About the study
From preregistration:
Hypothesis: This study will use a 2 (mutability: fluid vs
stable) x 2 (construct: identity vs behavior) design. We have three main
hypotheses:
Hypothesis 1: We anticipate a main effect of mutability such that
participants who learn about multiracial fluidity for Black/White
biracial people will show reduced trust for multiracial people compared
to participants who learn about multiracial stability.
Hypothesis 2: We anticipate a main effect of mutability such that
participants who learn about multiracial fluidity for Black/White
biracial people will view multiracial people as less authentic compared
to participants who learn about multiracial stability.
Hypothesis 3: We anticipate these effects will be qualified by an
interaction with construct (identity vs behavior) such that the effect
of fluidity on both trust and authenticity will be found in the behavior
condition but not in the identity condition.
Dependent Variables:
- Trust
- Speeded Trust Task
- Trust Survey
- Authenticity
- Perceptions Identity Fluidity
- Perceptions of Multiracial Identity Fluidity Scale
- Multiracial Identity Fluidity Scale – Should
- Additional Moderators and Exploratory Variables
- Race Essentialism
- Participant Race
- Participant Political Orientation
- Post-race Ideology
Conditions:
As we are using a between-subjects, 2 (mutability: fluid, stable) x 2
(construct: identity, behavior) design, participants will be randomly
assigned to one of four conditions. In the identity condition,
participants will be randomly assigned to either read an article
indicating that multiracial identity is fluid or to read an article
indicating multiracial identity is stable. In the racial behavior
condition, participants will be randomly assigned to either read an
article indicating that multiracial behavior is fluid or to read an
article indicating multiracial behavior is stable.
Descriptive Statistics
Descriptives for whole sample (across all conditions)
Descriptive stats for main dependent variables (continued
below)
whitemulti_trust_dif |
1 |
551 |
0.07703 |
0.5143 |
0.025 |
0.06359 |
White |
2 |
551 |
3.096 |
0.624 |
3.05 |
3.098 |
Multiracial |
3 |
551 |
3.019 |
0.5997 |
3 |
3.016 |
Black |
4 |
551 |
3.108 |
0.688 |
3.1 |
3.137 |
trust_survey |
5 |
555 |
5.019 |
0.9269 |
5.1 |
5.009 |
authen |
6 |
555 |
5.325 |
1.067 |
5.5 |
5.355 |
fluidity |
7 |
555 |
4.332 |
1.102 |
4.429 |
4.357 |
fluidity_should |
8 |
555 |
4.604 |
1.375 |
4.571 |
4.661 |
postrace |
9 |
555 |
3.475 |
1.495 |
3.4 |
3.452 |
race_ess |
10 |
555 |
3.884 |
1.208 |
4 |
3.922 |
pol_or |
11 |
555 |
3.272 |
1.724 |
3 |
3.162 |
Table continues below
whitemulti_trust_dif |
0.3336 |
-2.225 |
2.975 |
5.2 |
0.7919 |
White |
0.4818 |
1 |
5 |
4 |
-0.01065 |
Multiracial |
0.4818 |
1 |
5 |
4 |
0.0587 |
Black |
0.556 |
1 |
5 |
4 |
-0.3885 |
trust_survey |
1.038 |
1.6 |
7 |
5.4 |
-0.2193 |
authen |
1.112 |
1 |
7 |
6 |
-0.4946 |
fluidity |
1.059 |
1 |
7 |
6 |
-0.2268 |
fluidity_should |
1.271 |
1 |
7 |
6 |
-0.3442 |
postrace |
1.779 |
1 |
7 |
6 |
0.1384 |
race_ess |
1.112 |
1 |
7 |
6 |
-0.2704 |
pol_or |
1.483 |
1 |
7 |
6 |
0.3323 |
whitemulti_trust_dif |
6.448 |
0.02191 |
White |
1.12 |
0.02658 |
Multiracial |
1.316 |
0.02555 |
Black |
0.977 |
0.02931 |
trust_survey |
-0.2597 |
0.03934 |
authen |
0.3569 |
0.04528 |
fluidity |
-0.07107 |
0.04677 |
fluidity_should |
-0.1777 |
0.05835 |
postrace |
-0.7467 |
0.06344 |
race_ess |
-0.1071 |
0.0513 |
pol_or |
-0.8009 |
0.07316 |
Descriptives by condition
fluidbehav:
Table continues below
whitemulti_trust_dif |
1 |
137 |
0.1141 |
0.5799 |
0.025 |
0.07122 |
White |
2 |
137 |
3.027 |
0.6297 |
3 |
3.04 |
Multiracial |
3 |
137 |
2.913 |
0.6262 |
3 |
2.933 |
Black |
4 |
137 |
2.992 |
0.7452 |
3 |
3.034 |
trust_survey |
5 |
138 |
4.894 |
1.005 |
4.9 |
4.904 |
authen |
6 |
138 |
5.04 |
1.138 |
5 |
5.089 |
fluidity |
7 |
138 |
4.646 |
0.9743 |
4.714 |
4.689 |
fluidity_should |
8 |
138 |
4.683 |
1.339 |
4.643 |
4.751 |
postrace |
9 |
138 |
3.359 |
1.567 |
3.4 |
3.311 |
race_ess |
10 |
138 |
3.908 |
1.193 |
4 |
3.938 |
pol_or |
11 |
138 |
3.275 |
1.716 |
3 |
3.152 |
Table continues below
whitemulti_trust_dif |
0.2965 |
-1.6 |
2.675 |
4.275 |
1.186 |
5.279 |
White |
0.4448 |
1 |
4.875 |
3.875 |
-0.1481 |
1.082 |
Multiracial |
0.3336 |
1 |
4.925 |
3.925 |
-0.3291 |
1.757 |
Black |
0.5189 |
1 |
4.975 |
3.975 |
-0.4982 |
0.7212 |
trust_survey |
1.334 |
1.6 |
7 |
5.4 |
-0.2848 |
-0.03678 |
authen |
1.112 |
1 |
7 |
6 |
-0.5088 |
0.4185 |
fluidity |
0.9531 |
1.857 |
6.857 |
5 |
-0.4418 |
0.1076 |
fluidity_should |
1.165 |
1 |
7 |
6 |
-0.4357 |
0.03562 |
postrace |
2.076 |
1 |
7 |
6 |
0.1499 |
-0.8836 |
race_ess |
1.112 |
1 |
7 |
6 |
-0.1942 |
0.09905 |
pol_or |
1.483 |
1 |
7 |
6 |
0.4928 |
-0.6288 |
whitemulti_trust_dif |
0.04954 |
White |
0.0538 |
Multiracial |
0.0535 |
Black |
0.06367 |
trust_survey |
0.08555 |
authen |
0.09683 |
fluidity |
0.08294 |
fluidity_should |
0.114 |
postrace |
0.1334 |
race_ess |
0.1016 |
pol_or |
0.1461 |
fluidident:
Table continues below
whitemulti_trust_dif |
1 |
144 |
0.05937 |
0.4929 |
0.025 |
0.05172 |
White |
2 |
144 |
3.111 |
0.675 |
3.075 |
3.116 |
Multiracial |
3 |
144 |
3.051 |
0.5828 |
3 |
3.033 |
Black |
4 |
144 |
3.122 |
0.6723 |
3.05 |
3.136 |
trust_survey |
5 |
144 |
5.085 |
0.8853 |
5.25 |
5.083 |
authen |
6 |
144 |
5.281 |
0.9671 |
5.25 |
5.267 |
fluidity |
7 |
144 |
5.009 |
0.9694 |
5.143 |
5.053 |
fluidity_should |
8 |
144 |
4.928 |
1.434 |
5 |
5.017 |
postrace |
9 |
144 |
3.714 |
1.51 |
3.8 |
3.712 |
race_ess |
10 |
144 |
3.719 |
1.32 |
3.875 |
3.746 |
pol_or |
11 |
144 |
3.201 |
1.724 |
3 |
3.095 |
Table continues below
whitemulti_trust_dif |
0.4448 |
-1.275 |
1.6 |
2.875 |
0.196 |
White |
0.5745 |
1.1 |
5 |
3.9 |
0.01825 |
Multiracial |
0.4077 |
1.45 |
5 |
3.55 |
0.3982 |
Black |
0.556 |
1.225 |
5 |
3.775 |
-0.1851 |
trust_survey |
0.9637 |
2.7 |
6.7 |
4 |
-0.2203 |
authen |
1.112 |
2.75 |
7 |
4.25 |
-0.02288 |
fluidity |
0.8472 |
2.143 |
7 |
4.857 |
-0.4689 |
fluidity_should |
1.483 |
1 |
7 |
6 |
-0.4895 |
postrace |
1.779 |
1 |
7 |
6 |
0.03889 |
race_ess |
1.297 |
1 |
6.75 |
5.75 |
-0.1674 |
pol_or |
1.483 |
1 |
7 |
6 |
0.3074 |
whitemulti_trust_dif |
0.744 |
0.04107 |
White |
0.6465 |
0.05625 |
Multiracial |
0.997 |
0.04856 |
Black |
0.7422 |
0.05602 |
trust_survey |
-0.9402 |
0.07378 |
authen |
-0.5723 |
0.08059 |
fluidity |
0.1351 |
0.08078 |
fluidity_should |
-0.3629 |
0.1195 |
postrace |
-0.749 |
0.1258 |
race_ess |
-0.5228 |
0.11 |
pol_or |
-0.9822 |
0.1437 |
stablebehav:
Table continues below
whitemulti_trust_dif |
1 |
140 |
0.07625 |
0.5445 |
0.05 |
0.08772 |
White |
2 |
140 |
3.094 |
0.5813 |
3.025 |
3.092 |
Multiracial |
3 |
140 |
3.017 |
0.5887 |
2.987 |
3.007 |
Black |
4 |
140 |
3.104 |
0.6802 |
3.088 |
3.115 |
trust_survey |
5 |
142 |
4.943 |
0.8485 |
5 |
4.925 |
authen |
6 |
142 |
5.479 |
1.032 |
5.5 |
5.533 |
fluidity |
7 |
142 |
3.909 |
0.9109 |
4 |
3.927 |
fluidity_should |
8 |
142 |
4.439 |
1.285 |
4.286 |
4.49 |
postrace |
9 |
142 |
3.366 |
1.339 |
3.4 |
3.368 |
race_ess |
10 |
142 |
4.018 |
1.147 |
4 |
4.071 |
pol_or |
11 |
142 |
3.331 |
1.67 |
3.5 |
3.246 |
Table continues below
whitemulti_trust_dif |
0.3706 |
-2.225 |
2.875 |
5.1 |
0.03116 |
White |
0.4448 |
1 |
5 |
4 |
0.02031 |
Multiracial |
0.5189 |
1 |
5 |
4 |
0.2306 |
Black |
0.5004 |
1 |
5 |
4 |
-0.1629 |
trust_survey |
0.8896 |
2.4 |
6.7 |
4.3 |
-0.04088 |
authen |
0.9266 |
2.25 |
7 |
4.75 |
-0.5737 |
fluidity |
0.8472 |
1.429 |
6.143 |
4.714 |
-0.1883 |
fluidity_should |
1.165 |
1 |
7 |
6 |
-0.2762 |
postrace |
1.483 |
1 |
6.6 |
5.6 |
0.04804 |
race_ess |
1.112 |
1 |
6.875 |
5.875 |
-0.4059 |
pol_or |
2.224 |
1 |
7 |
6 |
0.2435 |
whitemulti_trust_dif |
6.648 |
0.04602 |
White |
2.073 |
0.04913 |
Multiracial |
1.405 |
0.04976 |
Black |
1.132 |
0.05749 |
trust_survey |
-0.5178 |
0.0712 |
authen |
0.06864 |
0.08664 |
fluidity |
-0.001226 |
0.07644 |
fluidity_should |
-0.1213 |
0.1078 |
postrace |
-0.7785 |
0.1123 |
race_ess |
0.03305 |
0.09622 |
pol_or |
-0.8119 |
0.1402 |
stableident:
Table continues below
whitemulti_trust_dif |
1 |
130 |
0.05837 |
0.4271 |
0 |
0.04339 |
White |
2 |
130 |
3.156 |
0.6034 |
3.112 |
3.152 |
Multiracial |
3 |
130 |
3.097 |
0.5922 |
3.05 |
3.095 |
Black |
4 |
130 |
3.217 |
0.6379 |
3.275 |
3.254 |
trust_survey |
5 |
131 |
5.161 |
0.9516 |
5.3 |
5.146 |
authen |
6 |
131 |
5.508 |
1.073 |
5.75 |
5.562 |
fluidity |
7 |
131 |
3.714 |
1.023 |
3.857 |
3.755 |
fluidity_should |
8 |
131 |
4.345 |
1.375 |
4.286 |
4.39 |
postrace |
9 |
131 |
3.45 |
1.546 |
3.2 |
3.411 |
race_ess |
10 |
131 |
3.896 |
1.154 |
4 |
3.924 |
pol_or |
11 |
131 |
3.282 |
1.803 |
4 |
3.162 |
Table continues below
whitemulti_trust_dif |
0.2595 |
-1.25 |
2.975 |
4.225 |
2.149 |
15.99 |
White |
0.5004 |
1.525 |
5 |
3.475 |
0.09147 |
0.5662 |
Multiracial |
0.5374 |
1.425 |
5 |
3.575 |
0.07993 |
0.4085 |
Black |
0.6301 |
1 |
5 |
4 |
-0.5742 |
0.9891 |
trust_survey |
1.038 |
1.7 |
7 |
5.3 |
-0.2545 |
-0.1357 |
authen |
1.112 |
1 |
7 |
6 |
-0.7224 |
1.04 |
fluidity |
0.8472 |
1 |
7 |
6 |
-0.2343 |
0.4854 |
fluidity_should |
1.271 |
1 |
7 |
6 |
-0.2923 |
-0.1181 |
postrace |
1.779 |
1 |
7 |
6 |
0.2616 |
-0.7794 |
race_ess |
1.112 |
1 |
6.875 |
5.875 |
-0.2366 |
-0.0447 |
pol_or |
2.965 |
1 |
7 |
6 |
0.2814 |
-0.8773 |
whitemulti_trust_dif |
0.03746 |
White |
0.05292 |
Multiracial |
0.05194 |
Black |
0.05595 |
trust_survey |
0.08315 |
authen |
0.09377 |
fluidity |
0.08939 |
fluidity_should |
0.1201 |
postrace |
0.135 |
race_ess |
0.1008 |
pol_or |
0.1575 |
Demographics
participant gender
209 |
335 |
11 |
participant race
366 |
83 |
33 |
54 |
2 |
17 |
## [1] 18
## [1] 90
## [1] 38.4721
## [1] 13.1567
GEE Model for Speeded Trust Task
From preregistration:
For the speeded trust task, we will fit a GEE regression model with
trustworthiness ratings for each target face as the outcome and target
race (within subjects—will be dummy coded with White as the comparison
group), mutability (fluidity vs stability), and construct (identity vs
behavior), and each of the interaction terms between the three as
predictors.
Findings:
NOTE: Don’t look at these p-values! They are not p-values
Estimates for the speeded trust model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
NA
|
(Intercept)
|
3.1009
|
0.0076
|
406.3328
|
0.0270
|
114.8256
|
mutability_factor1
|
0.0294
|
0.0076
|
3.8544
|
0.0270
|
1.0892
|
construct_factor1
|
0.0312
|
0.0076
|
4.0836
|
0.0270
|
1.1540
|
race_multi
|
-0.0764
|
0.0108
|
-7.0800
|
0.0217
|
-3.5191
|
race_black
|
0.0121
|
0.0108
|
1.1218
|
0.0322
|
0.3760
|
mutability_factor1:construct_factor1
|
-0.0079
|
0.0076
|
-1.0348
|
0.0270
|
-0.2924
|
mutability_factor1:race_multi
|
0.0105
|
0.0108
|
0.9732
|
0.0217
|
0.4838
|
construct_factor1:race_multi
|
0.0187
|
0.0108
|
1.7300
|
0.0217
|
0.8599
|
mutability_factor1:race_black
|
0.0244
|
0.0108
|
2.2633
|
0.0322
|
0.7587
|
construct_factor1:race_black
|
0.0250
|
0.0108
|
2.3177
|
0.0322
|
0.7769
|
mutability_factor1:construct_factor1:race_multi
|
-0.0089
|
0.0108
|
-0.8218
|
0.0217
|
-0.4085
|
mutability_factor1:construct_factor1:race_black
|
0.0012
|
0.0108
|
0.1146
|
0.0322
|
0.0384
|
THESE ARE THE P-VALUES
## (Intercept)
## 0.000000000
## mutability_factor1
## 0.276062324
## construct_factor1
## 0.248511124
## race_multi
## 0.000432936
## race_black
## 0.706890200
## mutability_factor1:construct_factor1
## 0.769966860
## mutability_factor1:race_multi
## 0.628558396
## construct_factor1:race_multi
## 0.389848264
## mutability_factor1:race_black
## 0.448046766
## construct_factor1:race_black
## 0.437207988
## mutability_factor1:construct_factor1:race_multi
## 0.682906503
## mutability_factor1:construct_factor1:race_black
## 0.969367440
Emmeans for condition * race_multi
mutability_factor
|
construct_factor
|
race_multi
|
emmean
|
SE
|
df
|
asymp.LCL
|
asymp.UCL
|
fluid
|
behavior
|
0
|
3.0144
|
0.0475
|
Inf
|
2.9213
|
3.1076
|
stable
|
behavior
|
0
|
3.1122
|
0.0478
|
Inf
|
3.0185
|
3.2059
|
fluid
|
identity
|
0
|
3.1163
|
0.0438
|
Inf
|
3.0305
|
3.2022
|
stable
|
identity
|
0
|
3.1850
|
0.0469
|
Inf
|
3.0932
|
3.2769
|
fluid
|
behavior
|
1
|
2.9000
|
0.0719
|
Inf
|
2.7591
|
3.0408
|
stable
|
behavior
|
1
|
3.0365
|
0.0702
|
Inf
|
2.8990
|
3.1740
|
fluid
|
identity
|
1
|
3.0569
|
0.0590
|
Inf
|
2.9412
|
3.1727
|
stable
|
identity
|
1
|
3.1289
|
0.0587
|
Inf
|
3.0139
|
3.2440
|
Emmeans for condition * race_black
mutability_factor
|
construct_factor
|
race_black
|
emmean
|
SE
|
df
|
asymp.LCL
|
asymp.UCL
|
fluid
|
behavior
|
0
|
2.9752
|
0.0475
|
Inf
|
2.8822
|
3.0683
|
stable
|
behavior
|
0
|
3.0692
|
0.0494
|
Inf
|
2.9725
|
3.1660
|
fluid
|
identity
|
0
|
3.0809
|
0.0482
|
Inf
|
2.9864
|
3.1754
|
stable
|
identity
|
0
|
3.1256
|
0.0484
|
Inf
|
3.0306
|
3.2205
|
fluid
|
behavior
|
1
|
2.9391
|
0.0795
|
Inf
|
2.7834
|
3.0949
|
stable
|
behavior
|
1
|
3.0795
|
0.0764
|
Inf
|
2.9298
|
3.2293
|
fluid
|
identity
|
1
|
3.0924
|
0.0683
|
Inf
|
2.9585
|
3.2263
|
stable
|
identity
|
1
|
3.1884
|
0.0634
|
Inf
|
3.0641
|
3.3126
|
ANOVAs for Explicit Trust and Authenticity
From preregistration:
For each of the two other dependent variables (trust survey,
authenticity scale), we will run a two-way analysis of variance to
determine if there is any difference between participants who read the
fluidity article and participants who read the stability article in the
behavior vs identity conditions. We will use pairwise comparisons to
test for differences by condition.
Trust Survey
Findings:
Descriptive stats by mutability
fluid |
1.6 |
4 |
5.1 |
4.991 |
5.7 |
7 |
stable |
1.7 |
4 |
5.1 |
5.048 |
5.6 |
7 |
Descriptive stats by construct
behavior |
1.6 |
4 |
4.9 |
4.919 |
5.6 |
7 |
identity |
1.7 |
4.05 |
5.3 |
5.121 |
5.8 |
7 |
Descriptive stats by mutability & construct
fluid |
behavior |
1.6 |
4 |
4.9 |
4.894 |
5.7 |
7 |
fluid |
identity |
2.7 |
4.075 |
5.25 |
5.085 |
5.7 |
6.7 |
stable |
behavior |
2.4 |
4.025 |
5 |
4.943 |
5.6 |
6.7 |
stable |
identity |
1.7 |
4.1 |
5.3 |
5.161 |
5.8 |
7 |
ANOVA – explicit trust by condition
|
Sum Sq
|
Df
|
F value
|
Pr(>F)
|
(Intercept)
|
13971.9977
|
1
|
16390.3593
|
0.0000
|
mutability_factor
|
0.5422
|
1
|
0.6360
|
0.4255
|
construct_factor
|
5.7845
|
1
|
6.7857
|
0.0094
|
mutability_factor:construct_factor
|
0.0264
|
1
|
0.0309
|
0.8604
|
Residuals
|
469.7012
|
551
|
NA
|
NA
|
ANOVA – explicit trust by condition
|
eta.sq
|
eta.sq.part
|
mutability_factor
|
0.0011
|
0.0012
|
construct_factor
|
0.0122
|
0.0122
|
mutability_factor:construct_factor
|
0.0001
|
0.0001
|
Authenticity
Findings:
Descriptive stats by mutability
fluid |
1 |
4.5 |
5.25 |
5.163 |
6 |
7 |
stable |
1 |
5 |
5.75 |
5.493 |
6.25 |
7 |
Descriptive stats by construct
behavior |
1 |
4.5 |
5.25 |
5.263 |
6 |
7 |
identity |
1 |
4.75 |
5.5 |
5.389 |
6 |
7 |
Descriptive stats by mutability & construct
fluid |
behavior |
1 |
4.25 |
5 |
5.04 |
6 |
7 |
fluid |
identity |
2.75 |
4.688 |
5.25 |
5.281 |
6 |
7 |
stable |
behavior |
2.25 |
5 |
5.5 |
5.479 |
6.188 |
7 |
stable |
identity |
1 |
5 |
5.75 |
5.508 |
6.125 |
7 |
ANOVA – authenticity by condition
|
Sum Sq
|
Df
|
F value
|
Pr(>F)
|
(Intercept)
|
15727.9812
|
1
|
14181.8933
|
0.0000
|
mutability_factor
|
15.3381
|
1
|
13.8303
|
0.0002
|
construct_factor
|
2.5283
|
1
|
2.2798
|
0.1316
|
mutability_factor:construct_factor
|
1.5663
|
1
|
1.4123
|
0.2352
|
Residuals
|
611.0692
|
551
|
NA
|
NA
|
ANOVA – authenticity by condition
|
eta.sq
|
eta.sq.part
|
mutability_factor
|
0.0243
|
0.0245
|
construct_factor
|
0.0040
|
0.0041
|
mutability_factor:construct_factor
|
0.0025
|
0.0026
|
Exploratory Analyses
Identity Fluidity
From preregistration:
“To determine if there is any difference in participants’ belief that
multiracial identity is fluid based on condition, we will run a two-way
analysis of variance to determine if there is any difference between
participants who read the fluidity article and participants who read the
stability article in the behavior vs identity conditions. We will use
pairwise comparisons to test for differences by condition.”
Descriptive stats by mutability
fluid |
1.857 |
4.286 |
5 |
4.831 |
5.429 |
7 |
stable |
1 |
3.143 |
4 |
3.816 |
4.429 |
7 |
Descriptive stats by construct
behavior |
1.429 |
3.714 |
4.286 |
4.272 |
5 |
6.857 |
identity |
1 |
3.571 |
4.429 |
4.392 |
5.286 |
7 |
Descriptive stats by mutability & construct (continued
below)
fluid |
behavior |
1.857 |
4 |
4.714 |
4.646 |
5.286 |
fluid |
identity |
2.143 |
4.393 |
5.143 |
5.009 |
5.607 |
stable |
behavior |
1.429 |
3.286 |
4 |
3.909 |
4.536 |
stable |
identity |
1 |
3.143 |
3.857 |
3.714 |
4.429 |
ANOVA – fluidity by condition
|
Sum Sq
|
Df
|
F value
|
Pr(>F)
|
(Intercept)
|
10342.4213
|
1
|
11011.7873
|
0.0000
|
mutability_factor
|
142.9180
|
1
|
152.1677
|
0.0000
|
construct_factor
|
0.9753
|
1
|
1.0385
|
0.3086
|
mutability_factor:construct_factor
|
10.7916
|
1
|
11.4900
|
0.0007
|
Residuals
|
517.5067
|
551
|
NA
|
NA
|
Effect size – fluidity by condition
|
eta.sq
|
eta.sq.part
|
mutability_factor
|
0.2125
|
0.2164
|
construct_factor
|
0.0015
|
0.0019
|
mutability_factor:construct_factor
|
0.0160
|
0.0204
|
Fluidity Should
From preregistration:
“To determine if there is any difference in participants’ belief that
multiracial identity should be fluid based on condition, we will run a
two-way analysis of variance to determine if there is any difference
between participants who read the fluidity article and participants who
read the stability article in the behavior vs identity conditions. We
will use pairwise comparisons to test for differences by condition.”
Descriptive stats by mutability
fluid |
1 |
4 |
4.857 |
4.808 |
6 |
7 |
stable |
1 |
3.857 |
4.286 |
4.394 |
5.429 |
7 |
Descriptive stats by construct
behavior |
1 |
4 |
4.429 |
4.559 |
5.571 |
7 |
identity |
1 |
4 |
4.714 |
4.65 |
5.714 |
7 |
Descriptive stats by mutability & construct
fluid |
behavior |
1 |
4 |
4.643 |
4.683 |
5.571 |
7 |
fluid |
identity |
1 |
4 |
5 |
4.928 |
6.036 |
7 |
stable |
behavior |
1 |
3.857 |
4.286 |
4.439 |
5.536 |
7 |
stable |
identity |
1 |
3.857 |
4.286 |
4.345 |
5.286 |
7 |
ANOVA – fluidity should by condition
|
Sum Sq
|
Df
|
F value
|
Pr(>F)
|
(Intercept)
|
11720.8151
|
1
|
6343.6586
|
0.0000
|
mutability_factor
|
23.7257
|
1
|
12.8411
|
0.0004
|
construct_factor
|
0.7828
|
1
|
0.4237
|
0.5154
|
mutability_factor:construct_factor
|
3.9665
|
1
|
2.1468
|
0.1434
|
Residuals
|
1018.0512
|
551
|
NA
|
NA
|
Effect size – fluidity should by condition
|
eta.sq
|
eta.sq.part
|
mutability_factor
|
0.0227
|
0.0228
|
construct_factor
|
0.0007
|
0.0008
|
mutability_factor:construct_factor
|
0.0038
|
0.0039
|
Essentialism
From preregistration:
“We will run a two-way analysis of variance to determine if race
essentialism varies by mutability (fluid vs stable) and construct
(identity vs behavior). If we find that there are no differences in race
essentialism based on mutability and construct, we will examine whether
race essentialism moderates the relationship between which article
participants read and each of the two main dependent variables.”
Checking for differences in essentialism by condition
Descriptive stats by mutability
fluid |
1 |
3 |
3.875 |
3.811 |
4.625 |
7 |
stable |
1 |
3.375 |
4 |
3.959 |
4.75 |
6.875 |
Descriptive stats by construct
behavior |
1 |
3.25 |
4 |
3.963 |
4.75 |
7 |
identity |
1 |
3 |
3.875 |
3.803 |
4.625 |
6.875 |
Descriptive stats by mutability & construct
fluid |
behavior |
1 |
3.25 |
4 |
3.908 |
4.625 |
7 |
fluid |
identity |
1 |
2.844 |
3.875 |
3.719 |
4.625 |
6.75 |
stable |
behavior |
1 |
3.375 |
4 |
4.018 |
4.844 |
6.875 |
stable |
identity |
1 |
3.188 |
4 |
3.896 |
4.625 |
6.875 |
ANOVA – essentialism by condition
|
Sum Sq
|
Df
|
F value
|
Pr(>F)
|
(Intercept)
|
8365.7144
|
1
|
5744.0370
|
0.0000
|
mutability_factor
|
2.8582
|
1
|
1.9625
|
0.1618
|
construct_factor
|
3.3392
|
1
|
2.2928
|
0.1306
|
mutability_factor:construct_factor
|
0.1566
|
1
|
0.1076
|
0.7431
|
Residuals
|
802.4859
|
551
|
NA
|
NA
|
Effect size – essentialism by condition
|
eta.sq
|
eta.sq.part
|
mutability_factor
|
0.0035
|
0.0035
|
construct_factor
|
0.0041
|
0.0041
|
mutability_factor:construct_factor
|
0.0002
|
0.0002
|
Checking for moderation by essentialism
From preregistration:
“For the speeded trust task, we will fit a linear regression model
with the White/Multiracial trust difference score as the outcome and
conditions (mutability: fluidity vs stability and construct: identity vs
behavior), race essentialism, and each of the interaction terms between
the three as predictors. If we find that any of the interactions are
significant, we will conduct analyses to probe the interaction. For each
of the two other dependent variables, we will fit an individual linear
regression model including both conditions of mutability (fluidity vs
stability) and construct (identity vs behavior), race essentialism, and
each of the interaction terms between the three as predictors. If we
find that any of interactions are significant for any of the models, we
will conduct analyses for that model to probe the interaction.”
Speeded trust task
Estimates for the speeded trust model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
-0.3588
|
0.0731
|
-4.9089
|
0.0000
|
mutability_factor1
|
-0.1405
|
0.0731
|
-1.9216
|
0.0552
|
construct_factor1
|
0.1245
|
0.0731
|
1.7038
|
0.0890
|
race_ess
|
0.1107
|
0.0179
|
6.1786
|
0.0000
|
mutability_factor1:construct_factor1
|
-0.0182
|
0.0731
|
-0.2487
|
0.8037
|
mutability_factor1:race_ess
|
0.0316
|
0.0179
|
1.7632
|
0.0784
|
construct_factor1:race_ess
|
-0.0347
|
0.0179
|
-1.9392
|
0.0530
|
mutability_factor1:construct_factor1:race_ess
|
0.0080
|
0.0179
|
0.4489
|
0.6537
|
Summary for the speeded trust model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0742
|
0.0623
|
0.4981
|
6.2177
|
0
|
7
|
-393.745
|
805.489
|
844.295
|
134.701
|
543
|
551
|
## SIMPLE SLOPES ANALYSIS
##
## Slope of race_ess when mutability_factor = stable:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.14 0.03 5.32 0.00
##
## Slope of race_ess when mutability_factor = fluid:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.08 0.02 3.31 0.00
## SIMPLE SLOPES ANALYSIS
##
## Slope of race_ess when construct_factor = identity:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.08 0.02 3.07 0.00
##
## Slope of race_ess when construct_factor = behavior:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.15 0.03 5.61 0.00
Trust survey
Estimates for the trust survey model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
5.4968
|
0.1323
|
41.5345
|
0.0000
|
mutability_factor1
|
-0.1096
|
0.1323
|
-0.8281
|
0.4080
|
construct_factor1
|
-0.1186
|
0.1323
|
-0.8959
|
0.3707
|
race_ess
|
-0.1221
|
0.0325
|
-3.7605
|
0.0002
|
mutability_factor1:construct_factor1
|
0.0585
|
0.1323
|
0.4420
|
0.6586
|
mutability_factor1:race_ess
|
0.0380
|
0.0325
|
1.1709
|
0.2421
|
construct_factor1:race_ess
|
0.0545
|
0.0325
|
1.6769
|
0.0941
|
mutability_factor1:construct_factor1:race_ess
|
-0.0130
|
0.0325
|
-0.4004
|
0.6890
|
Summary for the trust survey model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0456
|
0.0334
|
0.9113
|
3.7349
|
0.0006
|
7
|
-731.908
|
1481.82
|
1520.69
|
454.227
|
547
|
555
|
Authenticity
Estimates for the authenticity model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
6.0320
|
0.1497
|
40.2865
|
0.0000
|
mutability_factor1
|
0.1270
|
0.1497
|
0.8483
|
0.3967
|
construct_factor1
|
-0.2134
|
0.1497
|
-1.4255
|
0.1546
|
race_ess
|
-0.1802
|
0.0367
|
-4.9052
|
0.0000
|
mutability_factor1:construct_factor1
|
0.0718
|
0.1497
|
0.4793
|
0.6319
|
mutability_factor1:race_ess
|
0.0125
|
0.0367
|
0.3405
|
0.7336
|
construct_factor1:race_ess
|
0.0693
|
0.0367
|
1.8855
|
0.0599
|
mutability_factor1:construct_factor1:race_ess
|
-0.0324
|
0.0367
|
-0.8821
|
0.3781
|
Summary for the authenticity model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0776
|
0.0658
|
1.031
|
6.5734
|
0
|
7
|
-800.402
|
1618.8
|
1657.67
|
581.39
|
547
|
555
|
## SIMPLE SLOPES ANALYSIS
##
## Slope of race_ess when construct_factor = identity:
##
## Est. S.E. t val. p
## ------- ------ -------- ------
## -0.11 0.05 -2.17 0.03
##
## Slope of race_ess when construct_factor = behavior:
##
## Est. S.E. t val. p
## ------- ------ -------- ------
## -0.25 0.05 -4.72 0.00
Participant race
Speeded trust task
From preregistration:
“We then will fit a linear regression model with the
White/Multiracial trust difference score as the outcome and mutability
(fluidity vs stability), construct (identity vs behavior), participant
race, and each of the interaction terms between the three as
predictors.”
Descriptive stats by participant race
White |
-1.675 |
-0.15 |
0.025 |
0.09375 |
0.325 |
2.975 |
Black |
-1.6 |
-0.2187 |
0 |
-0.03171 |
0.175 |
1.225 |
Latine |
-2.225 |
-0.025 |
0.075 |
0.1053 |
0.4 |
0.85 |
Asian |
-1.25 |
-0.05 |
0.0375 |
0.08634 |
0.2938 |
0.925 |
Native |
0.525 |
0.5375 |
0.55 |
0.55 |
0.5625 |
0.575 |
Other |
-0.775 |
-0.25 |
0 |
0.1044 |
0.4 |
1.1 |
Descriptive stats by mutability (continued below)
fluid |
White |
-1.575 |
-0.175 |
0.025 |
fluid |
Black |
-1.6 |
-0.3188 |
0 |
fluid |
Latine |
-0.85 |
0 |
0.075 |
fluid |
Asian |
-0.55 |
-0.0375 |
0.0375 |
fluid |
Native |
0.525 |
0.5375 |
0.55 |
fluid |
Other |
-0.375 |
-0.2438 |
-0.000000000000000222 |
stable |
White |
-1.675 |
-0.125 |
0 |
stable |
Black |
-0.85 |
-0.2 |
0.0375 |
stable |
Latine |
-2.225 |
-0.0625 |
0.1625 |
stable |
Asian |
-1.25 |
-0.1156 |
0.05 |
stable |
Other |
-0.775 |
-0.1375 |
0 |
0.1075 |
0.3313 |
2.675 |
-0.1066 |
0.1687 |
1.225 |
0.169 |
0.4 |
0.85 |
0.1175 |
0.25 |
0.925 |
0.55 |
0.5625 |
0.575 |
0.04583 |
0.1125 |
0.825 |
0.07961 |
0.3 |
2.975 |
0.03295 |
0.1813 |
0.925 |
-0.00625 |
0.3313 |
0.825 |
0.0474 |
0.3 |
0.85 |
0.1364 |
0.4125 |
1.1 |
Descriptive stats by construct (continued below)
behavior |
White |
-1.675 |
-0.175 |
0 |
behavior |
Black |
-1.6 |
-0.2 |
0.075 |
behavior |
Latine |
-2.225 |
-0.025 |
0.2 |
behavior |
Asian |
-0.375 |
0.01875 |
0.1125 |
behavior |
Other |
-0.325 |
-0.000000000000000111 |
0.0625 |
identity |
White |
-1.25 |
-0.125 |
0.05 |
identity |
Black |
-1.275 |
-0.225 |
0 |
identity |
Latine |
-0.85 |
-0.0125 |
0.025 |
identity |
Asian |
-1.25 |
-0.2656 |
0 |
identity |
Native |
0.525 |
0.5375 |
0.55 |
identity |
Other |
-0.775 |
-0.375 |
-0.025 |
0.09333 |
0.325 |
2.875 |
0.01556 |
0.3 |
0.925 |
0.1221 |
0.45 |
0.85 |
0.1906 |
0.3 |
0.85 |
0.2344 |
0.3187 |
1.1 |
0.09417 |
0.3062 |
2.975 |
-0.08919 |
0.1 |
1.225 |
0.0875 |
0.325 |
0.85 |
0.002917 |
0.2312 |
0.925 |
0.55 |
0.5625 |
0.575 |
-0.01111 |
0.4 |
0.925 |
Descriptive stats by mutability & construct (continued
below)
fluid |
behavior |
White |
-1.575 |
fluid |
behavior |
Black |
-1.6 |
fluid |
behavior |
Latine |
-0.15 |
fluid |
behavior |
Asian |
-0.25 |
fluid |
behavior |
Other |
-0.325 |
fluid |
identity |
White |
-1.05 |
fluid |
identity |
Black |
-1.275 |
fluid |
identity |
Latine |
-0.85 |
fluid |
identity |
Asian |
-0.55 |
fluid |
identity |
Native |
0.525 |
fluid |
identity |
Other |
-0.375 |
stable |
behavior |
White |
-1.675 |
stable |
behavior |
Black |
-0.85 |
stable |
behavior |
Latine |
-2.225 |
stable |
behavior |
Asian |
-0.375 |
stable |
behavior |
Other |
0 |
stable |
identity |
White |
-1.25 |
stable |
identity |
Black |
-0.4 |
stable |
identity |
Latine |
-0.4 |
stable |
identity |
Asian |
-1.25 |
stable |
identity |
Other |
-0.775 |
-0.1625 |
0.025 |
0.1398 |
0.2625 |
2.675 |
-0.25 |
0.025 |
-0.05341 |
0.175 |
0.475 |
-0.025 |
0.175 |
0.2188 |
0.3188 |
0.85 |
0 |
0.025 |
0.1283 |
0.15 |
0.825 |
-0.0000000000000004441 |
0 |
0.13 |
0.15 |
0.825 |
-0.175 |
0.05 |
0.08094 |
0.375 |
1.6 |
-0.5563 |
-0.0625 |
-0.1797 |
0.075 |
1.225 |
0 |
0.025 |
0.1028 |
0.4 |
0.85 |
-0.1625 |
0.125 |
0.1067 |
0.3375 |
0.925 |
0.5375 |
0.55 |
0.55 |
0.5625 |
0.575 |
-0.375 |
-0.375 |
-0.375 |
-0.375 |
-0.375 |
-0.175 |
0 |
0.05475 |
0.35 |
2.875 |
-0.175 |
0.125 |
0.08152 |
0.3125 |
0.925 |
0.05 |
0.275 |
-0.11 |
0.525 |
0.825 |
0.15 |
0.3 |
0.2944 |
0.4 |
0.85 |
0.0625 |
0.125 |
0.4083 |
0.6125 |
1.1 |
-0.075 |
0.05 |
0.1111 |
0.2625 |
2.975 |
-0.2 |
0 |
-0.02024 |
0.1 |
0.425 |
-0.075 |
0 |
0.06786 |
0.3 |
0.425 |
-0.2562 |
-0.025 |
-0.1008 |
0.05 |
0.475 |
-0.2938 |
-0.0125 |
0.03437 |
0.4063 |
0.925 |
Estimates for the speeded trust model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
0.4720
|
0.3272
|
1.4429
|
0.1496
|
mutability_factor1
|
0.1719
|
0.1661
|
1.0353
|
0.3010
|
construct_factor1
|
-0.2197
|
0.1661
|
-1.3232
|
0.1863
|
race_factor1
|
-0.0698
|
0.0318
|
-2.1931
|
0.0287
|
race_factor2
|
0.0143
|
0.0332
|
0.4311
|
0.6666
|
race_factor3
|
0.0165
|
0.0203
|
0.8111
|
0.4177
|
race_factor4
|
0.4989
|
0.4100
|
1.2169
|
0.2242
|
race_factor5
|
-0.0845
|
0.0872
|
-0.9688
|
0.3331
|
mutability_factor1:construct_factor1
|
0.0328
|
0.1661
|
0.1973
|
0.8437
|
mutability_factor1:race_factor1
|
0.0437
|
0.0318
|
1.3719
|
0.1707
|
mutability_factor1:race_factor2
|
-0.0403
|
0.0332
|
-1.2116
|
0.2262
|
mutability_factor1:race_factor3
|
0.0000
|
0.0203
|
0.0001
|
0.9999
|
mutability_factor1:race_factor4
|
0.1823
|
0.1694
|
1.0757
|
0.2825
|
mutability_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
construct_factor1:race_factor1
|
-0.0282
|
0.0318
|
-0.8856
|
0.3762
|
construct_factor1:race_factor2
|
0.0148
|
0.0332
|
0.4441
|
0.6571
|
construct_factor1:race_factor3
|
-0.0225
|
0.0203
|
-1.1086
|
0.2681
|
construct_factor1:race_factor4
|
-0.1831
|
0.1694
|
-1.0808
|
0.2803
|
construct_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
mutability_factor1:construct_factor1:race_factor1
|
-0.0113
|
0.0318
|
-0.3562
|
0.7218
|
mutability_factor1:construct_factor1:race_factor2
|
0.0187
|
0.0332
|
0.5614
|
0.5748
|
mutability_factor1:construct_factor1:race_factor3
|
-0.0324
|
0.0203
|
-1.5924
|
0.1119
|
mutability_factor1:construct_factor1:race_factor4
|
0.0290
|
0.1694
|
0.1712
|
0.8641
|
mutability_factor1:construct_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
Summary for the speeded trust model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0308
|
-0.0058
|
0.5158
|
0.8424
|
0.6617
|
20
|
-406.366
|
856.731
|
951.589
|
141.015
|
530
|
551
|
Trust survey
From preregistration:
“For each of the other two dependent variables, we will fit an
individual linear regression model including mutability (fluidity vs
stability), construct (identity vs behavior), participant race, and each
of the interaction terms between the three as predictors.”
Descriptive stats by participant race
White |
1.6 |
4.125 |
5.2 |
5.107 |
5.8 |
7 |
Black |
3.4 |
4 |
4.7 |
4.78 |
5.55 |
7 |
Latine |
2.6 |
4.3 |
5.3 |
5.1 |
5.6 |
6.7 |
Asian |
2.4 |
4 |
4.8 |
4.737 |
5.175 |
6.7 |
Native |
5.4 |
5.45 |
5.5 |
5.5 |
5.55 |
5.6 |
Other |
3.3 |
4 |
5 |
4.982 |
5.6 |
6.8 |
Descriptive stats by mutability
fluid |
White |
1.6 |
4 |
5.3 |
5.097 |
5.8 |
6.8 |
fluid |
Black |
3.4 |
4 |
4.45 |
4.708 |
5.275 |
7 |
fluid |
Latine |
2.6 |
4.3 |
5.4 |
5.176 |
6 |
6.7 |
fluid |
Asian |
3 |
4 |
4.7 |
4.693 |
5.175 |
6.5 |
fluid |
Native |
5.4 |
5.45 |
5.5 |
5.5 |
5.55 |
5.6 |
fluid |
Other |
3.3 |
4 |
4.1 |
4.217 |
4.5 |
5.2 |
stable |
White |
1.7 |
4.3 |
5.2 |
5.117 |
5.8 |
7 |
stable |
Black |
3.4 |
4 |
4.8 |
4.84 |
5.6 |
6.5 |
stable |
Latine |
4 |
4.75 |
5.15 |
4.967 |
5.4 |
5.6 |
stable |
Asian |
2.4 |
4.075 |
4.8 |
4.792 |
5.15 |
6.7 |
stable |
Other |
4 |
4.7 |
5.4 |
5.4 |
6.25 |
6.8 |
Descriptive stats by construct
behavior |
White |
1.6 |
4 |
5.1 |
5.032 |
5.7 |
6.8 |
behavior |
Black |
3.4 |
4 |
4.65 |
4.707 |
5.2 |
7 |
behavior |
Latine |
2.6 |
4 |
5.4 |
4.976 |
5.6 |
6.7 |
behavior |
Asian |
2.4 |
4 |
4.25 |
4.433 |
4.925 |
6.5 |
behavior |
Other |
3.3 |
4 |
4.8 |
4.862 |
5.425 |
6.7 |
identity |
White |
1.7 |
4.4 |
5.4 |
5.183 |
5.8 |
7 |
identity |
Black |
3.4 |
4 |
4.7 |
4.87 |
5.6 |
6.5 |
identity |
Latine |
4 |
4.825 |
5.3 |
5.231 |
5.7 |
6.7 |
identity |
Asian |
3.2 |
4.525 |
4.95 |
4.98 |
5.55 |
6.7 |
identity |
Native |
5.4 |
5.45 |
5.5 |
5.5 |
5.55 |
5.6 |
identity |
Other |
4 |
4.2 |
5 |
5.089 |
5.6 |
6.8 |
Descriptive stats by mutability & construct (continued
below)
fluid |
behavior |
White |
1.6 |
4 |
5.2 |
fluid |
behavior |
Black |
3.5 |
4 |
4.55 |
fluid |
behavior |
Latine |
2.6 |
4 |
5.4 |
fluid |
behavior |
Asian |
3 |
4 |
4.4 |
fluid |
behavior |
Other |
3.3 |
4 |
4 |
fluid |
identity |
White |
2.7 |
4.4 |
5.4 |
fluid |
identity |
Black |
3.4 |
4 |
4.35 |
fluid |
identity |
Latine |
4 |
5.1 |
5.3 |
fluid |
identity |
Asian |
3.2 |
4 |
4.7 |
fluid |
identity |
Native |
5.4 |
5.45 |
5.5 |
fluid |
identity |
Other |
4.2 |
4.2 |
4.2 |
stable |
behavior |
White |
3.2 |
4.3 |
5.1 |
stable |
behavior |
Black |
3.4 |
4 |
4.7 |
stable |
behavior |
Latine |
4 |
5 |
5 |
stable |
behavior |
Asian |
2.4 |
4 |
4.1 |
stable |
behavior |
Other |
5 |
5.55 |
6.1 |
stable |
identity |
White |
1.7 |
4.375 |
5.35 |
stable |
identity |
Black |
3.7 |
4 |
4.9 |
stable |
identity |
Latine |
4 |
4.5 |
5.3 |
stable |
identity |
Asian |
3.9 |
4.8 |
5.1 |
stable |
identity |
Other |
4 |
4.3 |
5.2 |
5.019 |
5.8 |
6.8 |
4.709 |
5.125 |
7 |
4.983 |
5.85 |
6.7 |
4.62 |
5.15 |
6.5 |
4.22 |
4.6 |
5.2 |
5.161 |
5.8 |
6.6 |
4.706 |
5.375 |
6.4 |
5.433 |
6 |
6.7 |
4.767 |
5.35 |
6.4 |
5.5 |
5.55 |
5.6 |
4.2 |
4.2 |
4.2 |
5.043 |
5.6 |
6.7 |
4.704 |
5.2 |
5.8 |
4.96 |
5.4 |
5.4 |
4.122 |
4.8 |
5 |
5.933 |
6.4 |
6.7 |
5.211 |
6 |
7 |
4.995 |
5.7 |
6.5 |
4.971 |
5.45 |
5.6 |
5.193 |
5.6 |
6.7 |
5.2 |
5.8 |
6.8 |
Estimates for the trust survey model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
5.6496
|
0.5790
|
9.7570
|
0.0000
|
mutability_factor1
|
0.6783
|
0.2939
|
2.3079
|
0.0214
|
construct_factor1
|
-0.1883
|
0.2939
|
-0.6408
|
0.5219
|
race_factor1
|
-0.1649
|
0.0561
|
-2.9414
|
0.0034
|
race_factor2
|
0.0478
|
0.0588
|
0.8127
|
0.4168
|
race_factor3
|
-0.0790
|
0.0360
|
-2.1947
|
0.0286
|
race_factor4
|
0.8894
|
0.7256
|
1.2258
|
0.2208
|
race_factor5
|
-0.1523
|
0.1544
|
-0.9859
|
0.3246
|
mutability_factor1:construct_factor1
|
-0.1783
|
0.2939
|
-0.6067
|
0.5443
|
mutability_factor1:race_factor1
|
0.0263
|
0.0561
|
0.4696
|
0.6388
|
mutability_factor1:race_factor2
|
-0.0553
|
0.0588
|
-0.9407
|
0.3473
|
mutability_factor1:race_factor3
|
-0.0018
|
0.0360
|
-0.0495
|
0.9605
|
mutability_factor1:race_factor4
|
0.6908
|
0.2999
|
2.3034
|
0.0216
|
mutability_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
construct_factor1:race_factor1
|
-0.0028
|
0.0561
|
-0.0508
|
0.9595
|
construct_factor1:race_factor2
|
0.0135
|
0.0588
|
0.2293
|
0.8188
|
construct_factor1:race_factor3
|
0.0540
|
0.0360
|
1.5012
|
0.1339
|
construct_factor1:race_factor4
|
-0.3307
|
0.2999
|
-1.1028
|
0.2706
|
construct_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
mutability_factor1:construct_factor1:race_factor1
|
0.0334
|
0.0561
|
0.5965
|
0.5511
|
mutability_factor1:construct_factor1:race_factor2
|
-0.0499
|
0.0588
|
-0.8483
|
0.3967
|
mutability_factor1:construct_factor1:race_factor3
|
0.0602
|
0.0360
|
1.6743
|
0.0947
|
mutability_factor1:construct_factor1:race_factor4
|
-0.2287
|
0.2999
|
-0.7627
|
0.4460
|
mutability_factor1:construct_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
Summary for the trust survey model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0648
|
0.0298
|
0.913
|
1.851
|
0.0138
|
20
|
-726.264
|
1496.53
|
1591.55
|
445.082
|
534
|
555
|
Authenticity
Descriptive stats by participant race
White |
1 |
4.75 |
5.5 |
5.426 |
6 |
7 |
Black |
2.25 |
4.5 |
5 |
5.039 |
5.75 |
7 |
Latine |
2.75 |
4.75 |
5.5 |
5.311 |
6 |
7 |
Asian |
2 |
4.5 |
5.125 |
5.13 |
6 |
7 |
Native |
4.75 |
4.875 |
5 |
5 |
5.125 |
5.25 |
Other |
3 |
4.25 |
5.25 |
5.25 |
6 |
7 |
Descriptive stats by mutability
fluid |
White |
1 |
4.5 |
5.25 |
5.304 |
6 |
7 |
fluid |
Black |
2.25 |
4.5 |
5 |
4.783 |
5.438 |
6.5 |
fluid |
Latine |
2.75 |
4 |
5.25 |
5.167 |
6 |
7 |
fluid |
Asian |
2 |
4.312 |
5 |
4.95 |
5.688 |
6.5 |
fluid |
Native |
4.75 |
4.875 |
5 |
5 |
5.125 |
5.25 |
fluid |
Other |
3 |
4 |
4.25 |
4.333 |
4.875 |
5.5 |
stable |
White |
1 |
5 |
5.75 |
5.55 |
6.25 |
7 |
stable |
Black |
2.75 |
4.5 |
5.5 |
5.256 |
6 |
7 |
stable |
Latine |
4.75 |
5.438 |
5.5 |
5.562 |
5.812 |
6 |
stable |
Asian |
2.25 |
4.5 |
5.625 |
5.354 |
6.062 |
7 |
stable |
Other |
4 |
5.125 |
6 |
5.75 |
6.375 |
7 |
Descriptive stats by construct
behavior |
White |
1 |
4.75 |
5.5 |
5.384 |
6 |
7 |
behavior |
Black |
2.25 |
4.5 |
5 |
5.098 |
6 |
7 |
behavior |
Latine |
2.75 |
4.25 |
5.25 |
5.029 |
5.75 |
7 |
behavior |
Asian |
2 |
4 |
5 |
4.896 |
6 |
6.5 |
behavior |
Other |
3 |
4 |
5 |
5 |
6 |
7 |
identity |
White |
1 |
4.75 |
5.5 |
5.468 |
6.25 |
7 |
identity |
Black |
3.25 |
4 |
5 |
4.966 |
5.75 |
7 |
identity |
Latine |
3 |
5.25 |
5.75 |
5.609 |
6 |
7 |
identity |
Asian |
3.5 |
4.562 |
5.375 |
5.317 |
6 |
7 |
identity |
Native |
4.75 |
4.875 |
5 |
5 |
5.125 |
5.25 |
identity |
Other |
4 |
5 |
5.25 |
5.472 |
6.25 |
7 |
Descriptive stats by mutability & construct (continued
below)
fluid |
behavior |
White |
1 |
4.5 |
5.25 |
fluid |
behavior |
Black |
2.25 |
4.5 |
5 |
fluid |
behavior |
Latine |
2.75 |
3.938 |
4.625 |
fluid |
behavior |
Asian |
2 |
4.125 |
5 |
fluid |
behavior |
Other |
3 |
4 |
4 |
fluid |
identity |
White |
2.75 |
4.75 |
5.25 |
fluid |
identity |
Black |
3.25 |
4 |
4.875 |
fluid |
identity |
Latine |
3 |
5.25 |
5.75 |
fluid |
identity |
Asian |
3.5 |
4.5 |
5 |
fluid |
identity |
Native |
4.75 |
4.875 |
5 |
fluid |
identity |
Other |
5 |
5 |
5 |
stable |
behavior |
White |
2.5 |
5 |
5.75 |
stable |
behavior |
Black |
2.75 |
4.688 |
5.25 |
stable |
behavior |
Latine |
4.75 |
5.25 |
5.5 |
stable |
behavior |
Asian |
2.25 |
4 |
5 |
stable |
behavior |
Other |
6 |
6 |
6 |
stable |
identity |
White |
1 |
5 |
5.75 |
stable |
identity |
Black |
4 |
4 |
5.5 |
stable |
identity |
Latine |
5.25 |
5.5 |
5.75 |
stable |
identity |
Asian |
4 |
4.875 |
5.75 |
stable |
identity |
Other |
4 |
4.812 |
5.625 |
5.199 |
6 |
7 |
4.807 |
5.5 |
6.5 |
4.875 |
5.812 |
7 |
4.9 |
5.875 |
6.25 |
4.2 |
4.5 |
5.5 |
5.391 |
6 |
7 |
4.75 |
5.25 |
6 |
5.556 |
6.75 |
7 |
5 |
5.5 |
6.5 |
5 |
5.125 |
5.25 |
5 |
5 |
5 |
5.537 |
6 |
7 |
5.365 |
6.25 |
7 |
5.4 |
5.5 |
6 |
4.889 |
6 |
6.5 |
6.333 |
6.5 |
7 |
5.566 |
6.562 |
7 |
5.131 |
5.75 |
7 |
5.679 |
5.875 |
6 |
5.633 |
6.125 |
7 |
5.531 |
6.312 |
7 |
Estimates for the authenticity model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
5.3823
|
0.6644
|
8.1005
|
0.0000
|
mutability_factor1
|
0.6661
|
0.3373
|
1.9751
|
0.0488
|
construct_factor1
|
-0.0005
|
0.3373
|
-0.0015
|
0.9988
|
race_factor1
|
-0.2051
|
0.0643
|
-3.1877
|
0.0015
|
race_factor2
|
0.0530
|
0.0675
|
0.7857
|
0.4324
|
race_factor3
|
-0.0414
|
0.0413
|
-1.0032
|
0.3162
|
race_factor4
|
0.1757
|
0.8326
|
0.2110
|
0.8330
|
race_factor5
|
-0.0232
|
0.1772
|
-0.1310
|
0.8958
|
mutability_factor1:construct_factor1
|
-0.4005
|
0.3373
|
-1.1876
|
0.2355
|
mutability_factor1:race_factor1
|
0.0533
|
0.0643
|
0.8285
|
0.4078
|
mutability_factor1:race_factor2
|
-0.0065
|
0.0675
|
-0.0957
|
0.9238
|
mutability_factor1:race_factor3
|
-0.0048
|
0.0413
|
-0.1172
|
0.9067
|
mutability_factor1:race_factor4
|
0.4961
|
0.3441
|
1.4415
|
0.1500
|
mutability_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
construct_factor1:race_factor1
|
-0.0638
|
0.0643
|
-0.9920
|
0.3217
|
construct_factor1:race_factor2
|
0.0829
|
0.0675
|
1.2277
|
0.2201
|
construct_factor1:race_factor3
|
0.0343
|
0.0413
|
0.8298
|
0.4070
|
construct_factor1:race_factor4
|
-0.1089
|
0.3441
|
-0.3163
|
0.7519
|
construct_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
mutability_factor1:construct_factor1:race_factor1
|
-0.0017
|
0.0643
|
-0.0265
|
0.9789
|
mutability_factor1:construct_factor1:race_factor2
|
-0.0193
|
0.0675
|
-0.2864
|
0.7747
|
mutability_factor1:construct_factor1:race_factor3
|
0.0557
|
0.0413
|
1.3499
|
0.1776
|
mutability_factor1:construct_factor1:race_factor4
|
-0.3944
|
0.3441
|
-1.1462
|
0.2522
|
mutability_factor1:construct_factor1:race_factor5
|
NA
|
NA
|
NA
|
NA
|
Summary for the authenticity model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0702
|
0.0354
|
1.0476
|
2.0159
|
0.0057
|
20
|
-802.617
|
1649.23
|
1744.25
|
586.05
|
534
|
555
|
Political orientation
Speeded trust task
From preregistration:
“We will also fit a linear regression model with the
White/Multiracial trust difference score as the outcome and mutability
(fluidity vs stability), construct (identity vs behavior), participant
political orientation, and each of the interaction terms between the
three as predictors. If we find that if any of the interactions are
significant, we will conduct analyses to probe the interaction for that
model.”
Estimates for the speeded trust model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
-0.1903
|
0.0452
|
-4.2090
|
0.0000
|
mutability_factor1
|
0.0263
|
0.0452
|
0.5823
|
0.5606
|
construct_factor1
|
0.0779
|
0.0452
|
1.7223
|
0.0856
|
pol_or
|
0.0814
|
0.0122
|
6.6735
|
0.0000
|
mutability_factor1:construct_factor1
|
0.0873
|
0.0452
|
1.9309
|
0.0540
|
mutability_factor1:pol_or
|
-0.0120
|
0.0122
|
-0.9798
|
0.3276
|
construct_factor1:pol_or
|
-0.0281
|
0.0122
|
-2.3065
|
0.0215
|
mutability_factor1:construct_factor1:pol_or
|
-0.0239
|
0.0122
|
-1.9606
|
0.0504
|
Summary for the speeded trust model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0918
|
0.0801
|
0.4933
|
7.8405
|
0
|
7
|
-388.46
|
794.92
|
833.726
|
132.142
|
543
|
551
|
## SIMPLE SLOPES ANALYSIS
##
## Slope of pol_or when construct_factor = identity:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.05 0.02 3.14 0.00
##
## Slope of pol_or when construct_factor = behavior:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.11 0.02 6.24 0.00
## mutability_factor construct_factor pol_or.trend SE df lower.CL upper.CL
## fluid behavior 0.0976 0.0247 543 0.0490 0.1461
## stable behavior 0.1215 0.0249 543 0.0725 0.1705
## fluid identity 0.0892 0.0239 543 0.0422 0.1361
## stable identity 0.0174 0.0240 543 -0.0297 0.0646
##
## Confidence level used: 0.95
Trust survey
From preregistration:
“Again, for each of the other dependent variables, we will also fit
an individual linear regression model including mutability (fluidity vs
stability), construct (identity vs behavior), participant political
orientation, and each of the interaction terms between the three as
predictors. If we find that any of the interaction terms are significant
for any of the models, we will conduct analyses for that model to probe
the interaction.”
Estimates for the trust survey model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
5.2150
|
0.0835
|
62.4533
|
0.0000
|
mutability_factor1
|
0.0133
|
0.0835
|
0.1597
|
0.8732
|
construct_factor1
|
-0.0950
|
0.0835
|
-1.1371
|
0.2560
|
pol_or
|
-0.0588
|
0.0226
|
-2.6061
|
0.0094
|
mutability_factor1:construct_factor1
|
0.0585
|
0.0835
|
0.7000
|
0.4842
|
mutability_factor1:pol_or
|
0.0058
|
0.0226
|
0.2582
|
0.7964
|
construct_factor1:pol_or
|
0.0598
|
0.0226
|
2.6509
|
0.0083
|
mutability_factor1:construct_factor1:pol_or
|
-0.0162
|
0.0226
|
-0.7181
|
0.4730
|
Summary for the trust survey model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0378
|
0.0255
|
0.915
|
3.0701
|
0.0035
|
7
|
-734.171
|
1486.34
|
1525.21
|
457.946
|
547
|
555
|
## SIMPLE SLOPES ANALYSIS
##
## Slope of pol_or when construct_factor = identity:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.00 0.03 0.03 0.97
##
## Slope of pol_or when construct_factor = behavior:
##
## Est. S.E. t val. p
## ------- ------ -------- ------
## -0.12 0.03 -3.66 0.00
Authenticity
Estimates for the authenticity model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
5.6732
|
0.0941
|
60.2856
|
0.0000
|
mutability_factor1
|
0.1655
|
0.0941
|
1.7591
|
0.0791
|
construct_factor1
|
-0.1706
|
0.0941
|
-1.8129
|
0.0704
|
pol_or
|
-0.1051
|
0.0254
|
-4.1295
|
0.0000
|
mutability_factor1:construct_factor1
|
0.0922
|
0.0941
|
0.9803
|
0.3274
|
mutability_factor1:pol_or
|
0.0008
|
0.0254
|
0.0308
|
0.9755
|
construct_factor1:pol_or
|
0.0723
|
0.0254
|
2.8402
|
0.0047
|
mutability_factor1:construct_factor1:pol_or
|
-0.0450
|
0.0254
|
-1.7679
|
0.0776
|
Summary for the authenticity model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0772
|
0.0654
|
1.0312
|
6.5397
|
0
|
7
|
-800.512
|
1619.02
|
1657.9
|
581.622
|
547
|
555
|
## SIMPLE SLOPES ANALYSIS
##
## Slope of pol_or when construct_factor = identity:
##
## Est. S.E. t val. p
## ------- ------ -------- ------
## -0.03 0.04 -0.93 0.35
##
## Slope of pol_or when construct_factor = behavior:
##
## Est. S.E. t val. p
## ------- ------ -------- ------
## -0.18 0.04 -4.85 0.00
Post-race Ideology
From preregistration:
“Lastly, we will collect data on an exploratory measure of
participants’ endorsement of a Multiracial postrace ideology through
five-items. Participants will respond to statements such as, “Race in
the United States will stop mattering when everyone is mixed”, “In the
future, everyone in the US will be Multiracial”, and “When most people
are Multiracial, race will not matter” using a scale of 1 (strongly
disagree) to 7 (strongly agree). This measure will be used to conduct
exploratory correlational and moderation analyses.”
Are there differences by condition?
Descriptive stats by mutability
fluid |
1 |
2.25 |
3.6 |
3.54 |
4.6 |
7 |
stable |
1 |
2.2 |
3.4 |
3.407 |
4.4 |
7 |
Descriptive stats by construct
behavior |
1 |
2.2 |
3.4 |
3.363 |
4.4 |
7 |
identity |
1 |
2.4 |
3.6 |
3.588 |
4.6 |
7 |
Descriptive stats by mutability & construct
fluid |
behavior |
1 |
2 |
3.4 |
3.359 |
4.4 |
7 |
fluid |
identity |
1 |
2.6 |
3.8 |
3.714 |
4.8 |
7 |
stable |
behavior |
1 |
2.25 |
3.4 |
3.366 |
4.2 |
6.6 |
stable |
identity |
1 |
2.2 |
3.2 |
3.45 |
4.6 |
7 |
ANOVA – explicit trust by condition
|
Sum Sq
|
Df
|
F value
|
Pr(>F)
|
(Intercept)
|
6683.4533
|
1
|
3004.4972
|
0.0000
|
mutability_factor
|
2.2833
|
1
|
1.0264
|
0.3114
|
construct_factor
|
6.6657
|
1
|
2.9965
|
0.0840
|
mutability_factor:construct_factor
|
2.5307
|
1
|
1.1377
|
0.2866
|
Residuals
|
1225.6902
|
551
|
NA
|
NA
|
ANOVA – explicit trust by condition
|
eta.sq
|
eta.sq.part
|
mutability_factor
|
0.0018
|
0.0019
|
construct_factor
|
0.0054
|
0.0054
|
mutability_factor:construct_factor
|
0.0020
|
0.0021
|
Is Post race ideology a moderator?
Speeded trust task
Estimates for the speeded trust model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
0.1857
|
0.0554
|
3.3518
|
0.0009
|
mutability_factor1
|
0.0105
|
0.0554
|
0.1896
|
0.8497
|
construct_factor1
|
-0.1563
|
0.0554
|
-2.8200
|
0.0050
|
postrace
|
-0.0331
|
0.0147
|
-2.2502
|
0.0248
|
mutability_factor1:construct_factor1
|
0.0824
|
0.0554
|
1.4874
|
0.1375
|
mutability_factor1:postrace
|
-0.0049
|
0.0147
|
-0.3351
|
0.7377
|
construct_factor1:postrace
|
0.0403
|
0.0147
|
2.7417
|
0.0063
|
mutability_factor1:construct_factor1:postrace
|
-0.0209
|
0.0147
|
-1.4238
|
0.1551
|
Summary for the speeded trust model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0292
|
0.0167
|
0.51
|
2.3335
|
0.0236
|
7
|
-406.821
|
831.643
|
870.448
|
141.249
|
543
|
551
|
## SIMPLE SLOPES ANALYSIS
##
## Slope of postrace when construct_factor = identity:
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.01 0.02 0.36 0.72
##
## Slope of postrace when construct_factor = behavior:
##
## Est. S.E. t val. p
## ------- ------ -------- ------
## -0.07 0.02 -3.45 0.00
Trust survey
Estimates for the trust survey model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
4.6358
|
0.0986
|
47.0329
|
0.0000
|
mutability_factor1
|
-0.0091
|
0.0986
|
-0.0919
|
0.9268
|
construct_factor1
|
0.1707
|
0.0986
|
1.7317
|
0.0839
|
postrace
|
0.1123
|
0.0261
|
4.2964
|
0.0000
|
mutability_factor1:construct_factor1
|
-0.0823
|
0.0986
|
-0.8347
|
0.4042
|
mutability_factor1:postrace
|
0.0124
|
0.0261
|
0.4742
|
0.6355
|
construct_factor1:postrace
|
-0.0225
|
0.0261
|
-0.8623
|
0.3889
|
mutability_factor1:construct_factor1:postrace
|
0.0271
|
0.0261
|
1.0350
|
0.3011
|
Summary for the trust survey model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0492
|
0.037
|
0.9095
|
4.0439
|
0.0002
|
7
|
-730.863
|
1479.73
|
1518.6
|
452.52
|
547
|
555
|
Authenticity
Estimates for the authenticity model
term
|
estimate
|
std.error
|
statistic
|
p.value
|
(Intercept)
|
4.9458
|
0.113
|
43.7561
|
0.0000
|
mutability_factor1
|
0.1659
|
0.113
|
1.4679
|
0.1427
|
construct_factor1
|
0.1140
|
0.113
|
1.0086
|
0.3136
|
postrace
|
0.1107
|
0.030
|
3.6913
|
0.0002
|
mutability_factor1:construct_factor1
|
-0.1147
|
0.113
|
-1.0150
|
0.3106
|
mutability_factor1:postrace
|
0.0012
|
0.030
|
0.0411
|
0.9672
|
construct_factor1:postrace
|
-0.0165
|
0.030
|
-0.5501
|
0.5825
|
mutability_factor1:construct_factor1:postrace
|
0.0195
|
0.030
|
0.6518
|
0.5148
|
Summary for the authenticity model
r.squared
|
adj.r.squared
|
sigma
|
statistic
|
p.value
|
df
|
logLik
|
AIC
|
BIC
|
deviance
|
df.residual
|
nobs
|
0.0558
|
0.0438
|
1.043
|
4.6218
|
0
|
7
|
-806.869
|
1631.74
|
1670.61
|
595.099
|
547
|
555
|