term estimate std.error statistic p.value
(Intercept) 13.7927 5.0004 2.7583 0.0059
condition1 -17.7661 5.0004 -3.5529 0.0004
pol_ideology_missing 5.0144 1.5962 3.1414 0.0017
education_factor1 -15.5407 9.3323 -1.6652 0.0961
education_factor2 -7.3790 4.0292 -1.8314 0.0673
education_factor3 -7.1820 3.0418 -2.3611 0.0184
education_factor4 -8.5175 2.4234 -3.5147 0.0005
condition1:pol_ideology_missing 0.4934 1.5962 0.3091 0.7573
condition1:education_factor1 33.2714 9.3323 3.5652 0.0004
condition1:education_factor2 9.2536 4.0292 2.2966 0.0218
condition1:education_factor3 8.0456 3.0418 2.6450 0.0083
condition1:education_factor4 4.7931 2.4234 1.9779 0.0481
pol_ideology_missing:education_factor1 5.5357 2.9484 1.8776 0.0606
pol_ideology_missing:education_factor2 2.6329 1.2557 2.0968 0.0362
pol_ideology_missing:education_factor3 2.5997 0.9664 2.6901 0.0072
pol_ideology_missing:education_factor4 1.9927 0.8032 2.4809 0.0132
condition1:pol_ideology_missing:education_factor1 -10.3234 2.9484 -3.5014 0.0005
condition1:pol_ideology_missing:education_factor2 -3.8792 1.2557 -3.0893 0.0020
condition1:pol_ideology_missing:education_factor3 -2.8665 0.9664 -2.9662 0.0031
condition1:pol_ideology_missing:education_factor4 -0.7636 0.8032 -0.9507 0.3419
Summary for the political ideology and education moderation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.1341 0.1225 56.6333 11.572 0 19 -8102.94 16247.9 16358.6 4554406 1420 1440

Exploring the three-way interactions

intercept for condition=control & education_factor=“Less than HS”
## (Intercept) 
##     13.7927
intercept for condition=experiment & education_factor=“Less than HS”
## (Intercept) 
##     -3.9734
intercept for condition=control & education_factor=“HS graduate or equivalent”
## (Intercept) 
##    -1.74803
intercept for condition=experiment & education_factor=“HS graduate or equivalent”
## (Intercept) 
##     13.7574
intercept for condition=control & education_factor=“Some college/ associates degree”
## (Intercept) 
##     6.41365
intercept for condition=experiment & education_factor=“Some college/ associates degree”
## (Intercept) 
##    -2.09882
intercept for condition=control & education_factor=“Bachelor’s degree”
## (Intercept) 
##     6.61063
intercept for condition=experiment & education_factor=“Bachelor’s degree”
## (Intercept) 
##    -3.10987
intercept for condition=control & education_factor=“Post grad study/professional degree”
## (Intercept) 
##     5.27513
intercept for condition=experiment & education_factor=“Post grad study/professional degree”
## (Intercept) 
##    -7.69781

Weighted with order as a covariate

## 
##                        Less than HS           HS graduate or equivalent 
##                                  60                                 278 
##     Some college/ associates degree                   Bachelor's degree 
##                                 618                                 338 
## Post grad study/professional degree 
##                                 269
Estimates for the political ideology and education moderation model
term estimate std.error statistic p.value
(Intercept) 13.6297 4.9619 2.7469 0.0061
condition1 -19.7912 4.9795 -3.9745 0.0001
pol_ideology_missing 5.0468 1.5839 3.1864 0.0015
education_factor1 -12.9906 9.2754 -1.4006 0.1616
education_factor2 -7.8791 3.9994 -1.9701 0.0490
education_factor3 -7.5291 3.0192 -2.4938 0.0128
education_factor4 -7.9837 2.4072 -3.3166 0.0009
gender_identify_order1 -7.2437 1.5039 -4.8167 0.0000
condition1:pol_ideology_missing 1.1036 1.5889 0.6946 0.4874
condition1:education_factor1 37.0405 9.2932 3.9857 0.0001
condition1:education_factor2 10.4519 4.0058 2.6092 0.0092
condition1:education_factor3 8.0501 3.0183 2.6671 0.0077
condition1:education_factor4 5.0121 2.4051 2.0840 0.0373
pol_ideology_missing:education_factor1 4.6189 2.9318 1.5755 0.1154
pol_ideology_missing:education_factor2 2.6422 1.2460 2.1206 0.0341
pol_ideology_missing:education_factor3 2.6569 0.9590 2.7705 0.0057
pol_ideology_missing:education_factor4 1.7787 0.7983 2.2282 0.0260
condition1:pol_ideology_missing:education_factor1 -11.3912 2.9340 -3.8825 0.0001
condition1:pol_ideology_missing:education_factor2 -4.2704 1.2486 -3.4201 0.0006
condition1:pol_ideology_missing:education_factor3 -2.8590 0.9589 -2.9815 0.0029
condition1:pol_ideology_missing:education_factor4 -0.8606 0.7973 -1.0794 0.2806
Summary for the political ideology and education moderation model
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.148 0.136 56.1957 12.3253 0 20 -8091.26 16226.5 16342.5 4481140 1419 1440

Moderated mediation model

“Secondary analyses will also include a moderated mediation model to determine if this model is a better fit than our planned serial mediation model. Specifically, we will also test a moderated mediation model where the relation between the perceived gender development age gap and autonomy support varies by condition.”

Non-weighted

## lavaan 0.6.15 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                          1422        1563
## 
## Model Test User Model:
##                                                       
##   Test statistic                                12.057
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.002
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1342.157
##   Degrees of freedom                                 7
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992
##   Tucker-Lewis Index (TLI)                       0.974
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4857.736
##   Loglikelihood unrestricted model (H1)      -4851.708
##                                                       
##   Akaike (AIC)                                9733.472
##   Bayesian (BIC)                              9780.811
##   Sample-size adjusted Bayesian (SABIC)       9752.221
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059
##   90 Percent confidence interval - lower         0.030
##   90 Percent confidence interval - upper         0.094
##   P-value H_0: RMSEA <= 0.050                    0.261
##   P-value H_0: RMSEA >= 0.080                    0.177
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.011
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   autonomy_geniden ~                                                      
##     gndr_cm  (a11)     -0.012    0.002   -5.157    0.000   -0.017   -0.008
##     cndtn_n (a1m1)     -0.359    0.101   -3.546    0.000   -0.558   -0.161
##     gndr_:_ (a111)      0.003    0.002    1.720    0.085   -0.000    0.007
##   legislation ~                                                           
##     atnmy_g  (b11)     -0.669    0.017  -40.155    0.000   -0.702   -0.636
##     gndr_cm  (c11)      0.003    0.000    6.419    0.000    0.002    0.004
##    Std.lv  Std.all
##                   
##    -0.012   -0.423
##    -0.359   -0.103
##     0.003    0.136
##                   
##    -0.669   -0.720
##     0.003    0.115
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .autonomy_gendn    5.228    0.168   31.210    0.000    4.900    5.556
##    .legislation       7.760    0.084   92.547    0.000    7.595    7.924
##    Std.lv  Std.all
##     5.228    2.988
##     7.760    4.770
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .autonomy_gendn    2.825    0.106   26.665    0.000    2.617    3.032
##    .legislation       1.125    0.042   26.665    0.000    1.043    1.208
##    Std.lv  Std.all
##     2.825    0.923
##     1.125    0.425
## 
## R-Square:
##                    Estimate
##     autonomy_gendn    0.077
##     legislation       0.575
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     a11_cond1        -0.012    0.002   -5.157    0.000   -0.017   -0.008
##     a11_cond2        -0.009    0.001  -10.170    0.000   -0.011   -0.008
##     i_y1m1x1mod1     -0.002    0.001   -1.718    0.086   -0.004    0.000
##     ind_b11_11_cn1    0.008    0.002    5.115    0.000    0.005    0.012
##     ind_b11_11_cn2    0.006    0.001    9.858    0.000    0.005    0.007
##    Std.lv  Std.all
##    -0.012   -0.423
##    -0.009   -0.287
##    -0.002   -0.098
##     0.008    0.304
##     0.006    0.206
##                              lhs op               rhs     mi    epc sepc.lv
## 24              autonomy_geniden  ~       legislation 12.004  1.544   1.544
## 32             condition_numeric  ~       legislation 10.119  0.032   0.032
## 25                   legislation  ~ condition_numeric  9.342  0.182   0.182
## 28                   gender_comp  ~       legislation  3.208  0.800   0.800
## 36 gender_comp:condition_numeric  ~       legislation  2.241 -0.846  -0.846
##    sepc.all sepc.nox
## 24    1.435    1.435
## 32    0.106    0.106
## 25    0.056    0.112
## 28    0.022    0.022
## 36   -0.018   -0.018

Weighted

## lavaan 0.6.15 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                          1422        1563
##   Sampling weights variable                    weights            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                20.114      10.240
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.006
##   Scaling correction factor                                  1.964
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1225.395     572.215
##   Degrees of freedom                                 7           7
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.141
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.985       0.985
##   Tucker-Lewis Index (TLI)                       0.948       0.949
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.987
##   Robust Tucker-Lewis Index (TLI)                            0.953
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4846.900   -4846.900
##   Scaling correction factor                                  1.893
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -4836.843   -4836.843
##   Scaling correction factor                                  1.906
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                9711.800    9711.800
##   Bayesian (BIC)                              9759.138    9759.138
##   Sample-size adjusted Bayesian (SABIC)       9730.549    9730.549
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.080       0.054
##   90 Percent confidence interval - lower         0.051       0.032
##   90 Percent confidence interval - upper         0.113       0.078
##   P-value H_0: RMSEA <= 0.050                    0.047       0.349
##   P-value H_0: RMSEA >= 0.080                    0.541       0.038
##                                                                   
##   Robust RMSEA                                               0.075
##   90 Percent confidence interval - lower                     0.034
##   90 Percent confidence interval - upper                     0.124
##   P-value H_0: Robust RMSEA <= 0.050                         0.138
##   P-value H_0: Robust RMSEA >= 0.080                         0.497
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.015       0.015
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   autonomy_geniden ~                                                      
##     gndr_cm  (a11)     -0.012    0.003   -3.837    0.000   -0.018   -0.006
##     cndtn_n (a1m1)     -0.303    0.146   -2.080    0.038   -0.589   -0.017
##     gndr_:_ (a111)      0.004    0.002    1.730    0.084   -0.001    0.009
##   legislation ~                                                           
##     atnmy_g  (b11)     -0.644    0.023  -28.291    0.000   -0.688   -0.599
##     gndr_cm  (c11)      0.003    0.001    4.812    0.000    0.002    0.004
##    Std.lv  Std.all
##                   
##    -0.012   -0.429
##    -0.303   -0.088
##     0.004    0.191
##                   
##    -0.644   -0.703
##     0.003    0.117
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .autonomy_gendn    5.005    0.238   21.028    0.000    4.539    5.472
##    .legislation       7.698    0.104   74.043    0.000    7.494    7.901
##    Std.lv  Std.all
##     5.005    2.913
##     7.698    4.893
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .autonomy_gendn    2.781    0.120   23.270    0.000    2.547    3.015
##    .legislation       1.126    0.068   16.447    0.000    0.992    1.260
##    Std.lv  Std.all
##     2.781    0.942
##     1.126    0.455
## 
## R-Square:
##                    Estimate
##     autonomy_gendn    0.058
##     legislation       0.545
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     a11_cond1        -0.012    0.003   -3.837    0.000   -0.018   -0.006
##     a11_cond2        -0.008    0.001   -6.640    0.000   -0.010   -0.006
##     i_y1m1x1mod1     -0.003    0.002   -1.722    0.085   -0.006    0.000
##     ind_b11_11_cn1    0.008    0.002    3.775    0.000    0.004    0.012
##     ind_b11_11_cn2    0.005    0.001    6.384    0.000    0.004    0.007
##    Std.lv  Std.all
##    -0.012   -0.429
##    -0.008   -0.238
##    -0.003   -0.134
##     0.008    0.302
##     0.005    0.167
##                              lhs op               rhs     mi    epc sepc.lv
## 24              autonomy_geniden  ~       legislation 17.532  1.978   1.978
## 32             condition_numeric  ~       legislation 17.309  0.043   0.043
## 25                   legislation  ~ condition_numeric 16.023  0.236   0.236
## 28                   gender_comp  ~       legislation  4.831  1.052   1.052
## 36 gender_comp:condition_numeric  ~       legislation  3.388 -1.143  -1.143
##    sepc.all sepc.nox
## 24    1.811    1.811
## 32    0.136    0.136
## 25    0.075    0.150
## 28    0.027    0.027
## 36   -0.022   -0.022

Weightedv with order as a covariate

## lavaan 0.6.15 ended normally after 50 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
## 
##                                                   Used       Total
##   Number of observations                          1422        1563
##   Sampling weights variable                    weights            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                23.281      12.669
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.002
##   Scaling correction factor                                  1.838
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1240.056     603.256
##   Degrees of freedom                                 9           9
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  2.056
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.983       0.982
##   Tucker-Lewis Index (TLI)                       0.922       0.919
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.984
##   Robust Tucker-Lewis Index (TLI)                            0.928
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4841.153   -4841.153
##   Scaling correction factor                                  1.891
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -4829.512   -4829.512
##   Scaling correction factor                                  1.883
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                                9704.306    9704.306
##   Bayesian (BIC)                              9762.164    9762.164
##   Sample-size adjusted Bayesian (SABIC)       9727.220    9727.220
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.087       0.061
##   90 Percent confidence interval - lower         0.057       0.039
##   90 Percent confidence interval - upper         0.120       0.086
##   P-value H_0: RMSEA <= 0.050                    0.022       0.187
##   P-value H_0: RMSEA >= 0.080                    0.673       0.113
##                                                                   
##   Robust RMSEA                                               0.083
##   90 Percent confidence interval - lower                     0.043
##   90 Percent confidence interval - upper                     0.129
##   P-value H_0: Robust RMSEA <= 0.050                         0.081
##   P-value H_0: Robust RMSEA >= 0.080                         0.603
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.014       0.014
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                      Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   autonomy_geniden ~                                                      
##     gndr_cm  (a11)     -0.012    0.003   -3.823    0.000   -0.018   -0.006
##     cndtn_n (a1m1)     -0.304    0.145   -2.095    0.036   -0.589   -0.020
##     gndr_:_ (a111)      0.004    0.002    1.739    0.082   -0.001    0.009
##     gndr_d_            -0.016    0.122   -0.127    0.899   -0.254    0.223
##   legislation ~                                                           
##     atnmy_g  (b11)     -0.644    0.023  -28.620    0.000   -0.688   -0.600
##     gndr_cm  (c11)      0.003    0.001    5.179    0.000    0.002    0.004
##     gndr_d_             0.192    0.080    2.401    0.016    0.035    0.348
##    Std.lv  Std.all
##                   
##    -0.012   -0.431
##    -0.304   -0.089
##     0.004    0.192
##    -0.016   -0.005
##                   
##    -0.644   -0.703
##     0.003    0.125
##     0.192    0.061
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .autonomy_gendn    5.031    0.309   16.282    0.000    4.425    5.637
##    .legislation       7.408    0.158   46.802    0.000    7.098    7.718
##    Std.lv  Std.all
##     5.031    2.928
##     7.408    4.709
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .autonomy_gendn    2.781    0.120   23.272    0.000    2.547    3.015
##    .legislation       1.117    0.068   16.484    0.000    0.984    1.249
##    Std.lv  Std.all
##     2.781    0.942
##     1.117    0.451
## 
## R-Square:
##                    Estimate
##     autonomy_gendn    0.058
##     legislation       0.549
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     a11_cond1        -0.012    0.003   -3.823    0.000   -0.018   -0.006
##     a11_cond2        -0.008    0.001   -6.511    0.000   -0.010   -0.006
##     i_y1m1x1mod1     -0.003    0.002   -1.729    0.084   -0.006    0.000
##     ind_b11_11_cn1    0.008    0.002    3.751    0.000    0.004    0.012
##     ind_b11_11_cn2    0.005    0.001    6.250    0.000    0.004    0.007
##    Std.lv  Std.all
##    -0.012   -0.431
##    -0.008   -0.239
##    -0.003   -0.135
##     0.008    0.303
##     0.005    0.168
##                      lhs op               rhs     mi   epc sepc.lv sepc.all
## 31      autonomy_geniden  ~       legislation 20.849 2.166   2.166    1.983
## 40     condition_numeric  ~       legislation 19.570 0.046   0.046    0.143
## 32           legislation  ~ condition_numeric 17.717 0.247   0.247    0.079
## 50 gender_identify_order  ~       legislation 12.940 0.375   0.375    1.181
## 35           gender_comp  ~       legislation  6.292 1.186   1.186    0.030
##    sepc.nox
## 31    1.983
## 40    0.143
## 32    0.157
## 50    1.181
## 35    0.030

Testing for direct effects of condition

“We will also conduct two separate independent samples t-test to determine whether there is a direct effect of condition on support for youth’s gender identity autonomy and support for anti-trans legislation, respectively.”

Gender identity autonomy

Non-weighted

Testing for a direct effect of condition on support for gender identity autonomy (continued below)
Test statistic df P value Alternative hypothesis
-0.4239 1536 0.6717 two.sided
mean in group Control mean in group Experiment
4.38 4.418

Weighted

  • test: Two Sample Weighted T-Test (Welch)

  • coefficients:

    t.value df p.value
    -0.2752 1535 0.7832
  • additional:

    Difference Mean.x Mean.y Std. Err
    -0.02408 4.3 4.324 0.08753

Weighted with order as a covariate

Testing for a direct effect of condition on support for gender identity autonomy
term estimate std.error statistic p.value
(Intercept) 4.3133 0.0437 98.6009 0.0000
condition1 0.0125 0.0437 0.2855 0.7753
gender_identify_order1 0.0328 0.0437 0.7505 0.4531
Testing for a direct effect of condition on support for gender identity autonomy
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0004 -0.0009 1.7144 0.3195 0.7265 2 -3289.48 6586.96 6608.32 4517.37 1537 1540

Support for anti-trans legislation

Non-weighted

Testing for a direct effect of condition on support for anti-trans legislation (continued below)
Test statistic df P value Alternative hypothesis
-0.2672 1543 0.7893 two.sided
mean in group Control mean in group Experiment
4.902 4.924

Weighted

  • test: Two Sample Weighted T-Test (Welch)

  • coefficients:

    t.value df p.value
    -1.039 1546 0.2988
  • additional:

    Difference Mean.x Mean.y Std. Err
    -0.08223 4.975 5.057 0.07912

Weighted with order as a covariate

Testing for a direct effect of condition on support for anti-trans legislation
term estimate std.error statistic p.value
(Intercept) 5.0169 0.0396 126.6349 0.0000
condition1 0.0413 0.0396 1.0435 0.2969
gender_identify_order1 0.0219 0.0396 0.5531 0.5803
Testing for a direct effect of condition on support for anti-trans legislation
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.0009 -0.0004 1.558 0.6918 0.5008 2 -3151.78 6311.57 6332.94 3742.95 1542 1545

Testing for order effects

“Last, we will conduct an independent samples t-test to test for order effects on participants’ age gap in their perceptions of gender identity development for participants who are first asked about gender development of cisgender people compared to gender development of transgender people.”

Planned analyses

Non-weighted

Testing for order effects on the composite (continued below)
Test statistic df P value Alternative hypothesis
5.599 1436 0.00000002578 * * * two.sided
mean in group Cis first mean in group Trans first
38.45 21.33
Testing for order effects on the cis item (continued below)
Test statistic df P value Alternative hypothesis
-3.436 1357 0.0006085 * * * two.sided
mean in group Cis first mean in group Trans first
49.76 58.63
Testing for order effects on the trans item (continued below)
Test statistic df P value Alternative hypothesis
2.085 1493 0.03723 * two.sided
mean in group Cis first mean in group Trans first
88.21 81.36

Weighted

  • test: Two Sample Weighted T-Test (Welch)

  • coefficients:

    t.value df p.value
    4.472 1438 0.000008375
  • additional:

    Difference Mean.x Mean.y Std. Err
    14.24 36.73 22.49 3.184
  • test: Two Sample Weighted T-Test (Welch)

  • coefficients:

    t.value df p.value
    -3.803 1342 0.0001492
  • additional:

    Difference Mean.x Mean.y Std. Err
    -9.999 49.64 59.64 2.629
  • test: Two Sample Weighted T-Test (Welch)

  • coefficients:

    t.value df p.value
    0.7247 1487 0.4688
  • additional:

    Difference Mean.x Mean.y Std. Err
    2.398 86.64 84.24 3.309

2x2 model with the perceptions of gender identity regression on order and condition

## Anova Table (Type III tests)
## 
## Response: pcsi2Data$gender_comp
##                                                      Sum Sq   Df F value
## (Intercept)                                         1261435    1  411.97
## pcsi2Data$condition                                  489843    1  159.98
## pcsi2Data$gender_identify_order                       96828    1   31.62
## pcsi2Data$condition:pcsi2Data$gender_identify_order   47917    1   15.65
## Residuals                                           4433679 1448        
##                                                                   Pr(>F)    
## (Intercept)                                         < 0.0000000000000002 ***
## pcsi2Data$condition                                 < 0.0000000000000002 ***
## pcsi2Data$gender_identify_order                             0.0000000224 ***
## pcsi2Data$condition:pcsi2Data$gender_identify_order         0.0000799239 ***
## Residuals                                                                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                                                         eta.sq eta.sq.part
## pcsi2Data$condition                                 0.09621689   0.0994905
## pcsi2Data$gender_identify_order                     0.01901935   0.0213725
## pcsi2Data$condition:pcsi2Data$gender_identify_order 0.00941213   0.0106921
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = pcsi2Data$gender_comp ~ pcsi2Data$condition * pcsi2Data$gender_identify_order)
## 
## $`pcsi2Data$condition`
##                        diff      lwr      upr p adj
## Experiment-Control -37.5063 -43.2042 -31.8084     0
## 
## $`pcsi2Data$gender_identify_order`
##                           diff      lwr      upr p adj
## Trans first-Cis first -16.5212 -22.2232 -10.8192     0
## 
## $`pcsi2Data$condition:pcsi2Data$gender_identify_order`
##                                                  diff       lwr      upr
## Experiment:Cis first-Control:Cis first      -48.27680 -58.63441 -37.9192
## Control:Trans first-Control:Cis first       -27.85212 -38.34701 -17.3572
## Experiment:Trans first-Control:Cis first    -53.12511 -63.62000 -42.6302
## Control:Trans first-Experiment:Cis first     20.42467   9.76876  31.0806
## Experiment:Trans first-Experiment:Cis first  -4.84831 -15.50423   5.8076
## Experiment:Trans first-Control:Trans first  -25.27299 -36.06238 -14.4836
##                                                p adj
## Experiment:Cis first-Control:Cis first      0.000000
## Control:Trans first-Control:Cis first       0.000000
## Experiment:Trans first-Control:Cis first    0.000000
## Control:Trans first-Experiment:Cis first    0.000005
## Experiment:Trans first-Experiment:Cis first 0.645780
## Experiment:Trans first-Control:Trans first  0.000000
condition gender_identify_order mean sd n sem
Control Cis first 61.82 71.05 414 3.492
Control Trans first 33.97 61.85 378 3.181
Experiment Cis first 13.54 41.89 392 2.116
Experiment Trans first 8.695 38.03 379 1.954