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Chapter 1

Preface

Note: The directory gifi.stat.ucla.edu/gifi has the complete Rmd file of this book
with all code chunks. It also has pdf and epub versions, and R and C files with
the code. The book and the files that go with it are in the public domain.
Suggestions for improvement are always welcome.

In 1980 members of the Department of Data Theory at the University of Leiden taught a
post-doctoral course in Nonlinear Multivariate Analysis. The course content was sort-of-
published, in Dutch, as Gifi (1980). The course was repeated in 1981, and this time the
sort-of-published version (Gifi (1981)) was in English.

The preface gives some details about the author.

The text is the joint product of the members of the Department of Data Theory
of the Faculty of Social Sciences, University of Leiden. ‘Albert Gifi’ is their ‘nom
de plume’. The portrait, however, of Albert Gifi shown here, is that of the real
Albert Gifi to whose memory this book is dedicated, as a far too late recompense
for his loyalty and devotion, during so any years, to the Cause he served.

Roughly ten years later a revised version of these course notes came out as an actual
book in the Wiley Series in Probabilty and Mathematical Statistics (Gifi (1990)). This
despite the fact that the contents of the book had very little to do with either probability
or mathematical statistics. The book is organized around a series of computer programs
for correspondence analysis, principal component analysis, and canonical analysis. The
programs, written in FORTRAN, are called HOMALS, PRINCALS, PRIMALS, CRIMINALS,
CANALS, OVERALS because they combine classical linear multivariate analysis with optimal
transformation of the variables, using alternating least squares (or ALS). It serves, to some
extent, as a manual for the programs, but it also discusses the properties of the techniques
implemented in the programs, and it presents many detailed applications of these techniques.

Reviewers generally had some difficulties separating the wheat from the chaff.

As the spirit of Albert Gifi has faded away, so has his whimsical approach to
publishing, and his latest book is an idiosyncratic account of multivariate methods
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developed by the Leiden group during the 1970s. The names of their computer
programs are distinguished by the ending ~ALS, thus we have OVERALS, PRIN-
CALS, HOMALS, CANALS, MORALS, MANOVALS, CRIMINALS, PARTALS
and PATHALS. Perhaps if you have a warped mind like this reviewer, you will turn
rapidly to CRIMINALS. What can it be 7 Surely it must give some illicit view
of the truth about the world, a vision of the underworld of multivariate analysis
? Alas no ! It turns out only to be a synonym of Canonical Variate Analysis,
sometimes known as Multiple Discriminant Analysis. Likewise HOMALS turns
out to be Reciprocal Averaging, otherwise known as Correspondence Analysis.
(Hill (1990))

This ambiguity and confusion are not too surprising. The Gifi book was a summary of
the work of a large number of people, over a period of almost 20 years. Nevertheless, and
perhaps because of this, it is somewhat of a camel, which we define for our purposes as a
horse designed by a committee. Different chapters had different authors, and the common
ideas behind the various techniques were not always clearly explained.

In Gifi’s MVA the criterion called “meet” loss plays a central role. Although the
adoption of this criterion is one of the most important contributions of Gifi, the
book would have been much more readable if this criterion had been introduced
right at the outset and was followed throughout the rest of the book. (Takane
(1992))

Nevertheless there is much original material in Gifi (1990), and the book has early applications
of alternating least squares, majorization, coordinate descent, the delta method, and the
bootstrap. And it emphasizes throughout the idea that statistics is about techniques, not
about models. But, yes, the organization leaves much to be desired. An on demand printing
of the first and only edition is now available on Amazon for $ 492 — although of course used
versions go for much less.

The book was published by a prestiguous publisher in a prestiguous series, but it is fair to
say it never really caught on. It is not hard to understand why. The content, and the style,
are unfamiliar to statisticians and mathematicians. There is no inference, no probability, and
very little rigor. The content is in multivariate data analysis, which would be most at home
these days, if anywhere, in a computer science department. The Gifi group did not have the
resources of, say, Benzécri in France or Hayashi in Japan. The members were mostly active
in psychometrics, a small and insular field, and they were from The Netherlands, a small
country prone to overestimate its importance (Marvell (1653)). They also did not have the
evangelical zeal necessary for creating and sustaining a large impact.

There have been some other major publication events in the Gifi saga. Around the same time
as the Wiley book there was the publication of SPSS (1989). Starting in the late seventies
the Gifi FORTRAN programs had been embedded in the SPSS system. The SPSS Categories
manual was updated many times, in fact every time SPSS or IBM SPSS had a new release.
Over the years other programs produced by the Department of Data Theory were added. A
recent version is, for example, Meulman and Heiser (2012), corresponding to IBM SPSS 21.
It acknowledges the contributions of some of the members of the Gifi team — but in IBM



(2015), the version for IBM SPSS 23, these acknowledgements and the names of the authors
have disappeared. Sic transit gloria mundi.

Michailidis and De Leeuw (1998) made an attempt to make the Gifi material somewhat
more accessible by publishing a review article in a widely read mainstream statistical journal.
Another such attempt is De Leeuw and Mair (2009a), in which the homals package for R
is introduced. The homals package is basically a single monolithic R function that can do
everything the Gifi programs can do, and then some. In both cases, however, the problem
remained that the techniques, and the software, were too convoluted and too different from
what both statisticians and users were accustomed to.

Van der Heijden and Van Buuren (1916) give an excellent, though somewhat wistful, historic
overview of the Gifi project. It is too early for eulogies, however, and we refuse to give up.
This book is yet another reorganization of the Gifi material, with many extensions. Right
from the outset, and throughout the book, it uses the aspect approach to multivariate analysis
with optimal scaling, which was presented first by De Leeuw (1988b) and subsequently
implemented in R by Mair and De Leeuw (2010). The algorithms are generally different from
the homals algorithm in De Leeuw and Mair (2009a), because they are based on majorization
(De Leeuw (1994), De Leeuw (2015a), Lange (2016)) and not on alternating least squares.
A particular aspect, first defined in De Leeuw (2004), is used to connect our work with the
earlier Gifi project. We separate the basic computational engine from its various applications
that define the techniques of Multivariate Analysis with Optimal Scaling (MVAOS). Hiding
the core makes it possible to make the programs behave in much the same way as traditional
MVA programs. The software is written in R (R Core Team (2016)), with some parts of the
computational engine written in C.

The book itself is written in Rmarkdown, using bookdown (Xie (2016)) and knitr (Xie (2015))
to embed the computations and graphics, and to produce html and pdf versions that are
completely reproducible. The book and all the files that go with it are in the public domain.

We would like to acknowledge those who have made substantial contributions to the Gifi
project (and its immediate ancestors and offspring) over the years. Some of them are lost in
the mists of time, some of them are no longer on this earth. They are, in alphabetical order,
Bert Bettonvil, Jason Bond, Catrien Bijleveld, Frank Busing, Jacques Commandeur, Henny
Coolen, Steef de Bie, Jan de Leeuw, John Gower, Patrick Groenen, Chris Haveman, Willem
Heiser, Abby Israels, Judy Knip, Jan Koster, Pieter Kroonenberg, Patrick Mair, Adriaan
Meester, Jacqueline Meulman, George Michailidis, Peter Neufeglise, Dré Nierop, Ineke Stoop,
Yoshio Takane, Stef van Buuren, John van de Geer, Gerda van den Berg, Eeke van der Burg,
Peter van der Heijden, Anita van der Kooij, Ivo van der Lans, Rien van der Leeden, Jan van
Rijckevorsel, Renée Verdegaal, Peter Verboon, Susanfia Verdel, and Forrest Young.
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Chapter 2

Introduction

2.1 Some Dualisms

The type of multivariate analysis (MVA) we discuss in this book is sometimes called descriptive
or exploratory, as opposed to inferential or confirmatory. It is located somewhere on the
line between computational linear algebra and statistics, and it is probably close to data
analysis, Big Data, machine learning, knowledge discovery, data mining, business analytics,
or whatever other ill-defined label is used for the mode du jour.

In the days of Gifi (1990) there was a small-scale civil war between the mathematical statistical
(confirmatory) approach to MVA and the data analytical (exploratory) approach. This is
not a new conflict, because it has its roots in the Pearson-Yule debate (Mackenzie (1978)).
The first shots in modern times were probably fired by Tukey (1962), but much additional
polemic heat was generated in the 50 years since Tukey’s famous paper. In order to stand
our ground we were forced to participate, for example with De Leeuw (1984a), De Leeuw
(1988a), De Leeuw (1990).

Here is what Gifi (1990) says, clearly with some intent to provoke.

The statistical approach starts with a statistical model, usually based on the
multinormal distribution. The model is assumed to be true, and within the model
certain parametric hypotheses are constructed. The remaining free parameters
are estimated and the hypotheses are tested. (Gifi (1990), p. 19)

The data analytic approach does not start with a model, but looks for transforma-
tions and combinations of the variables with the explicit purpose of representing
the data in a simple and comprehensive, and usually graphical, way. (Gifi (1990),

p. 19)

Gifi’s first chapter, in particular his section 1.5, outlines an approach to statistics that
emphasizes techniques over models. A technique is a map of data into representations of
some sort. Representations can be test statistics, confidence intervals, posterior distributions,
tables, graphs. Statistics studies the construction, properties, and performance of techniques.
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12 CHAPTER 2. INTRODUCTION

Models are used to gauge techniques, that is to see how they perform on synthetic data,
which are data described by equations or generated by sampling. Of course models can also
be used to inspire techniques, but data analysis does not deal with the inspirational phase.
The models themselves are a part of the client sciences, not of statistics. One of the key
characteristics of a technique is its stability, which is studied by using data perturbations
of various sorts. Small and unimportant perturbations of the data should lead to small
and unimportant changes in the output. A large and important class of perturbations is
based on sampling from a population, leading to sampling distributions, confidence intervals,
hypothesis tests, and standard errors. In Gifi’'s branch of statistics the emphasis shifts from
equations to algorithms, and from explanation to prediction.

In related philosophizing Breiman (2001) contrasted the two cultures of data modeling (98%
of statisticians) and algorithmic modeling (2% of statistians), and implored statisticians to
spend less time and energy in the first culture and more in the second.

Reading a preprint of Gifi’s book (1990) many years ago uncovered a kindred
spirit. (Breiman (2001), p. 205)

This was written some time after the influential paper by Breiman and Friedman (1985),
which introduced the Gifi-like ACE technique for multiple regression.

The emphasis in the data modeling culture is on explanation or information, the emphasis
in the algorithmic modeling culture on prediction. There are various ways to present and
evaluate this distinction. A good overview, from the philosophy of science point of view, is
Shmueli (2010). From the lofty heights of Academia we hear

The two goals in analyzing data which Leo calls prediction and information I prefer
to describe as “management” and “science.” Management seeks profit, practical
answers (predictions) useful for decision making in the short run. Science seeks
truth, fundamental knowledge about nature which provides understanding and
control in the long run. (Parzen, in the discussion of Breiman (2001), p. 224)

The emphasis on techniques was also shared by Cleveland (2014), who proposed a new
curriculum for statistics departments with more emphasis on computing with data and tool
evaluation. Another early ally was Laurie Davis, see the interesting papers by Davies (1995)
and Davies (2008).

The first chapter of Gifi (1990) contains an interesting discussion of statistical
practice with special reference to multivariate data. The point of view taken there,
with its emphasis on ‘techniques’, has points of contact with the present paper
where we use Tukey’s nomenclature and refer to ‘procedure’. (Davies (2008),
p. 192)

Of course currently the big discussion is if Data Science is actually statistics under a new
name. And, more importantly, who should teach it. And, even more importantly, which
department should receive the grant money. Parzen may believe that statisticians seek the
Truth, whatever that is, but the current situation in Academia is that there is no truth if you
do not consider profit. Statistics departments are typically small, and they feel threatened by
gigantic Schools of Engineering looming over them (American Statistical Association (2014),
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Yu (2014)). It is partly a question of scale: there are too many data to fit into statistics
departments. Numerous new graduate Data Science programs are popping up, in many cases
geared toward management and not so much toward science. Statistics departments are
seriously considering changing their names, before the levies break and they are flooded by
the inevitable rise of data.

We shall not pay much attention any more to these turf and culture wars, because basically
they are over. Data analysis, in its multitude of disguises and appearances, is the winner.
(Classical statistics departments are gone, or on their way out. They may not have changed
their name, but their curricula and hiring practices are very different from what they were 20
or even 10 years ago.

Neither do men put new wine into old bottles: else the bottles break, and the
wine runneth out, and the bottles perish: but they put new wine into new bottles,
and both are preserved. (Matthew 9:17)

Notwithstanding the monumental changes, inferential statistics remains an important form
of stability analysis for data analysis techniques. Probabilistic models are becoming more
and more important in many branches of science, and perturbing a probabilistic model is
most naturally done by sampling. Thus huge parts of classical statistrucs are preserved, and
not surprisingly these are exactly the parts useful in data analysis.

2.2 Quantifying Qualitative Data

One way of looking at Multivariate Analysis with Optimal Scaling, or MVAQOS, is as an
extension of classical linear multivariate analysis to variables that are binary, ordered, or even
unordered categorical. In R terminology, classical MVA techniques can thus be applied if
some or all of the variables in the dataframe are factors. Categorical variables are quantified
and numerical variables are transformed to optimize the linear or bilinear least squares fit.

Least squares and eigenvalue methods for quantifying multivariate qualitative data were
first introduced by Guttman (1941), although there were some bivariate predecessors in the
work of Pearson, Fisher, Maung, and Hirschfeld (see De Leeuw (1983) or Gower (1990) for
a historical overview). In this earlier work the emphasis was often on optimizing quadratic
forms, or ratios of quadratic forms, and not so much on least squares, distance geometry, and
graphical representations such as biplots (Gower and Hand (1996), Gower, Le Roux, and
Gardner-Lubbe (2015), Gower, Le Roux, and Gardner-Lubbe (2016)). They were taken up by,
among others, De Leeuw (1968a), by Benzécri and his students in France (see Cordier (1965)),
and by Hayashi and his students in Japan (see Tanaka (1979)). Early applications can be
found in ecology, following an influential paper by Hill (1974). With increasing emphasis on
software the role of graphical representations has increased and continues to increase.

In De Leeuw (1974) a first attempt was made to unify most classical descriptive multivariate
techniques using a single least squares loss function and a corresponding alternating least
squares (ALS) optimization method. His work then bifurcated to the ALSOS project, with
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Young and Takane at the University of North Carolina Chapell Hill, and the Gifi project, at
the Department of Data Theory of Leiden University.

The ALSOS project was started in 1973-1974, when De Leeuw was visiting Bell Telephone
Labs in Murray Hill. ALSOS stands for Alternating Least Squares with Optimal Scaling.
The ALS part of the name was provided by De Leeuw (1968b) and the OS part by Bock
(1960). At early meetings of the Psychometric Society some members were offended by our
use of “Optimal Scaling”, because they took it to imply that their methods of scaling were
supposedly inferior to ours. But the “optimal” merely refers to optimality in the context of a
specific least squares loss function.

Young, De Leeuw, and Takane applied the basic ALS and OS methodology to conjoint
analysis, regression, principal component analysis, multidimensional scaling, and factor
analysis, producing computer programs (and SAS modules) for each of the techniques. An
overview of the project, basically at the end of its lifetime, is in Young, De Leeuw, and
Takane (1980) and Young (1981).

The ALSOS project was clearly inspired by the path-breaking work of Kruskal (1964a)
and Kruskal (1964b), who designed a general way to turn metric multivariate analysis
techniques into non-metric ones. In fact, Kruskal applied the basic methodology developed
for multidimensional scaling to linear models in Kruskal (1965), and to principal component
analysis in Kruskal and Shepard (1974) (which was actually written around 1965 as well). In
parallel developments closely related nonmetric methods were developed by Roskam (1968)
and by Guttman and Lingoes (see Lingoes (1973)).

The Gifi project took its inspiration from Kruskal, but perhaps even more from Guttman (1941)
(and to a lesser extent from the optimal scaling work of Fisher, see Gower (1990)). Guttman’s
quantification method, which later became known as multiple correspondence analysis, was
merged with linear and nonlinear principal component analysis in the HOMALS/PRINCALS
techniques and programs (De Leeuw and Van Rijckevorsel (1980)). The MVAOS loss function
that was chosen ultimately, for example in the work of Van der Burg, De Leeuw, and Verdegaal
(1988), had been used earlier by Carroll (1968) in multi-set canonical correlation analysis of
numerical variables.

A project similar to ALSOS/Gifi was ACE, short for Alternating Conditional Ezpectations.
The ACE method for regression was introduced by Breiman and Friedman (1985) and the
ACE method for principal component analysis by Koyak (1987). Both techniques use the
same ALS block relaxation methods, but instead of projecting on a cone or subspace of
possible transformation, they apply a smoother (typically Friedman’s supersmoother) to
find the optimal transformation. This implies that the method is intended primarily for
continuous variables, and that the convergence properties of the ACE algorithm are more
complicated than those of a proper ALS algorithms.

An even more closely related project, by Winsberg and Ramsay, uses the cone of I-splines
(integrated B-splines) to define the optimal transformations. The technique for linear models
is in Winsberg and Ramsay (1980) and the one for principal component analysis in Winsberg
and Ramsay (1983). Again, the emphasis on monotonic splines indicates that continuous
variables play a larger role than in the ALSOS or Gifi system.
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So generally there have been a number of projects over the last 50 years that differ in detail,
but apply basically the same methodology (alternating least squares and optimal scaling) to
generalize classical MVA techniques. Some of them emphasize transformation of continuous
variables, some emphasize quantification of discrete variables. Some emphasize monotonicity,
some smoothness. Usually these projects include techniques for regression and principal
component analysis, but in the case of Gifi the various forms of correspondence analysis and
canonical analysis are also included.

2.3 Beyond Gifi

The techniques discussed in Gifi (1990), and implemented in the corresponding computer
programs, use a particular least squares loss function and minimize it by alternating least
squares algorithms. All techniques use what Gifi calls meet loss, which is basically the loss
function proposed by Carroll (1968) for multiset canonical correlation analysis. Carroll’s
work was extended in Gifi by using optimal scaling to transform or quantify variables coded
with indicators, and to use constraints on the parameters to adapt the basic technique, often
called homogeneity analysis, to different classical MVA techniques.

There have been various extensions of the classical Gifi repertoire by adding techniques that
do not readily fit into meet loss. Examples are path analysis (Coolen and De Leeuw (1987)),
linear dynamic systems (Bijleveld and De Leeuw (1991)), and factor analysis (De Leeuw
(2004)). But adding these techniques does not really add up to a new framework.

Somewhat more importantly, De Leeuw and Van Rijckevorsel (1988) discuss various ways
to generalize meet loss by using fuzzy coding. Transformations are no longer step functions,
and coding can be done with fuzzy indicators, such as B-spline bases. This makes it easier
to deal with variables that have many ordered categories. Although this is a substantial
generalization the basic framework remains the same.

One of the outgrowths of the Gifi project was the aspect approach, first discussed systematically
by De Leeuw (1988b), and implemented in the R package aspect by Mair and De Leeuw
(2010). In its original formulation it uses majorization to optimize functions defined on
the space of correlation matrices, where the correlations are computed over transformed
variables, coded by indicators. Thus we optimize aspects of the correlation matrix over
transformations of the variables. The aspect software was recently updated to allow for
B-spline transformations (De Leeuw (2015)). Many different aspects were implemented,
based on eigenvalues, determinants, multiple correlations, and sums of powers of correlation
coefficients. Unformately, aspects defined in terms of canonical correlations, or generalized
canonical correlations, were not covered. Thus the range of techniques covered by the aspect
approach has multiple regression and principal component analysis in common with the range
of the Gifi system, but is otherwise disjoint from it.

In De Leeuw (2004) a particular correlation aspect was singled out that could bridge the gap
between the aspect approach and the Gifi approach, provided orthoblocks of transformations
were introduced. This is combined with the notion of copies, introduced in De Leeuw (1984b),
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to design a new class of techniques that encompasses all of Gifi and that brings generalized
canonical correlation analysis in the aspect framework. Thus correlation aspects, and the
majorization algorithms to optimize them, are now a true generalization of the Gifi system.

This is the system we discuss in this book.



Chapter 3

Coding and Transformations

3.1 Variables and Multivariables

In the multivariate analysis techniques presented in this paper the data are measurements
or classifications of n objects by m variables. Perhaps it is useful to insert some definitions
here. A wariable is a function that maps a domain of objects to a range of values. Domains
are finite. The elements of the domain can be individuals, animals, plants, time points,
locations, and so on. It is useful to distinguish the codomain (or range) of a variable and its
image. The codomain of a variable can be the real numbers, but the image always is a finite
set, the actual values the variable assumes on the domain. A multivariable is a sequence of
variables defined on the same domain, with possibly different codomains. Multivariables are
implemented in R as dataframes. Variables can have a finite codomain, which can be either
ordered or unordered. This corresponds with a factor or an ordered factor in R. MVAOS
techniques quantify factors, replacing the values in the image by real numbers. If the variables
are real-valued to start with we replace real numbers by other real numbers and we transform
instead of quantify. The distinction between quantification and transformation is somewhat
fluid, because the image of a variable is always finite and thus, in a sense, all variables are
categorical (a point also emphasized, for example, in Holland (1979)).

Although the variables in a multivariable have the same domain, there can be different
numbers of missing data for different variables. We handle this in the same way as R, by
adding NA to the range of all variables. In this context it is also useful to define latent or
unobserved variables. These are variables for which all values are missing, i.e. for which the
image only contains NA. At first thought it seems somewhat perverse to have such completely
missing variables, but think of examples such as principal components, factor scores, or error
terms in linear models.

17
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3.2 Induced Correlations and Aspects

3.3 Transformed Variables

The data are collected in the n x m matrix H, which codes the observations on the m variables.
MVAOS does not operate on the data directly, but on transformations or quantifications of
the variables. Choosing a transformation to minimize a loss function is known as optimal
scaling. Clearly this so-called optimality is only defined in terms of a specific loss function,
with specific constraints. Different constraints will lead to different optimal transformations.

Let us define the types of transformations we are interested in. The n x m matrix of
transformed variables H has columns h;, which are constrained by h; = G;z;, where G is
a given matrix defining the basis for variable j. In addition we require h; € C; and h; € S,
where C; is a cone of transformations and S is the unit sphere in R"™. This will be discussed
in more detail in later sections, but for the time being think of the example in which h;
is required to be a (centered and normalized) monotone polynomial function of the image
values of variable j. The whole of R and a single point in R™ are both special cases of these
normalized cones. It is important, especially for algorithm construction, that the restrictions
are defined for each variable separately. An exception to this rule is the orthoblock, using
terminology from De Leeuw (2004), which requires that all or some of the columns of H are
not only normalized but also orthogonal to each other. Clearly a normalized variable is an
orthoblock of size one.

3.4 Bases

In earlier MVAOS work, summarized for example in Gifi (1990) or Michailidis and De Leeuw
(1998), the basis matrices G; were binary zero-one matrices, indicating category membership.
The same is true for the software in IBM SPSS Categories (Meulman and Heiser 2012)
or in the R package homals (De Leeuw and Mair 2009a). In this paper we extend the
current MVAOS software using B-spline bases, which provide a form of fuzzy non-binary
coding suitable for both categorical and numerical variables (Van Rijckevorsel and De Leeuw
1988). These generalizations were already discussed in De Leeuw, Van Rijckevorsel, and Van
der Wouden (1981) and Gifi (1990), but corresponding easily accessible software was never
released.

In this book we continue to use indicators for bases. Thus bases GG; must be non-negative,
with rows that add up to one. If there is only one non-zero entry in each row, which of course
is then equal to one, the indicator is crisp, otherwise it is fuzzy. B-spline bases are the prime
example of fuzzy indicators, but other examples are discussed in Van Rijckevorsel and De
Leeuw (1988). Only B-spline bases are implemented in our software, however.

Note that the identity matrix is a crisp indicator. This is of importance in connection with
missing data and orthoblocks.
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3.5 Copies and Rank

Within a block there can be more than one version of the same variable. These multiple
versions are called copies. They were first introduced into the Gifi framework by De Leeuw
(1984b). Since MVAOS transforms variables, having more than one copy is not redundant,
because different copies can and will be transformed differently. As a simple example of
copies, think of using different monomials or orthogonal polynomials of a single variable z in
a polynomial regression. The difference between copies and simply including a variable more
than once is that copies have the same basis G;.

In the algorithm copies of a variable are just treated in exactly the same way as other variables.
The notion of copies replaces the notion of the rank of a quantification used in traditional
Gifi, which in turn generalizes the distinction between single and multiple quantifications. A
single variable has only one copy in its block, a multiple variable has the maximum number
of copies.

In our software the copies of a variable by definition have the same basis. It is possible,
of course, to include the same variable multiple times, but with different bases. This must
be done, however, at the input level. In terms of the structures defined in the software, a
gifiVariable can have multiple copies but it only has one basis. If there is more than one
basis for a variable, then we need to define an additional gifiVariable. Also note that copies
of a variable are all in the same block. If you want different versions of a variable in different
blocks, then that requires you to create different gifiVariables.

Defining copies is thus basically a coding problem. It can be handled simply by adding
a variable multiple times to a data set, and giving each variable the same bases. In our
algorithm we use the fact that copies belong to the same variable to create some special
shortcuts and handling routines.

Ordinality restrictions on variables with copies require some special attention. In our current
implementation we merely require the first copy to be ordinal with the data, the other copies
are not restricted. Once again, if you want ordinal restrictions on all copies you need to
create separate gifiVariables for each copy.

3.6 Orthoblocks

3.7 Constraints

As discussed earlier, each variable has a cone of transformations associated with it, and
we optimize over these transformations. In ALSOS and classical Gifi the three type of
transformation cones considered are nominal, ordinal, and numerical. Our use of B-splines
generalizes this distinction, because both numerical and nominal can be implemented using
splines. What remains is the choice for the degree of the spline and the location of the knots.



20 CHAPTER 3. CODING AND TRANSFORMATIONS

Choice of degree and knots is basically up to the user, but the programs have some defaults.
In most cases the default is to use crisp indicators with knots at the data points. Of course
for truly categorical variables (i.e. for factors in R) crisp indicators are simply constructed
by using the levels of the factor. We include some utilities to place knots at percentiles,
or equally spaced on the range, or to have no interior knots at all (in which case we fit
polynomials).

And finally the user decides, for all variables, if she wants the transformations (step functions,
splines, and polynomials) to be monotonic with the data. Default is not requiring monotonicity.

Note that we require the spline to be monotonic in the non-missing data points — this does
not mean the spline is monotonic outside the range of the data (think, for example, of a
quadratic polynomial), it does not even mean the spline is monotonic between data points.
This makes our spline transformations different from the integrated B-splines, or I-splines,
used by Winsberg and Ramsay (1983), which are monotone on the whole real line. Because
each variable has a finite image we are not really fitting a spline, we are fitting a number of
discrete points that are required to be on a spline, and optionally to be monotonic with the
data. In Winsberg and Ramsay (1983) the requirement is that the fitted points are on an
[-spline, which automatically makes them monotonic with the data. Clearly our approach is
the less restrictive one.

3.8 Missing Data

The utility makeMissing() expands the basis for the non-missing data in various ways.
Option “m” (for “multiple”) is the default. It replaces the basis with the direct sum of
the non-missing basis and an identity matrix for the missing elements. Option “s” (for
“single”) adds a single binary column to the basis indicating which elements are missing.
Option “a” (for “average”) codes missing data by having all the elements in rows of the basis
corresponding with missing data equal to one over the number of rows. With all three options
the basis remains an indicator. Some of these options make most sense in the context of crisp
indicators, where they are compared in Meulman (1982).

So suppose the data are

#it [,1]
## [1,] -0.50
# [2,] NA
## [3,] 0.75
## [4,] 0.99
## [5,] NA

Create a basis for the non-missing values with

mprint (basis <- bsplineBasis(x[which(!is.na(x))],1,c(-1,0,1)))

#it [,11 [,21 [,3]
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## [1,] 0.50 0.50 0.00
## [2,] 0.00 0.25 0.75
## [3,] 0.00 0.01 0.99

The three different completion options for missing data give

mprint (makeMissing (x, basis, missing = "m"))

#it (,11 [,21 [,31 [,4]1 [,8]

## [1,] 0.50 0.50 0.00 0.00 0.00
## [2,] 0.00 0.00 0.00 1.00 0.00
## [3,] 0.00 0.25 0.75 0.00 0.00
## [4,] 0.00 0.01 0.99 0.00 0.00
## (6,1 0.00 0.00 0.00 0.00 1.00

mprint (makeMissing (x, basis, missing = "s"))

##t (.11 [,2]1 [,3] [,4]

## [1,] 0.50 0.50 0.00 0.00
## [2,] 0.00 0.00 0.00 1.00
## [3,] 0.00 0.25 0.75 0.00
## [4,] 0.00 0.01 0.99 0.00
## [5,] 0.00 0.00 0.00 1.00

mprint (makeMissing (x, basis, missing = "a"))

#it [,11 [,21 [,3]

## [1,] 0.50 0.50 0.00
## [2,] 0.33 0.33 0.33
## [3,] 0.00 0.25 0.75
## [4,] 0.00 0.01 0.99
## [5,] 0.33 0.33 0.33

The default option for missing data in the previous version of the Gifi system was “missing
data deleted”, which involves weighting the rows in the loss functions by the number of
non-missing data in that row. This leads to some complications, and consequently we have
no option “d” in this version of Gifi.

3.9 Active and Passive Variables

If a variable is passive (or supplementary) it is incorporated in the analysis, but it does not
contribute to the loss. Thus an analysis that leaves the passive variables out will give the
same results for the active variables. Passive variables are transformed like all the others,
but they do not contribute to the block scores, and thus not to the loss. They have category
quantifications and scores, and can be used in the corresponding plots.
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If all variables in a block are passive, then the whole block does not contribute to the loss.
This happens specifically for singletons, if the single variable in the block is passive.

3.10 Interactive Coding

One of the major contributions of Analyse des Données is the emphasis on coding, which
in our context can be defined as choosing how to represent the raw data of an experiment
in an actual data frame (and, to a lesser extent, how to choose blocks, number of copies,
dimensionality, degrees, and knots). In the section we discuss one important coding variation.
Suppose we have n observations on two factors, one with p levels and one with ¢ levels. Then
the data can be coded as n observations on one factor with p x ¢ levels, and we can construct
a corresponding crisp indicator. The same reasoning applies to more than two categorical
variables, which we can always code interactively. It also applies to bases for numerical
variables, where we can define an interactive basis by using products of columns from the
bases of each of the variables.

If G ={gis} and H = {h;} are two indicators of dimensions n x m, and n x my, then the
n X mgmy, matrix with elements {g {is}h {it}} is again an indicator: the elements are
non-negative, and rows add up to one.

mprint (x <- bsplineBasis (1:9/10, 1, .5))

# [,11 [,21 [,3]

## [1,] 1.00 0.00 0.00
## [2,] 0.75 0.25 0.00
## [3,] 0.50 0.50 0.00
## [4,] 0.25 0.75 0.00
## [5,] 0.00 1.00 0.00
## [6,] 0.00 0.75 0.25
## [7,] 0.00 0.50 0.50
## [8,] 0.00 0.25 0.75
## [9,] 0.00 0.00 1.00

mprint (y <- makeIndicator (c (rep (1, 5), rep (2, 4))))

#it [,11 [,2]

## [1,] 1.00 0.00
## [2,] 1.00 0.00
## [3,] 1.00 0.00
# [4,] 1.00 0.00
#t [5,] 1.00 0.00
# [6,] 0.00 1.00
## [7,1 0.00 1.00
# [8,] 0.00 1.00
## [9,] 0.00 1.00
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mprint (makeColumnProduct (list (x, y)))

##
#i#
##
#it
#it
##
#i#
##
#it
#it

(1,]
(2,]
(3,]
(4,]
(5,]
(6,]
(7,]
(8,]
[9,]

[,1]

1

O O O O O O O O

.00
.75
.50
.25
.00
.00
.00
.00
.00

I

O O O O O O O O O-«~

2]

.00
.00
.00
.00
.00
.00
.00
.00
.00

[

O O OO KFr OO O O«

3]

.00
.25
.50
.75
.00
.00
.00
.00
.00

[

O O O O O O O O O~

4]

.00
.00
.00
.00
.00
.75
.50
.25
.00

[,5]

0.
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O o o

00

[,6]

0.
.00
.00
.00
.00
.25
.50
.75
.00

_ O O O O O O O

00
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Chapter 4

Aspects

4.1 Definition

An aspect is a real valued function ¢ defined on the compact convex set R™*™ of correlation
matrices of order m. Note that a correlation matrix is a positive semi-definite matrix with
ones on the diagonal.

In De Leeuw (2004) a class of MVAOS techniques is defined by optimizing aspects, using
majorization algorithms. Optimization is over a set R of correlation matrices, usually the
correlation matrices that correspond with admissible transformations of the data. See De
Leeuw (1988) and De Leeuw, Michailidis, and Wang (1999) for additional results on aspects.
Software in R that optimizes general aspects is discussed by Mair and De Leeuw (2010).

The aspect optimization algorithm is based on majorization, and assumes that the aspect
that is maximized is a convex function on the space of correlation matrices (or, equivalently,
that the aspect is concave and minimized). Let’s give examples of some interesting convex
aspects.

o The sum of the p largest eigenvalues of the correlation matrix (as in principal component
analysis).

o The squared multiple correlation (SMC) of one variable with the others (as in multiple
regression).

o The sum of the SMC’s over some or all variables (as in path analysis).

There are also some convex aspects are not directly associated with a standard multivariate
technique.

o The sum of the p** powers of the correlation coefficients, with p > 1.

« The sum of the p'* powers of the absolute values of the correlation coefficients, with
p =1

e Any norm on the space of correlation matrices.

25
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Another interesting aspect, derived from multinormal maximum likelihood estimation, is
¢(R) = rrmg logdet(T) + tr R *,
€

where G is some subset of the correlation matrices. This aspect is concave in R, so in our
framework we minimize it over R.

4.2 Stationary Equations

4.3 Bilinearizability



Chapter 5

Pattern Constraints and Gifi Loss

5.1 Aspects from Patterns

MVAOS is a linear multivariate technique in the sense that it makes linear combinations of
transformed variables, and it is a nonlinear multivariate technique in the sense that these
transformations are generally nonlinear. The coefficients of the linear combinations are
collected in a matrix A, which we call the pattern. There are L linear combinations of the m
variable blocks, and consequently there are mL submatrices Aj. L is the number of equation
blocks. Constraints on the pattern largely define the technique. The typical situation is that
either Aj is free to vary over all matrices of the appropriate dimensions, or Aj, is equal to a
fixed matrix, usually either the identity or zero. But more complicated constraints on the
A, are sometimes also necessary.

An MVAOS System is a bilinear homogeneous system in the transformed variables H and
the pattern A of the form HA = 0. There is no assumption that for actual data this system
has a non-trivial solution. We will look for approximate solutions, using a least squares loss
function. Thus we define Gifi Multivariate Analysis, or MVAQOS, as the minimization of the
loss function

o(H,A) =Y SSQ (i HAsy), (5.1)

over H and A, under suitable restrictions. Here SSQ() is the (unweighted) sum of squares.
The usual restriction on A is that for each block of equations ¢ there is at least one block of
variables j such that A;, = 1.

If we write the MVAOS system simply as HA = 0 the loss function becomes o(H, A) =

tr AR(H)A, with R(H) 2 H'H the induced correlation matriz of the transformed variables
in H.

In order to make MVAOS systems less mysterious we give three examples, choosing the names

27
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of the parameters to fit the problem. This is also an opportunity to sprinkle some more
acronyms around. The first is multivariate linear regression (MLR). Its MVAOS system is

v x| g -1,

which means we minimize SSQ(Y — X B) over B and possibly over transformations of the
columns of X and Y. If we require that rank(B) = p, with p less than the minimum of the
number of rows and columsn of B, then this becomes reduced rank regression (RRR). The
second example is principal component analysis (PCA). This has the same MVAOS system
as MLR, but the minimization over X is over all orthoblocks, i.e. all X such that X'X = I.
The final example for now is exploratory factor analysis (EFA). Its MVAOS system is

1

and we minimize SSQ(Y — FA — UA), with the constraint that (F' | U) is an orthoblock
and that A is diagonal.

5.2 Gifi Loss

For embedding the previous Gifi work in our new framework we define a specific class of
MVAOS systems, called Gifi systems. They are of the form

I 0 0

—A 1 0
0 —A 0

[X H, - H, ‘

0 0 I

| 0 0 —A, ]

and thus Gifi loss is
o(X,H,A)=> SSQ (X — H;A;). (5.2)
j=1

In (5.2) the matrix X is an orthoblock, which contains the object scores. Note that in Gifi
loss each variable block j corresponds with a unique submatrix A;, except for the object
scores block, which contributes to all equation blocks. In Gifi systems the A; are generally
unconstrained.

There is some additional terminology that is more or less specific to Gifi loss. The wvariable
scores are Vj, 2 hiaj, = Grziay, and the block scores are U; 2 H;A; = Zke,cj Vi. The category
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quantifications are Y}, 2 zray, so that Vi, = GYy. Note that both variable scores and category
quantifications, as defined here, are of rank one. In other words, their columns as well as
their rows are proportional to each other.

A Gifi solution can be associated with various sets of loadings, i.e. correlations between
observed variables and constructed (or latent) variables, in this case object scores. Since
both X and H; are centered and normalized the variable loadings for block j are simply the
cross-product X'H;. Because optimal A; is the linear least squares solution for given X and
Hj we have H}(X — H;A;) = 0, which means the loadings are equal to the covariances between
transformed variables and block scores. Each block has a discrimination matriz, defined as
A 2 ASHIH Ay = ALHL X = X'HjH;“X, with H;L the Moore-Penrose inverse. The diagonal

A; 2 diag(A,) of the discrimination matrix, the discrimination measures, are the variances
of the block scores. Thus the block loadings, the correlations between transformed variables
H; and block scores U; are equal to the correlations between the object scores and the block

_1 _1
scores, and are given by H;U;A; * = X'UjA; *.

Loss function (5.2) can be interpreted geometrically. Zero loss, i.e. solvability of the Gifi
system, means that the scores z; for object ¢ coincide with the j block scores u;;, which
consequently coincide with each other. This is why Gifi analysis is also called homogeneity
analysis, because we transform and combine the variables in such a way that the block scores
are as homogeneous as possible. If we plot the n object scores x; and the n block scores w;;
in a p-dimensional plot, then we want to make the squared distances SSQ(z; — u;;) summed
over all ¢ and 7 to be as small as possible.

5.3 Associated Eigenvalue Problems

Associated with the problem of minimizing loss function (5.2) are some eigenvalue and singular
value problems defined by the matrices H;. This has been discussed in detail in Gifi (1990),
and there are some more recent discussions in Tenenhaus and Tenenhaus (2011) and Van der
Velden and Takane (2012).

We begin the section with some definitions, which are more or less standard in MVAOS. First
H2(H, | Hy || Hy), and C2 H'H. The matrix C, which is called the Burt matriz in
correspondence analysis, is a p X p block matrix, with m x m blocks define by C, =S “H,y.

We also use separate notation D; = Cj; = H;Hj for the diagonal blocks in €, and for their
direct sum D 2 Dy ®---® D,,. Finally A stacks the A; on top of each other.

The stationary equations for minimizing o over X’X = I and A, for given H, are

H'X = DA, (5.3)
HA = XM,
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with X'X =1, and M an r x r symmetric matrix of Lagrange multipliers. It follows that

CA = DAM, (5.5)

as well as

HD H'X = XM, (5.6)

with X’X = I and D" the Moore-Penrose inverse of D. It follows that X = KT, where K
are eigenvectors corresponding with the r largest eigenvalues of HD'H and L is an arbitrary
rotation matrix. In the same way A = LT, where L are the eigenvectors corresponding with
the r largest eigenvalues of D*C'. The non-zero eigenvalues of HDTH' and D*C are the
same, both are equal to the squares of the singular values of H D_%, with D=2 the symmetric
square root of DT.

The result can be made a bit more intuitive by defining the orthogonal projectors P; =N j Dj+ H;
and their average P,. Then X can be chosen as the normalized eigenvectors of P, and, if A,
are the corresponding ordered eigenvalues,

T

Xrg(irzllmgna(X,A,H) = z_:l(l — Xs(P))). (5.7)

The eigenvalues in A are all between zero and one.

In MVAOS the fit of block j is called the discrimination matriz. It is defined as A; =5 PX =
A%D;jA;. Note that the average discrimination measure A, is equal to the diagonal matrix A.

5.4 History

The history of loss function (5.1) is simple. Although numerous special cases have been used
over the years, in its general form it only occurs, as far as we know, in De Leeuw (2004). It
was designed to bridge the gap between (5.2) and linear systems such as RRR, MIMIC, EFA,
and LISREL/EQS. It mainly differs from (5.2) in its systematic use of copies and orthoblocks.

The history of (5.2), on the other hand, is complicated. It is easiest to start with the special
case in which all variables are numerical (in our system that means no internal knots and
degree equal to one). In that case MVAOS is a form of Generalized Canonical Correlation
Analysis (GCCA ), which extends canonical correlation analysis (CCA) to two or more blocks
of variables.

The various GCCA techniques proposed over the years for computing p-dimensional solutions
are either simultaneous or successive. In a successive algorithm the loss function is only
defined for p = 1. It is first optimized over all one-dimensional solutions. And then, for a
subsequent dimension ¢, the one-dimensional criterion is optimized over all solutions that are
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orthogonal to solutions 1,--- ,¢ — 1. In a simultaneous technique the loss function is defined
for all p, and the solution is computed by minimizing over all p-dimensional solutions. In a
successive solution the first p dimensions of a p+ 1 dimensional solution are the p dimensional
soution, i.e. successive solutions are nested. Simultaneous solutions are generally not nested.
On the other hand the successive p dimensional solution is usually not the best possible p
dimensional solution.

GCCA starts with Horst (1961b), Horst (1961a). The techniques proposed by Horst are
successive, which means his loss functions are only defined for one-dimensional solutions,
specifically one-dimensional block scores u; = Hja;. In Horst (1961a) four different techniques
are proposed, with different loss functions, all defined as functions of the induced correlation
matriz of the block scores. For our purposes, the interesting one is his method 2, in which
the largest eigenvalue of the induced correlation matrix is maximized. Horst (1961b) uses a
different criterium, the sum of the correlation coefficients, which is not related to the Gifi
loss function in any simple way.

In a small paper, hidden away in a large proceedings volume, Carroll (1968) proposed
a successive method maximizing > 7", cor?(z, Hja;) over a; and the auxilary variable z.
This turns out to be equivalent to method 2 of Horst. The work of Horst and Carroll was
extended by Kettenring (1971) (in greater detail in Kettenring (1969)), who introduced several
additional criteria, and baptized the Horst-Carroll method MAXVAR. In later work, it was
shown by Gifi (1980) that minimizing >>5_, 37, cor?(xz,, Hja;,) over X'X = I and A gives
the same result as successive MAXVAR. Also see Tenenhaus and Young (1985). We need one
important qualification, using terminology introduced by Dauxois and Pousse (1976), which is
that the successive method should use weak orthogonality 377", a’; H;Hjaj; = 5%t with 5% the
Kronecker delta, and not strong orthogonality, which says that a} H;Hja; = 0%t for all j, s, t.
More recently Kiers, Cléroux, and Ten Berge (1994) have shown that simultaneous/successive
MAXVAR also optimizes various measures of correlation defined on matrix space.

The most important contribution of Gifi, however, is the switch from correlations and
quadratic forms to least squares loss functions and Euclidean distances, ultimately leading to
the loss function (5.2). Undoubtedly this was partly due to the heavily geometrical approach
to MVA we were taught by John van de Geer, the father of Albert Gifi (Van de Geer (1971)).
Van de Geer was influenced in turn by Coombs (1964), who introduced another basically
geometric approach for the representation of data. On the computational side there was the
influence of multidimensional scaling, with its emphasis on distance, breaking through in
in the late sixties and early seventies. Shepard, Kruskal, Gnanadesikan, and Kettenring all
worked at Bell Telephone Laboratories in Murray Hill, and both De Leeuw and Benzécri had
visiting positions there around that time.

In the classical Gifi system (Gifi (1990), Michailidis and De Leeuw (1998)) a slightly different
parametrization of Gifi loss, and a correspondingly different ALS algorithm, were used. The
loss function used by Gifi is

o(X,Y) = ;Z SSQ (X - Y G, (5.8)
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where the GGy are known spanning matrices for the cones of transformations, and the Y, are
matrices of category quantifications. Loss function (5.8) is geared more towards quantification
of discrete categorical variables.

Because of the full rank decompositions Y, = Z;;A;, it follows that (5.2) and (5.8) are
essentially the same. Simply define H; = G;Z;. We feel that the alternative parametrization
in terms of H; and A; has some conceptual and computational advantages.



Chapter 6

Algorithm

6.1 Block Relaxation

Our task is to minimize o(H, A) over H and A, suitably constrained. Write the constraints
as H € H and A € A. The strategy we use is block relaxation (De Leeuw (2015a)). Thus we
iterate as follows.

0. Set k = 0 and start with some H©.

1. A® ¢ argmin o(H®, A).
AcA
2. H*+Y ¢ argmin o(H, AW).
HeH
3. If converged stop. Else k < k + 1 and go to step 1.

It is assumed that step 1, updating A for given H, can be carried out simply by some form
of linear least squares. We assume that for each ¢ there is at least one j such that A;, = I.
Note that this is the case for MLR, PCA, EFA, and for all Gifi System:s.

Step 2 is somewhat more intricate, because of the cone restrictions. In partitioned form we
can write the loss function as

m m L
o(H,A) =) tr Hi) H;) Ajdj
=1 (=1

j=1

L
Bi;(A) =) AjAy

(=1

6.2 Majorization

tr HHHG =tr (H+ (H — H))(H+ (H — H))G > tr H'HG + 2tr H'(H — H)G
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tr H’H’G(F[)

6.3 Alternating Least Squares

The standard way to minimize loss function (5.8) is implemented in the OVERALS program
(Van der Burg, De Leeuw, and Verdegaal 1988, Meulman and Heiser (2012)). It is also the
one used in the homals package (De Leeuw and Mair 2009a).

In this paper the algorithm is different because we use the loss function (5.2). We still use
ALS, which means in this case that we cycle through three substeps in each iteration. We
update A for given X and H, we then update X for given H and A, and finally we update
H for given X and A. Algorithm A goes as follows.

0. Set k = 0 and start with some X© F© A0

1. X®+Y = ortho(center(H® A*)).

2. For j =1,---,m compute A;kﬂ) = {H](k)}JFX(kH).
3. For j = 1,---,m and s = 1,---p; compute h§1;+1) = Projy, s((X*H —
Sies My g Y = Sy iy {aly VY )all D).

4. If converged stop. Else k <— k + 1 and go to step 1.

In step 1 we use superscript + for the Moore-Penrose inverse. In step 2 the center operator
does column centering, the ortho operator finds an orthonormal basis for the column space of
its argument.

The complicated part is step 4, the optimal scaling, i.e. the updating of H; for given X and
Aj. We cycle through the variables in the block, each time projecting a single column on the
cone of admissible transformations of the variable, and then normalizing the projection to
length one. The target, i.e. the vector we are projecting, is complicated, because the other
variables in the same block must be taken into account.

In order to simplify the optimal scaling computations within an iteration we can use majoriza-
tion (De Leeuw 1994, Heiser (1995), Lange, Hunter, and Yang (2000), De Leeuw (2015a)).
This has the additional benefit that the optimal scaling step becomes embarassingly parallel.
We expand the loss for block j around a previous solution H -

SSQ(X—HJAJ) = SSQ(X—H]AJ)—2tI' (H]—FIJ)/(X—]:I]A])A;"—tI' A;(HJ—FI]),(H]—HJ)AJ

Now
tr (H; — H;)A; A (H; — H;) < k; tr (H; — H;)'(H; — Hj),

where r; is the largest eigenvalue of A%A;. Thus

SSQ(X — H;A;) < SSQ(X — H;A;) + k; SSQ(H; — Uj) — /{1 SSQ((X — H;Aj)A)),

J



6.4. IMPLEMENTATION DETAILS 35

where Uj is the target
. 1 .
j

It follows we can update the optimal scaling of the variables by projecting the columns
of U; on their respective cones and then normalizing. See De Leeuw (1975) for results on
normalized cone regression. This can be done for all variables in the block separately, without
taking any of the other variables in the block (or in any of the other blocks) into account.
Thus the optimal scaling is easy to parallellize. The resulting algorithm B is as follows.

0. Set k = 0 and start with some X© F©) A0
1. X®+D = ortho(center(H® A*)).

2. For j =1,---,m compute A;kﬂ) = {H](k)}JFX(kH).
3. For j =1,--- ,m compute U;kﬂ) = H](k) + %j(X(k“) - H](k)A§-k+1)){A§k+1)}’ and for
(kJrl))

s=1,---p; compute hg’;H) = proj,cjsms(ujs

4. If converged stop. Else k <— k + 1 and go to step 1.

6.4 Implementation Details

If we follow the ALS strategy strictly the ortho() operator should be implemented using
Procrustus rotation (Gibson 1962). Thus if Z = K'AL' is the singular value decomposition of
X, then ortho(Z) = KL'. Note, however, that any other basis for the column space of Z
merely differs from the Procrustus basis by a rotation. And this rotation matrix will carry
unmodified into the upgrade of A; in step 2 of the algorithm, and thus after steps 1 and 2
the loss will be the same, no matter whch rotation we select. In our algorithm we use the
QR decomposition to find the basis, using the Gram-Schmidt code from De Leeuw (2015¢).

In actual computation we column-center the basis and compute a full rank QR decomposition,
using the code in De Leeuw (2015¢). Thus G, = QRy,

We implement the cone restrictions by the constraints h;s = Gjszs in combination with
T;shjs > 0. Thus the transformed variables must be in the intersection of the subspace
spanned by the columns of the transformation basis G;s and the polyhedral convex cones of
all vectors h such that Tj;h > 0. We suppose that all columns of the G add up to zero, and
we require, in addition, the normalization SSQ(h;s) = 1.

We use the code described in De Leeuw (2015b) to generate B-spline bases. Note that
for coding purposes binary indicators are B-splines of degree zero, while polynomials are
B-splines without interior knots. We include the utility functions to generate lists of knots.
There is knotsQ() for knots at the quantiles, knotsR() for knots equally spaced on the
range, knotsD() for knots at the data points, and knotsE() for no interior knots. Also
note that binary indicators can be created for qualitative non-numerical variables, for which
B-splines are not defined. We have added the option using degree -1 to bypass the B-
spline code and generate an indicator matrix, using the utility makeIndicator (). Note that
'makeIndicator(foo) is equivalent to bsplineBasis(foo, degree = 0, innerknots =
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sort (unique (foo))). Throughout we first orthonormalize the basis matrices G, using the
Gram-Schmidt code from De Leeuw (2015c).

The matrices T} in the homogeneous linear inequality restrictions that define the cones Kj
can be used to define monotonicity or convexity of the resulting transformations. In the
current implementation we merely allow for monotonicity, which means the 7}, do not have
to be stored. The transformations for each variable can be restricted to be increasing, or
they can be unrestricted. By using splines without interior knots we allow in addition for
polynomial transformations, which again can be restricted to be either monotonic or not.
Note that it is somewhat misleading to say we are fitting monotone splines or polynomials,
we are mainly requiring monotonicity at the data points.

If there are multiple copies of a variable in a block then requiring the transformation to
be ordinal means that we want the transformation of the first copy to be monotonic. The
transformations of the other copies are not constrained to be monotonic. If you want all
copies to be transformed monotonically, you have to explicitly introduce them as separate
variables.

For variables with copies there is yet another complication. For copies we have H;A; =
G;(Z;A;) = G,Y;. If we require monotonicity in MVAOS we constrain a column of H; (in
fact, the first one) to be monotonic. In classic Gifi, in which the G; are binary indicators,
we constrain the first column of Y}, which automatically implies the first column of G,Yj is
monotonic as well. In previous Gifi work with B-splines, we also constrained the first column
of Y}, which again implied the first column of G;Y; was monotnic as well. But in our current
MVAOS implementation monotonicity of the first column of H; does not imply monotonicity
of the first column of H;A;, even if the basis GG is a binary indicator. This discrepancy
between the old and the new Gifi only comes into play for ordinal variables with multiple
copies.

Missing data are incorporated in the definition of the cones of transformations by using a
Gjs which is the direct sum of a spline basis for the non-missing and an identity matrix for
the missing data. This is called missing data multiple in Gifi (1990). There are no linear
inequality restrictions on the quantifications of the missing data.

6.5 Wrappers

The homals () implementation in De Lecuw and Mair (2009a) is a single monolithic program
in R, which specializes to the various MVAOS techniques by a suitable choice of its parameters.
This approach has some disadvantages. If we want principal component analysis, we already
know all blocks are singletons. If we want multiple correspondence analysis we know each
variable has p copies. If we want multiple regression, we know there are two blocks, and one
is a singleton. So it is somewhat tedious to specify all parameters all of the time. Also, some
of the output, graphical and otherwise, is specific to a particular technique. For regression
we want residuals and fitted values, in canonical analysis we want block scores and loadings.
And, more generally, we may want the output in a form familiar from the classical MVA
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techniques. It is indeed possible to transform the homals() output to more familar forms
(De Leeuw (2009)), but this requires some extra effort.

In this book we go back to the original approach of Gifi (1990) and write separate programs
for nonlinear versions principal component analysis, multiple regression, canonical analysis,
discriminant analysis, and so on.

These programs, now written in R and no longer in FORTRAN, are wrappers for the main
computational core, the program gifiEngine(). The wrappers, which have the familiar
names morals(), corals(), princals(), homals(), criminals(), overals(), primals(),
and canals(), create a gifi object from the data and parameters, and then pass this to
gifiEngine (). Computations are itereated to convergence, and result are stored in a xGifi
object. Then the output is transformed to a format familiar from the corresponding technique
from classical MVA. Each wrapper foo returns a structure of class foo.

This modular approach saves code, because both makeGifi() and gifiEngine () are common
to all programs. It also makes it comparatively easy to add new wrappers not currently
included, possibly even contributed by others.

Although we like the above quotation from Hill (1990), it is not quite accurate. Our current
generation of wrappers can use B-spline bases, it can use an arbitrary number of copies of
a variable, and each copy can be either categorical, ordinal, polynomial, or splinical. Thus,
even more so than the original gifi programs, we have a substantial generalization of the
classical techniques, not merely a sequence of synonyms.

6.6 Structures

The computations are controlled by the arguments to the wrappers. These arguments are
used to construct three structures: the gifi, the gifiBlock, and the gifiVariable. A gifi is just
a list of gifiBlocks, and a gifiBlock is a list of gifiVariables. This reflects the partitioning
of the variables into blocks. A gifiVariable contains a great deal of information about the
variable. The function makeGifiVariable() is a constructor that returns a structure of
class gifiVariable. The contents of a gifiVariable remain the same throughout the
computations.

return (structure (
list (

data = data,
basis = basis,
qr = qr,
copies = copies,
degree = degree,
ties = ties,
missing = missing,
ordinal = ordinal,
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active = active,
name = name,
type = type

),

class = "gifiVariable"

)

There are three corresponding structures containing initial and intermediate results, and
eventually output, the xGifi, xGifiBlock, and xGifiVariable. Again, an xGifi is a list of
xGifiBlocks, and an xGifiBlock is a list of xGifiVariables. The constructor for an xGifiVariable
returns an object of class xGifiVariable, which contains the elements that are updated
in each iteration during the computations. There is an xGifiVariable for both active and
passive variables.

return (structure (
list(
transform = transform,
weights = weights,
scores = scores,
quantifications = quantifications
i
class = "xGifiVariable"

))



Chapter 7

Multiple Correspondence Analysis
and homals()

7.1 Introduction

Suppose all basis matrices G, in block j are the same, say equal to G;. Then the block
scores H;A; are equal to G,;Z;A;, which we can write simply as G,Y;. Thus loss must be
minimized over X and the Y.

If all G; are binary indicators of categorical variables, and the m blocks are all of span
one, then MVAOS is multiple correspondence analysis (MCA). The block scores G;Y; are
k; different points in R?, with k; the number of categories of the variable, which is usually
much less than n. The plot connecting the block scores to the object scores is called the star
plot of the variable. If k; is much smaller than n a star plot will connect all object scores to
their category centroids, and the plot for a block (i.e. a variable) will show k; stars. Since
loss ¢ is equal to the sum of squared distances between object scores and block scores, we
quantify or transform variables so that stars are small.

In our MVAOS MCA function homals() we allow for B-spline bases and for monotonicity
restrictions. The input data (as for all MVAOS programs) needs to be numeric, and we
included a small utility function makeNumeric() that can be used on data frames, factors,
and character variables to turn them into numeric matrices. All other arguments to the
function have default values.

homals <-

function (data,
knots = knotsD (data),
degrees = rep (-1, ncol (data)),
ordinal = rep (FALSE, ncol (data)),
ndim = 2,
ties = '
missing

n
3
[}

Imll,

nw

39



40 CHAPTER 7. MULTIPLE CORRESPONDENCE ANALYSIS AND HOMALS()

names = colnames (data, do.NULL = FALSE),
itmax = 1000,

eps = le-6,

seed = 123,

verbose = FALSE)

The output is a structure of class homals, i.e. a list with a class attributehomals. The
list consists of transformed variables (in xhat), their correlation (in rhat), the objectscores
(in objectscores), the blockscores (in blockscores, which is itself a list of length number of
variables), the discrimination matrices (in dmeasures, a list of length number of variables),
their average (in lambda), the weights (in a), the number of iterations (in ntel), and the loss
function value (in f).

return (structure (

list (
transform = v,
rhat = corList (v),
objectscores = h$x,
scores =y,
quantifications = z,
dmeasures = d,
lambda = dsum / ncol (data),
weights = a,
loadings = o,
ntel = h$ntel,
f = h$f

),

class = "homals"

))

Note that in MCA we have H;A; = G;Y;. In previous Gifi publications the Y} are called
category quantifications. Our current homals () does not output the categaory quantifications
directly, only the block scores G;Y;. If the G; are binary indicators, the Y} are just the distinct
rows of G;Y}. There is also some indeterminacy in the representation H;A;, which we resolve,
at least partially, by using the QR decomposition H; = Q;R; to replace H; by ();, and use
H;A; = Q;(R;A;). One small problem with this is that we may have r; = rank(H;) <r, in
which case there are only r; copies in ;. This happens, for example, in the common case in
which variable j is binary and takes only two values.



7.2. EQUATIONS 41

7.2 Equations

7.3 Examples

7.3.1 Hartigan’s Hardware

Our first example are semi-serious data from Hartigan (1975) (p. 228), also analyzed in Gifi
(1990) (p. 128-135). A number of screws, tacks, nails, and bolts are classified by six variables.
The data are

## thread head indentation bottom length brass
## tack N F N S 1
## nailil
## nail2
## nail3
## naild
## nailb
## nailé
## nail7
## nail8
## screwl
## screw?2
## screw3
## screw4d
## screwb
## boltl
## bolt2
## bolt3
## bolt4
## boltb
## bolt6
## tackl
## tack?2
## nailb
## screwb

R 222 < KA <K K KKK KRR a2 22222
=~ e e e e e s s S A~~~
M nnwnmdmammmMmaMmsa T onn N N N 0N N N N T
R, R, R, R, RE,RERE, RN DO WoNNDDNDN D
N K KR =====ca=====2=2=2 =222 =

OMTMTEM<< < <O <T L TOQQQ T T T

We can do a simple MCA, using all the default values.

h <- homals (makeNumeric(hartigan))

After 54 iterations we find a solution with loss 0.5157273. The object scores are plotted in
figure 2.
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Figure 2: Hartigan Data, Object Scores

The star plots, produced by the utility starPlotter() are in figure 3.
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Figure 3: Hartigan Data, Star Plots
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The discriminations matrices A; are

#it (11 [,2]
## [1,] 0.93 0.16
# [2,] 0.16 0.03
#it [,11 [,2]
## [1,] 0.96 0.04
## [2,] 0.04 0.64
#it (11 [,2]
# [1,] 0.94 0.07
#t [2,] 0.07 0.66
#t (11 [,2]
## [1,] 0.39 -0.13
## [2,] -0.13 0.04
#it (11 [,2]
## [1,] 0.29 -0.19
## [2,] -0.19 0.82
#it (11 [,2]
## [1,1] 0.07 0.05
## [2,] 0.05 0.03

and their average A is

#it [,11 [,2]
## [1,] 0.60 0.00
## [2,] 0.00 0.37

Note that the loss was 0.5157273, which is one minus the average of the trace of A. The
induced correlations are

#it [,11 [,21 [,31 [,41 [,51 [,6]1 [,71 [,8] I[,9]

## [1,] 1.00 1.00 0.01 0.98 -0.20 0.46 0.03 0.41 -0.22
# [2,] 1.00 1.00 -0.00 0.98 -0.21 0.46 0.03 0.41 -0.22
## [3,] 0.01 -0.00 1.00 0.08 0.38 0.18 -0.59 0.40 -0.02
## [4,] 0.98 0.98 0.08 1.00 0.00 0.50 -0.10 0.43 -0.21
## [5,] -0.20 -0.21 0.38 0.00 1.00 0.14 -0.66 0.05 0.09
## [6,] 0.46 0.46 0.18 0.50 0.14 1.00 -0.17 0.28 -0.29

## [7,] 0.03 0.03 -0.59 -0.10 -0.66 -0.17 1.00 -0.00 -0.10
## [8,] 0.41 0.41 0.40 .43 0.05 0.28 -0.00 .00 0.23
# [9,] -0.22 -0.22 -0.02 -0.21 0.09 -0.29 -0.10 0.23 1.00

o
[

Of the six variables, three are binary. Thus they only have a single transformed variable
associated with them, which is just the standardization to mean zero and sum of squares one.
The total number of transformed variables is consequently 9. The eigenvalues of the induced
correlation matrix (divided by the number of variables, not the number of transformed
variables) are

## [1] 0.60 0.37 0.21 0.13 0.10 0.07 0.02 0.00 0.00
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Note that the two dominant eigenvalues are again equal to the diagonal elements of A.

7.3.2 GALO

The second example is somewhat more realistic. In the GALO dataset (Peschar (1975)) data
on 1290 school children in the sixth grade of an elementary school in 1959 in the city of
Groningen (Netherlands) were collected. The variables are gender, 1Q (categorized into 9
ordered categories), advice (teacher categorized the children into 7 possible forms of secondary
education, i.e., Agr = agricultural; Ext = extended primary education; Gen = general; Grls
= secondary school for girls; Man = manual, including housekeeping; None = no further
education; Uni = pre- University), SES (parent’s profession in 6 categories) and school (37
different schools). The data have been analyzed previously in many Gifi publications, for
example in De Leeuw and Mair (2009a). For our MCA we only make the first four variables,
school is treated as passive

We use this example to illustrate some of the constraints on transformations. Two copies are
used for all variables (although gender effectively only has one, of course). 1Q is treated as
ordinal, using a piecewise linear spline with knots at the nine data points.

galo_knots <- knotsD(galo)

galo_degrees <- c(-1,1,-1,-1,-1)

galo_ordinal <- c(FALSE, TRUE, FALSE, FALSE,FALSE)
galo_active <-c (TRUE, TRUE, TRUE, TRUE, FALSE)

h <- homals (galo, knots = galo_knots, degrees = galo_degrees, ordinal = galo_ordinal, c

We first give transformations for the active variables (and their copies) in figure 4 . We
skip gender, because transformation plots for binary variables are not very informative. We
give two transformation plots for 1Q, first using H and then using HA. This illustrates
the point made earlier, that transformation plots of block scores for ordinal variables with
copies need not be monotone. It also illustrates that additional copies of an ordinal variable
are not scaled to be monotone. Note that the plots for advice and SES are made with the
utility stepPlotter (). Because the degree of the splines for those variables is zero, these
transformation plots show step functions, with the steps at the knots, which are represented
by vertical lines.
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Figure 4: Galo Data, Transformations

The four star plots for the active variables, together with the four category quantification
plots, are in figure 5. Note that homals() does not compute category quantifications, we
have to compute them from the homals() output. Also note that for gender, advice and
SES the object scores are connected to the category centroids of the variables. For 1Q) object
scores are connected to points on the line connecting adjacent category quantifications. See
De Leeuw and Van Rijckevorsel (1988) for category plots using forms of fuzzy coding (of
which B-splines are an example).
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Figure 5: Galo Data, Category Quantifications and Star Plots

For this analysis we need 52 iterations to obtain loss 0.54251. The average discrimination
matrix over the four active variables is
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#it [,11 [,2]
## [1,] 0.54 0.00
## [2,] 0.00 0.38

while the eigenvalues of the induced correlation matrix of the active variables and their copies,
divided by four, are

## [1] 0.54 0.38 0.26 0.21 0.18 0.13 0.05

The category quantifications for the passive variable indicating the 37 schools are in figure 6.
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Figure 6: Galo Data, Schools as Passive

If we look at the scale of the plot we see all schools are pretty close to the origin. The
discrimination matrices are consequently also small. In 1959 schools were pretty much the
same.

#it [,1] [,2]
## [1,] 0.0011 -0.0014
## [2,] -0.0014 0.0022

7.3.3 Thirteen Personality Scales

Our next example is a small data block from the psych package (Revelle 2015) of five scales
from the Eysenck Personality Inventory, five from a Big Five inventory, a Beck Depression
Inventory, and State and Trait Anxiety measures.

data(epi.bfi, package = "psych")
epi <- epi.bfi
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epi_knots <- knotsQ(epi)
epi_degrees <- rep (0, 13)
epi_ordinal <- rep (FALSE, 13)

We perform a two-dimensional MCA, using degree zero and inner knots at the three quartiles
for all 13 variables.

h <- homals(epi, knots = epi_knots, degrees = epi_degrees, ordinal = epi_ordinal)

We have convergence in 271 iterations to loss 0.7472906. The object scores are in figure 7.
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Figure 7: Personality Scales, Object Scores, Multiple Nominal, Degree Zero

Figure 8 has the G,;Y; for each of the thirteen variables, with the first dimension in red, and
the second dimension in blue.
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Figure 8: Personality Scales, Transformations, Multiple Nominal, Degree Zero

The thirteen star plots are in figure 8.
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Now change the degree to two for all variables, i.e. fit piecewise quadratic polynomials which
are differentiable at the knots. We still have two copies for each variable, and these two
copies define the blocks.

epi_degrees <- rep (2, 13)
h <- homals (epi, knots = epi_knots, degrees = epi_degrees, ordinal = epi_ordinal)

We have convergence in 560 iterations to loss 0.7179023. The object scores are in figure 10
and the transformation plots in figure 11.
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Figure 10: Personality Scales, Object Scores, Multiple Nominal, Degree Two
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Chapter 8

Correspondence Analysis and corals()

8.1 Introduction

Ordinary correspondence analysis (OCA) is the special case of MCA in which there are only
two variables, and both variables have the maximum number of copies. Consequently the
homals () wrapper can be used to compute a CA. Because input and output can be organized
a bit differently for OCA we have written the separate wrapper corals().

Note that corals() is not really intended for routine OCA computation. There are many
packages in R which do that job much more efficiently. We mention, for example, anacor
(De Leeuw and Mair (2009b)) and ca (Nenadic and Greenacre (2007)). However, corals()
can be used for a number of cases which the usual OCA packages do not cover.

In corals(), as in the other packages, the default input is a single non-negative matrix F'.
Although any non-negative matrix will do, the most common, and the most natural, input is
an r X ¢ cross table with bivariate frequencies. Suppose the frequencies add up to the total
number of observations n. Then gifiEngine (), which is called by corals(), requires input
in the form of an n x 2 matrix. Thus a 2 x 2 table with 1000 observations becomes a 1000 x 2
matrix. The utility preCorals() makes the conversion, but of course the representation is
embarrassingly inefficient, both in terms of memory and in terms of computation. After the
computations are done, the utility postCorals() restores transformations and scores to the
appropriate row and column dimensions.

Here are the arguments and their defaults.

## function (data, ftype = TRUE, xknots = NULL, yknots = NULL, xdegree = -1,

## ydegree = -1, xordinal = FALSE, yordinal = FALSE, xties = "s",
#it yties = "s", xmissing = "m", ymissing = "m", xname = "X",

#i# yname = "Y", ndim = 2, itmax = 1000, eps = 1le-06, seed = 123,
#it verbose = FALSE)

## NULL

If dtype is FALSE, then data is a matrix of dimension n x 2, with n the number of observations.
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This takes us back to the input format of homals () with two variables. If xknots and yknots
are kept to their default NULL then they are replaced in corals() by the quartiles of the two
variables.

The redeeming feature of corals() is that, unlike the other classical OCA packages, it can
handle numerical variables, it can incorporate higher order splines, it can impose monotonicity
restrictions, and it can deal with missing data in one of both of the variables. If there are
supplementary variables then it makes more sense to use homals ().

8.2 Equations

The usual stationary equations for OCA, using the category quantifications Y; and Y5 are

C12Ys = D1Y1A,
CnY1 = DoYoA,

with normalization Y]/ D1Y; = I and Y] DyYs = I.

In the output of gifiEngine() the category quantifications Y; and Y; and the object scores
X satisfy

G1Y1 + GoYy = 2X/~\7
Di'GhX =Y,
Dy'GLX =Y,

with normalization X’'X = I. It follows that

ChaYs = D1Y1(2A — 1),
CoYy = DoYs(2A — 1),

and thus for the discrimination matrices ?{lefl = Y/Q’szfg = X'PLX = X'P,X = A. The
two sets of quantities from OCA and corals() are related by A =2A — 1, Y] = ViA~2 and
Y, = YoA"3.

In classical OCA there is no direct equivalent of the object scores X. Also we typically do not
use the decomposition H;A; = G;Z;A; = G;Y;, with H;H; = Z:D;Z; = I. From corals ()
we get the loadings H};X, the correlations between the object scores and transformed copies,
which for singleton blocks are always equal to the weights A;. But since the decomposition

Y; = Z;A, is not unique these are of limited use. The correlations between X and the ij/j
are more interesting. Since X'G;Y; = A, we see these correlations are equal to Az.
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8.3 Examples

8.3.1 Glass

We start with a classical OCA example that was also used by Gifi (1990) (p 277-280) and by
De Leeuw and Mair (2009b). Data are from Glass (1954). Occupational status of the fathers
is crossed with occupational status of the son, for 3497 British families. The row (father)
and column (son) categories are

o PROF professional and high administrative
o EXEC managerial and executive

o HSUP higher supervisory

o LSUP lower supervisory

o SKIL skilled manual and routine nonmanual
o MEMI semi-skilled manual

o UNSK unskilled manual

data (glass, package = "anacor"
names <- c("PROF","EXEC","HSUP","LSUP","SKIL","MEMI","UNSK")
glass <- as.matrix (glass)

We apply apply corals() with the default options. Thus we only compute two dimensions
and use crisp indicators.

h <- corals(glass)

Minimum loss is 0.3017408, attained after 88 iterations. The two discrimination matrices are
both equal to

#it [,11 [,2]
## [1,] 0.76 -0.00
## [2,] -0.00 0.63

which means the corresponding canonical correlations are 0.525629, 0.2674056. The maximum
correlation between SES of father and son is 0.525629.

The category quantifications for fathers are

# [,1] [,2]

## [1,] -0.0594 0.0384
## [2,] -0.0312 -0.0214
## [3,] -0.0098 -0.0198
## [4,] -0.0009 -0.0119
## [5,] 0.0049 -0.0003
## [6,] 0.0099 0.0118
## [7,] 0.0112 0.0163

and for sons
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##
#it
#it
##
#i#
##
#Hit
#it

[1,]
[2,1]
(3,]
[4,]
(5,]
(6,]
(7,1]

-0.0652
-0.0295
-0.0138
-0.0005
0.0045
0.0090
0.0106

CHAPTER 8. CORRESPONDENCE ANALYSIS AND CORALS()

[,2]
0.0436
-0.0221
-0.0146
-0.0144
-0.0023
0.0122
0.0153

We did not require the first dimension to be increasing, it just came out that way. We plot
category quantifications in figure 12.

dimension 2

Figure 12: Glass Data, Category Quantifications
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The 3497 objectscores can take only 49 different values, of which only 47 actually occur in
the data. They are plotted in figure 27. Point labels are first letters of the two corresponding
SES categories, first letter for the fathers, second letter for the sons.



8.3. EXAMPLES 61

PP
o
\—! —
© uP
MP py
PM
SP
T} PS
N oS LP Uu
s © W
2 Ep HMH  PL MM
[
o PE
£ i
o
o
e FUE H"MU
EME
SH Is%
HS
0 =3 LH LL
o _|
o Eq BEHH HL
EE HE
[ [ [ [
-0.15 -0.10 -0.05 0.00
dimension 1

Figure 13: Glass Data, Object Scores

Next, we look at regression plots, made with the utility regressionPlotter(). One-
dimensional category quantifications for rows and columns are used to locate row and
column categories on the horizontal and vertical axes. Frequencies from the table are used to
label the intersections of the corresponding vertical and horizontal lines. We then compute
the regression lines, using row and column averages of the category quantifications, for these
transformed variables. In the first plot we see what happens if we use equally spaced scores
for the categories of both fathers and sons. Regressions are not quite linear. Then we use the
first dimension of the OCA quantifications, which linearizes the regressions. And in the third
plot we use the second dimension, which again linearizes the regressions, but permutes the
rows and colums of the table.
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Figure 14: Glass Data, Regression Plots

8.3.2 Galton

To illustrate some of the additional corals() options we use the classical father-child RFF
height data of Galton (1889). It has mid-parent height in the rows and mid-adult-child height
in the columns.

data (galton, package = "anacor"
galton <- as.matrix (galton)
galton <- galton[nrow (galton):1, ]

galton

## below 62.2 62.2 63.2 64.2 65.2 66.2 67.2 68.2 69.2 70.2 71.2
## below 64.5 1 0 2 4 1 2 2 1 1 0 0
## 64.5 1 1 4 4 1 5 5 0 2 0 0
## 65.5 1 0 9 5 7 11 11 7 7 5 2
## 66.5 0 3 3 5 2 17 17 14 13 4 0
## 67.5 0 3 5 14 15 36 38 28 38 19 11
## 68.5 1 0 7 11 16 25 31 34 48 21 18
## 69.5 0 0 1 16 4 17 27 20 33 25 20
## 70.5 1 0 1 0 1 1 3 12 18 14 7
## 71.5 0 0 0 0 1 3 4 3 5 10 4
## 72.5 0 0 0 0 0 0 0 1 2 1 2
## above 72.5 0 0 0 0 0 0 0 0 0 0 0
## 72.2 73.2 above 73.2

## below 64.5 0 0 0

## 64.5 0 0 0

## 65.5 1 0 0

## 66.5 0 0 0

## 67.5 4 0 0

## 68.5 4 3 0

## 69.5 11 4 5

## 70.5 4 3 3

## 71.5 9 2 2

## 72.5 7 2 4

## above 72.5 1 3 0

The regression plots from a one-dimensional corals (), with default options, in the familiar
before and after format, are in figure 15.
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Figure 15: Galton Data, Regression Plots

We see some deviations from monotonicity and the ends of the scale, where some columns of
the table are interchanged. This is presumably because of the small number of observations
in the extreme categories. We repeat the analysis with ordinal transformations of degree 2
(i.e. piecewise quadratics, differentiable at the knots, and monotone at the data points) and
equally spaced knots.

galton_knots = c(2, 4, 6, 8, 10)
h <- corals(

galton,

ndim = 1,
xord = TRUE,
yord = TRUE,
xdeg = 2,
ydeg = 2,

xknots = galton_knots,
yknots = galton_knots

The transformations of the variables are in figure 16. They show some clear deviations from
linearity.
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Figure 16: Galton Data, Transformation Plots
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Chapter 9

Canonical Correspondence Analysis
and coranals()

9.1 Introduction

9.2 Equations

Canonical analysis of GX and H.

9.3 Examples
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Chapter 10

Nonlinear Principal Component
Analysis and princals()

10.1 Introduction

princals, principals, Shepard-Kruskal, mdrace, history

10.2 Equations

Suppose all m blocks each contain only a single variable. Then the Burt matrix is the
correlation matrix of the H;, which are all n x 1 matrices in this case. It follows that MVAOS
maximizes the sum of the r largest eigenvalues of the correlation matrix over transformations,
i.e. MVAOS is nonlinear principal component analysis (De Leeuw 2014).

10.3 Examples

10.3.1 Thirteen Personality Scales

We use the same data as before for an NLPCA with all blocks of rank one, all variables
ordinal, and splines of degree 2.

epi_copies <- rep (1, 13)

epi_ordinal <- rep (TRUE, 13)

h <- princals(epi, epi_knots, epi_degrees, epi_ordinal, epi_copies)

In 19 iterations we find minimum loss 0.7330409. The object scores are in figure 17 and
the transformation plots in figure 18. NLPCA maximizes the sum of the two largest
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eigenvalues of the correlation matrix of the variables. Before transformation the eigen-
values are 4.0043587, 2.6702003, 1.9970912, 0.8813983, 0.6571463, 0.6299946, 0.5246896,
0.4657022, 0.3457515, 0.3403361, 0.2767531, 0.1835449, 0.0230333, after transformation they
are 4.195697, 2.7452519, 1.603667, 0.8209126, 0.71826, 0.6769619, 0.5185328, 0.4544125,
0.419768, 0.3519542, 0.2932654, 0.170027, 0.0312897. The sum of the first two goes from
6.674559 to 6.9409489.

plot(h$objectscores, xlab = "diml", ylab = "dim2", col = "RED", cex = .5)
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Figure 17: Personality Scales, Object Scores, Single Ordinal, Degree Two
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Figure 18: Personality Scales, Transformations, Single Ordinal, Degree Two

We repeat the analysis with ordinal variables of degree two, without interior knots. Thus we
the transformation plots will be quadratic polynomials that are monotone over the range of
the data.

h <- princals(epi, knotsE(epi), epi_degrees, epi_ordinal)

In 21 iterations we find minimum loss 0.7392792. The object scores are in figure 19 and the
transformation plots in figure 20. The eigenvalues are now 4.0845453, 2.6942028, 1.8268476,
0.8731782, 0.6698534, 0.6503449, 0.540624, 0.4597014, 0.3666353, 0.3470226, 0.2847375,
0.1783405, 0.0239667, with sum of the first two equal to 6.778748.
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Figure 19: Personality Scales, Object Scores, Single Numerical, Degree Two
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Figure 20: Personality Scales, Transformations, Single Numerical, Degree Two
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Chapter 12

Canonical Analysis and canals()

12.1 Equations

If there are only two blocks the generalized eigenvalue problem for the Burt matrix becomes
D1 612 aq —92) D1 0 aq
021 D2 Qo 0 D2 a2 ’

012612 = (2)\ — 1)D16L1,
Cglal = (2)\ - 1)D26L2,

which we can rewrite as

from which we see that MVAOS maximizes the sum of the r largest canonical correlations
between H; and Hs. See also Van der Velden (2012).

12.2 Examples
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Chapter 13

Multiple Regression and morals()

If the second block only contains a single copy of a single variable then we choose transfor-
mations that maximize the multiple correlation of that variable and the variables in the first
block.

13.1 Equations

13.2 Examples

13.2.1 Polynomial Regression

x <- center(as.matrix (seq (0, pi, length = 20)))

y <- center(as.matrix (sin (x)))

h<- morals (x, y, xknots = knotsE(x), xdegrees = 3, xordinal = TRUE)
plot(y, h$yhat)
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13.2.2 Gases with Convertible Components

We analyze a regression example, using data from Neumann, previously used by Willard
Gibbs, and analyzed with regression in a still quite readable article by Wilson (1926). Wilson’s
analysis was discussed and modified using splines in Gifi (1990) (pages 370-376). In the
regression analysis in this section we use two copies of temperature, with spline degree zero,
and the first copy ordinal. For pressure and the dependent variable density we use a single
ordinal copy with spline degree two.

data (neumann, package = '"homals")
xneumann <- neumannl[, 1:2]

yneumann <- neumann[, 3, drop = FALSE]
xdegrees <- c(0,2)

h <- morals (xneumann, yneumann, xdegrees = c(0,2), xcopies = c(2,1))

In 58 iterations we find minimum loss 0.0268058, corresponding with a multiple correlation
of 0.8956512. The object scores are in figure 21 plotted against the original variables (not the
transformed variables), and the transformation plots in are figure 22.
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Chapter 15

Discriminant Analysis and criminals()

15.1 Equations

If the second block contains more than one copy of a single variable and we use binary
indicator coding for that variable, then we optimize the eigenvalue (between/within ratio)
sums for a canonical discriminant analysis.

15.2 Examples

15.2.1 Iris data

The next example illustrates (canonical) discriminant analysis, using the obligatory Anderson-
Fisher iris data. Since there are three species of iris, we use two copies for the species variable.
The other four variables are in the same block, they are transformed using piecewise linear
monotone splines with five knots.

data(iris, package="datasets")
iris_vars <- names(iris)
iris_knots <- knotsQ(iris[,1:4])
x <- as.matrix(iris[,1:4])

y <- as.matrix(iris[[5]])

h <- criminals (x, y, xdegrees = 1)
In 191 iterations we find minimum loss 0.030226. The object scores are in figure 23 plotted
against the original variables (not the transformed variables), and the transformation plots

are in figure 24.
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Figure 24: Iris Data, Transformations

Discriminant analysis decomposes the total dispersion matrix 7" into a sum of a between-
groups dispersion B and a within-groups dispersion W, and then finds directions in the
space spanned by the variables for which the between-variance is largest relative to the total
variance. MVAQOS optimizes the sum of the r largest eigenvalues of 77! B. Before optimal
transformation these eigenvalues for the iris data are r, after transformation they are r.
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Multiblock Canonical Correlation and
overals()

16.1 Equations

16.2 Examples

16.2.1 Thirteen Personality Scales

This is the same example as before, but now we group the five scales from the Eysenck
Personality Inventory and the five from the Big Five inventory into blocks. The remaining
three variables define three separate blocks. No copies are used, and we use monotone cubic
splines with the interior knots at the quartiles.

epi_knots <- lapply (epi, function (x) fivenum (x)[2:4])
epi_degrees <- rep (3, 13)
epi_blocks <- c(1,1,1,1,1,2,2,2,2,2,3,4,5)

h <- overals(epi, epi_blocks, epi_copies, epi_knots, epi_degrees, epi_ordinal)

In 191 iterations we find minimum loss 0.030226. The object scores are in figure 25 and the
transformation plots in figure 26.

Figure 25: Personality Scales, Multi-Set, Objects Scores

Figure 26: Personality Scales, Multi-Set, , Transformations
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Appendix A

Code

A.1 R Code

A.1.1 Driver

source ("gifiEngine.R")
source ("gifiUtilities.R")
source ("gifiWrappers.R")
source ("gifiStructures.R")
source ("aspectEngine.R")
source ("theAspects.R")
source ("matrix.R")

source ("coneRegression.R")
source ("splineBasis.R")
source ('"coding.R")

A.1.2 Engine

gifiEngine <-
function (gifi,

ndim,
itmax,
eps,
seed,
verbose) {

set.seed (seed)

nobs <- nrow (as.matrix (gifi[[1]][[1]]$data))

nsets <- length (gifi)
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nvars <- sum (sapply (gifi, length))
itel <- 1
if (nvars == 1)
stop("a gifiAnalysis needs more than one variable")
x <- matrix (rnorm (nobs * ndim), nobs, ndim)
x <- gsRC (center (x))$q
xGifi <- xGifi (gifi, x)
fold <- 0
asets <- 0
for (i in 1:nsets) {
gifiSet <- gifil[[i]]
xGifiSet <- xGifil[[il]
nvarset <- length (gifiSet)
ha <- matrix (O, nobs, ndim)
activeCount <- 0
for (j in 1l:nvarset) {
if (gifiSet[[jl]l$active) {
activeCount <- activeCount + 1
ha <- ha + xGifiSet[[j]]$scores
+
+
if (activeCount > 0) {
asets <- asets + 1
fold <- fold + sum ((x - ha) ~ 2)
+
}
fold <- fold / (asets * ndim)
repeat {
xz <- matrix(0, nobs, ndim)
fnew <- fmid <- 0
for (i in 1:msets) {
gifiSet <- gifil[[i]]
xGifiSet <- xGifil[[il]
nvarset <- length (gifiSet)
hh <- matrix (0, nobs, 0)
activeCount <- 0
for (j in 1:nvarset) {
if (gifiSet[[jl]l$active) {
activeCount <- activeCount + 1
hh <- cbind (hh, xGifiSet[[j]]$transform)
+
}
if (activeCount == 0)
next



A.l. R CODE

1f <- 1sRC (hh, x)
aa <- 1lf$solution
rs <- lf$residuals
kappa <- max (eigen (crossprod (aa))$values)
fmid <- fmid + sum (rs = 2)
target <- hh + tcrossprod (rs, aa) / kappa
hh <- matrix (O, nobs, 0)
scopies <- 0
for (j in 1l:nvarset) {
gifiVar <- gifiSet[[j]]
jdata <- gifiVar$data
jbasis <- gifiVar$basis
jcopies <- gifiVar$copies
jdegree <- gifiVar$degree
jties <- gifiVar$ties
jmissing <- gifiVar$missing
jordinal <- gifiVar$ordinal
ja <- aal[scopies + 1:jcopies, , drop = FALSE]
jtarget <- target[, scopies + 1:jcopies, drop = FALSE]
hj <-
gifiTransform (
data = jdata,
target = jtarget,
basis = jbasis,
copies = jcopies,
degree = jdegree,
ordinal = jordinal,
ties = jties,
missing = jmissing
)
hj <- gsRC(normalize (center (hj)))$q
sc <= hj %*% ja
xGifi[[i]] [[j]]$transform <- hj
xGifi[[i]] [[j]]$weights <- ja
xGifi[[1]1] [[j]l]$scores <- sc
xGifi[[i]] [[j1]$quantifications <-
1sRC(jbasis, sc)$solution
activeCount <- 0
if (gifiSet[[jl]l$active) {
activeCount <- activeCount + 1
hh <- cbind (hh, hj)
}

scoplies <- scopies + jcopies
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}

if (activeCount > 0) {
ha <- hh %Y aa

b
+

fmid <- fmid / (asets * ndim)
fnew <- fnew / (asets * ndim)

xz <- xz + ha
fnew <- fnew + sum ((x - ha) ~ 2)

if (verbose)
cat(
"ITteration: ",

)

formatC (itel, width = 3,

"fold: ",
formatC (

)

fold,

digits = 8,

width = 12,

format = "f"

"fmid: ",
formatC (

),

fmid,

digits = 8,
width = 12,
format = "f"

"fnew: ",
formatC (

)

fnew,

digits = 8,

width = 12,

format = "f"

n \nll

format = "d"),

APPENDIX A. CODE

if (((itel == itmax) || ((fold - fnew) < eps)) && (itel > 1))
break
itel <- itel + 1

fold <- fnew
x <- gsRC (center (xz))$q

return (list (

f = fnew,
ntel = itel,
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X = X,
xGifi = xGifi
)
}

gifiTransform <-
function (data,

target,
basis,
copies,
degree,
ordinal,
ties,
missing) {

nobs <- nrow (as.matrix (data))

h <- matrix (0, nobs, copies)

if (degree == -1) {
if (ordinal) {
h[, 1] <-

coneRegression (
data = data,
target = target[, 1],

type = "c",
ties = ties,
missing = missing
)
+
else {
hi, 1] <-
coneRegression (
data = data,
target = target[, 1],
basis = basis,
type = "s",
missing = missing
)
+

}
if (degree >= 0) {
if (ordinal) {

h[, 1] <-
coneRegression (
data = data,

target = target[, 1],
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}

else {
h(, 1] <-
coneRegression (

}

basis = basis,
type = "qn s

ties = ties,
missing = missing

data = data,

target = target[, 1],
basis = basis,

type = "s",

ties = ties,

missing = missing

if (copies > 1) {

for (1 in 2:copies)

h{, 11 <-
coneRegression (

data = data,

target = target[, 1],
basis = basis,

type = "s",

ties = ties,

missing = missing

return (h)

A.1.3 Aspect Engine

aspectEngine <-

function (gifi,

afunc,
eps = le-6,
itmax = 100,

verbose = 1,
monotone = FALSE,
oo {

APPENDIX A. CODE
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nsets <- length (gifi)
for (i in 1:msets) {
gifiSet <- gifil[[i]]
nvars <- length (gifiSet)
for (j in 1:nvars) {
gifiVar <- gifiSet[[j]]
q <- gifiVar$qr$q
}
}
itel <- 1
tdata <- matrix (0, n, m)
for (j in 1:m) {
tdatal, j] <- bd$x[[j]1]
}
tdata <- apply (tdata, 2, function (z)
z - mean (z))
tdata <- apply (tdata, 2, function (z)
z / sqrt (sum (z ~ 2)))
corr <- crossprod (tdata)
af <- afunc(corr, ...)
fold <- af$f
g <- af$g
repeat {
for (j in 1:m) {
target <- drop (tdatal, -jl %% gl-j, j1)
k <- bd$b[[j]1]
v <= bd$v[[j]1]
u <- drop (crossprod(k, target))
sO <- sum(target * tdatal, j])
if (ordinalljl) {
ns <- nnls(v, u)
rr <- residuals(ns)
tt <- drop(k %x% rr)
} else
tt <- drop (k %x% u)
tt <- tt - mean (tt)
sq <- sum(tt ~ 2)
if (sq > 1le-15) {
tt <- tt / sqrt (sq)
tdatal, j] <- tt
}
sl <- sum(target * tdatal, jl)
if (verbose > 1)
cat (
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"sx*x* Variable",
formatC(j, width = 3, format = "d"),
"Before",
formatC(
s0,
digits = 8,
width = 12,
format = "f"
),
"After",
formatC (
si,
digits = 8,
width = 12,
format = "f"
),
Il\nll
)
if (!'monotone) {
corr <- cor (tdata)
af <- afunc (corr, ...)
fnew <- af$f
g <- af$g
}
+
if (monotone) {
corr <- cor (tdata)
af <- afunc (corr, ...)
fnew <- af$f
g <- af$g
+
if (verbose > 0)
cat (
"Iteration: ",
formatC (itel, width = 3, format = "d"),
"fold: ",
formatC (
fold,
digits = 8,
width = 12,
format = "f"
),
"fnew: ",
formatC (

APPENDIX A. CODE
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fnew,
digits = 8,
width = 12,
format = "f"
),
ll\nll
)
if ((itel == itmax) || ((fnew - fold) < eps))
break
itel <- itel + 1
fold <- fnew
}
return (list (
tdata = tdata,

f = fnew,
r = corr,
g =8

)

by

A.1.4 Some Aspects

maxeig <- function (r, p) {
e <- eigen (1)
f <- sum (e$values[1:p])
g <- tcrossprod(e$vectors[,1:p])
return (list (f = £, g = g))
}

maxcor <- function (r, p) {
f <- sum (r ~ p)
g<-px*x (xr~ (p-1)
return (list (f = £, g = g))
}

maxabs <- function (r, p) {
f <- sum (abs(r) ~ p)
g <- p * (abs(r) = (p - 1)) * sign(r)
return (list (f = £, g = g))

}

maxdet <- function (r) {
f <- -log(det (r))
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g <- -solve(r)
return (list (f = £, g = g))
}

maxsmc <- function (r, p) {
beta <- solve (r[-p,-pl, rlp,-pl)
f <- sum (beta * r([p,-pl)
h <- rep (1, nrow (r))
h[-p] <- -beta
g <- -outer (h, h)
return (list (f = £, g = g))
}

maxsum <- function (r, p) {
f <- sum (sqrt (r = 2 + p))
g<-r /sqrt (r 2 + p)
return (list (f = £, g = g))
}

maximage <- function (r) {
n <- nrow(r)
f <=0
g <- matrix (0, n, n)
for (p in 1:n) {
beta <- solve (r[-p,-pl, rlp,-pl)
f <- £ + sum (beta * r[p,-pl)
h <- rep (1, nrow (r))
h[-p] <- -beta
g <- g - outer (h, h)
}
return (list (f = £, g = g))
}

maxfac <- function (r, p) {

fa <- factanal (NULL, p, covmat = r, rotation
s <- tcrossprod (fa$loadings) + diag (fa$unique)

g <- - solve (s)
f <- -log(det (s)) + sum (g * r)
return (list (f = f, g = g))

l!none n

APPENDIX A. CODE
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A.1.5 Structures

makeGifiVariable <-
function (data,
knots,
degree,
ordinal,
ties,
copies,
missing,
name) {
there <- which (!is.na (data))
notthere <- which (is.na (data))
nmis <- length (notthere)
nobs <- length (data)
if (length (there) == 0)
stop ("a gifiVariable cannot be completely missing")
work <- datal[there]
if (degree == -1) {
type <- '"categorical"
basis <- makeIndicator (work)
if (ncol (basis) == 1) {
stop ("a gifiVariable must have more than one category")
+
if (ncol (basis) == 2) {
type <- "binary"
+
}
if (degree >= 0) {
if (length (knots) == 0)
type <- "polynomial"
else
type <- "splinical"
basis <- bsplineBasis (work, degree, knots)
}
if (nmis > 0)
basis <- makeMissing (data, basis, missing)
copies <- min (copies, ncol (basis) - 1)
qr <- gsRC (center (basis))
if (qr$rank == 0)
stop ("a gifiVariable cannot be completely zero")
return (structure (
list (
data = data,
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basis = basis,

qr = qr,
copies = copies,
degree = degree,

ties = ties,
ordinal = ordinal,
name = name,
type = type

),

class = "gifiVariable"

)
}

makeGifiSet <-
function (data,
knots,
degrees,
ordinal,
ties,
copies,
missing,
names) {
nvars <- ncol (data)
varList <- as.list (1:nvars)
for (i in 1:nvars) {
varList[[i]] <-
makeGifiVariable (
data = datal, il,
knots = knots[[i]],
degree = degrees[i],
ordinal = ordinall[i],
ties[i],
copies = copies[i],
missing = missingl[i],
name = names [i]

by

return (structure (varList, class = "gifiSet"))

by

makeGifi <-
function (data,
knots,
degrees,
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ordinal,
ties,
copies,
missing,
names,
sets) {
nsets <- max (sets)
setList <- as.list (1:nsets)
for (i in 1:nsets) {
k <- which (sets == i)
setList [[i]] <-
makeGifiSet (
data = datal, k, drop = FALSE],
knots = knotsl[k],
degrees = degrees[k],
ordinal = ordinall[k],
ties = ties[k],
copies = copiesl(k],
missing = missing[k],
names = names [k]

}
return (structure (setlist, class = "gifi"))

}

xGifiVariable <- function (gifiVariable, ndim) {
basis <- gifiVariable$basis
nbas <- ncol (basis)
nobs <- length (gifiVariable$data)
copies <- gifiVariable$copies
transform <- matrix (O, nobs, copies)
transform[, 1] <- drop(basis %*} (1:nbas))
if (copies > 1) {
for (i in 2:copies)
transform[, i] <- drop (basis %*J% rnorm (nbas))
}
transform <- gsRC (normalize (center (transform)))$q
nbas <- ncol (transform)
weights <- matrix (rnorm (nbas * ndim), nbas, ndim)
scores <- transform %*), weights
quantifications <- 1sRC (basis, scores)$solution
return (structure (
list(
transform = transform,
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weights = weights,
scores = scores,
quantifications = quantifications
),
class = "xGifiVariable"
))
+

xGifiSet <- function (gifiSet, ndim) {
nvars <- length (gifiSet)
varList <- as.list (1:nvars)
for (i in 1:nvars) {
varList[[i]] <- xGifiVariable (gifiSet[[i]], ndim)
}

return (structure (varList, class = "xGifiSet"))

xGifi <- function (gifi, ndim) {
nsets <- length (gifi)
setList <- as.list (1:nsets)
for (i in 1:nsets) {
setList[[i]] <- xGifiSet (gifi[[i]], ndim)
}

return (structure (setlist, class = "xGifi"))

A.1.6 Wrappers

homals <-
function (data,
knots = knotsD (data),

degrees = -1,
ordinal = FALSE,
ndim = 2,

ties = "s",
missing = "m",

names = colnames (data, do.NULL = FALSE),
active = TRUE,

itmax = 1000,
eps = le-6,
seed = 123,

verbose = FALSE) {
nvars <- ncol (data)

APPENDIX A. CODE
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g <- makeGifi (
data = data,
knots = knots,
degrees = reshape (degrees, nvars),
ordinal = reshape (ordinal, nvars),
ties = reshape (ties, nvars),
copies = rep (ndim, ncol (data)),
missing = reshape (missing, nvars),
active = reshape (active, nvars),
names = names,
sets = l:nvars

5 o~

<- gifiEngine(
gifi = g,
ndim = ndim,
itmax = itmax,
eps = eps,
seed = seed,
verbose = verbose
)
a<-v<-z<-d<-y<-o0 < as.list (l:ncol(data))
dsum <- matrix (0, ndim, ndim)
nact <- 0
for (j in 1l:nvars) {
jgifi <- h$xGifi[[3j]1]1[[1]]
v[[j1] <- jgifi$transform
alljl] <- jgifi$weights
y[[j1] <- jgifi$scores
z[[j]] <- jgifi$quantifications
cy <- crossprod (y[[jl11)
if (glljl][[1]]8%active) {

dsum <- dsum + cy

nact <- nact + 1

}

dl[jl] <= cy

o[[j]] <- crossprod (h$x, v[[j11)
+
return (structure (

list (

transform = v,

rhat = corList (v),
objectscores = h$x,
scores =y,
quantifications = z,
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dmeasures = d,
lambda = dsum / nact,
weights = a,
loadings = o,
ntel = h$ntel,
f = h$f
),
class = "homals"
))
}
corals <-
function (data,
ftype = TRUE,

xknots = NULL,
yknots = NULL,
xdegree
ydegree
xordinal
yordinal
xties =

L]
I IIII
a2 e I
= e
[

s
yties S
Xmissing =
ymissing = "m"
xname = "X",

=]

yname = "Y",
ndim = 2,
itmax = 1000,
eps = le-6,
seed = 123,
verbose = FALS
if (ftype) {
Xy <- preCorals (as.
x <= xyl[, 1, drop =
y <= xyl[, 2, drop =
} else {
x <- datal, 1, drop
y <- datal, 2, drop
}
if (is.null(xknots))
xknots <- knotsD(x)
if (is.null(yknots))
yknots <- knotsD(y)
g <- makeGifi (

b

E) {

matrix(data))
FALSE]
FALSE]

FALSE]
FALSE]

APPENDIX A. CODE
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data = cbind (x, y),

knots = c(xknots, yknots),
degrees = c(xdegree, ydegree),
ordinal = c(xordinal, yordinal),
ties = c(xties, yties),

copies = c(ndim, ndim),

missing = c(xmissing, ymissing),
active = c(TRUE, TRUE),

names = c(xname, yname),

sets = c(1, 2)

5 o~

<- gifiEngine(

gifi = g,

ndim = ndim,

itmax = itmax,

eps = eps,

seed = seed,

verbose = verbose

)

xg <- h$xGifi[[1]1][[1]]

yg <- h$xGifi[[2]]1[[1]]

return (structure (

list(
burt = crossprod (cbind(gl[[1]][[1]]%basis, g[[2]][[1]]$basis)),
objectscores = h$x,
xtransform = postCorals (x, xg$transform),
ytransform = postCorals (y, yg$transform),
rhat = cor (cbind (xg$transform, yg$transform)),
xweights = xg$weights,
yweights = yg$weights,
xscores = postCorals (x, xg$scores),
yscores = postCorals (y, yg$scores),
xdmeasure = crossprod (xg$scores),
ydmeasure = crossprod (yg$scores),
xquantifications = xg$quantifications,
yquantifications = yg$quantifications,
xloadings = crossprod (xg$transform, h$x),
yloadings = crossprod (yg$transform, h$x),
lambda = (crossprod (xg$scores) + crossprod (yg$scores)) / 2,
ntel = h$ntel,
f = h$f

)2

class = "corals"

))
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}

coranals <- function () {

}

morals <-

function (x,

Yy,
xknots = knotsQ(x),
yknots = knotsQ(y),
xdegrees = 2,
ydegrees = 2,
xordinal = TRUE,
yordinal = TRUE,
xties = "g",
yties = "s",
xmissing = "m",
ymissing = "m",
xnames = colnames (x, do.NULL = FALSE),
ynames = "Y",
xactive = TRUE,
xcopies = 1,
itmax = 1000,
eps = le-6,
seed = 123,
verbose = FALSE) {

npred <- ncol (x)
nobs <- nrow (x)

xdegrees
xordinal
Xties <-
xmissing
xactive
xcopies
g <- mak
data =
knots
degree
ordina
sets =
copies
ties =
missin

<- reshape (xdegrees, npred)
<- reshape (xordinal, npred)
reshape (xties, npred)
<- reshape (xmissing, npred)
<- reshape (xactive, npred)
<- reshape (xcopies, npred)
eGifi (
cbind (x, y),
= ¢ (xknots, yknots),
s = c¢ (xdegrees, ydegrees),
1 = ¢ (xordinal, yordinal),
c (rep(1, npred), 2),
= ¢ (xcopies, 1),
c (xties, yties),
g = ¢ (xmissing, ymissing),
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active = ¢ (xactive, TRUE),
names = c¢ (xnames, ynames)

5o~

<- gifiEngine(
gifi = g,

ndim = 1,

itmax = itmax,
eps = eps,

seed = seed,
verbose = verbose

)

xhat <- matrix (0, nobs, 0)

for (j in 1:npred)

xhat <- cbind (xhat, h$xGifi[[1]][[jl]$transform)
yhat <- h$xGifi[[2]][[1]]$transform
rhat <- cor (cbind (xhat, yhat))
gqxy <- 1sRC(xhat, yhat)$solution

ypred <- xhat %*% qxy
yres <- yhat - ypred

smc <- sum (yhat * ypred)

return (structure (
list (
objscores = h$x,
xhat = xhat,

yhat = yhat,
rhat = rhat,
beta = gxy,

ypred = ypred,
yres = yres,

smc = smc,
ntel = h$ntel,
f = h$f
),
class = "morals"
))

}

princals <-
function (data,

knots = knotsQ (data),

degrees = 2,

ordinal TRUE,
copies = 1,
ndim = 2,
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ties = "g",
missing = "m",

names = colnames (data, do.NULL = FALSE),

active = TRUE,

itmax = 1000,
eps = le-6,
seed = 123,

verbose = FALSE) {
aname <- deparse (substitute (data))
nvars <- ncol (data)
nobs <- nrow (data)
g <- makeGifi (
data = data,
knots = knots,
degrees = reshape (degrees, nvars),
ordinal = reshape (ordinal, nvars),
sets = 1l:nvars,
copies = reshape (copies, nvars),
ties = reshape (ties, nvars),
missing = reshape (missing, nvars),
active = reshape (active, nvars),
names = names

=

<- gifiEngine(
gifi = g,

ndim = ndim,
itmax = itmax,
eps = eps,

seed = seed,
verbose = verbose

)

a<-v<-z<-d<-y<- o< as.list (1:nvars)

dsum <- matrix (0, ndim, ndim)
for (j in 1:nvars) {
jgifi <- h$xGifi[[3j]1]1[[1]]
v[[jl] <- jgifi$transform
all[jl] <- jgifi$weights
y[[j1] <- jgifi$scores
z[[j1] <- jgifi$quantifications
cy <- crossprod (y[[jl1)
dsum <- dsum + cy
dl[jl] <= cy
o[[j]l] <- crossprod (h$x, v[[jl1)

APPENDIX A.

CODE
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return (structure (
list (
transform = v,
rhat = corList (v),
objectscores = h$x,
scores =y,
quantifications = z,
dmeasures = d,
lambda = dsum / ncol (data),
weights = a,
loadings = o,
ntel = h$ntel,
f = h$f
),
class = "princals"
)
}

criminals <-
function (x,

Yy,
xknots = knotsQ(x),
yknots = knotsD(y),

xdegrees = 2,
ydegrees = -1,

xordinal = TRUE,
yordinal = FALSE,
xcopies = 1,
xties = "g",
yties = "s",
xmissing = "m",
ymissing = "m",

xactive = TRUE,
xnames = colnames (x, do.NULL

ynames = "Y",
ndim = 2,
itmax = 1000,
eps = le-6,
seed = 123,

verbose = FALSE) {
aname <- deparse (substitute (data))
npred <- ncol (x)
nobs <- nrow (x)
g <- makeGifi (

= FALSE),
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5 o~

)

X

APPENDIX A.

data = cbind (x, y),

knots = c(xknots, yknots),

degrees = ¢ (reshape (xdegrees, npred), ydegrees),

¢ (reshape (xordinal, npred), yordinal),

sets = c¢ (rep(1, npred), 2),

copies = c¢ (reshape (xcopies, npred), length (unique (y))),
ties = c (reshape (xties, npred), yties),

missing = c (reshape (xmissing, npred), ymissing),

active = c (reshape (xactive, npred), TRUE),

names = c(xnames, ynames)

ordinal

<- gifiEngine(
gifi = g,

ndim = ndim,
itmax = itmax,
eps = eps,

seed = seed,
verbose = verbose

<- matrix (0O, nobs, 0)

for (j in 1:npred)

e N HHhHEEHKROS T < A0 <

X <- cbind (x, h$xGifi[[1]] [[jl]$transform)

<- as.vector(y)
<- ifelse (outer (y, unique (y), "=="), 1, 0)
<- colSums (g)
<- crossprod (x)
<- crossprod (g, x)
<- crossprod (u, (1 / d) * u)
<- v -D>
<- eigen (v)
<- e$vectors
<- sqrt (abs (e$values))
<- ifelse (1 < 1le-7, 0, 1 / 1)
<- eigen (outer(l, 1) * crossprod (k, b %*}% k))
<- k %*%h (1 * f$vectors)
<= x %*h a
<- (1 / d) * crossprod (g, x)
return (structure (
list(
objectscores = h$x,
xhat = x,

loadings = a,
scores = z,
groupmeans = u,

CODE
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bwratios = f$values,
ntel = h$ntel,

f = h$f
),
class = "criminals"
))
}
canals <-
function (x,
Yy

xknots = knotsQ(x),
yknots = knotsQ(y),

xdegrees = rep(2, ncol(x)),
ydegrees = rep(2, ncol(y)),
xordinal = rep (TRUE, ncol (x)),
yordinal = rep (TRUE, ncol (y)),
xcopies = rep (1, ncol (x)),
ycopies = rep (1, ncol (y)),
ndim = 2,

itmax = 1000,

eps = le-6,

seed = 123,

verbose = FALSE) {
h <- gifiEngine(
data = cbind (x, y),
knots = c(xknots, yknots),
degrees = c(xdegrees, ydegrees),
ordinal = c(xordinal, yordinal),
sets = c(rep(1, ncol(x)), rep(2, ncol (y))),
copies = c(xcopies, ycopies),
ndim = ndim,
itmax = itmax,

eps = eps,
seed = seed,
verbose = verbose

<- h$h[, 1:sum(xcopies)]

<- h$h[, -(1:sum(xcopies))]
crossprod (x)

<- crossprod (y)

<- crossprod (x, y)

<- solve (chol (u))

<- solve (chol (v))

R VIR N < B R VI
N
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s <- crossprod (a, w %*% b)
r <- svd (s)

xw <= a %*) (r$u)

yw <= b %*) (r$v)

Xs <= x %*% xXw

ys <=y W¥h yw

x1l <- crossprod (x, xs)

yl <- crossprod (y, ys)
return (structure (

list(

xhat = x,

yhat =y,

rhat = cor (cbind (x, y)),
cancors = r$d,

xweights = xw,

yweights = yw,

Xscores = Xs,

yscores = ys,

xloadings = x1,
yloadings = yl1,
ntel = h$ntel,

f = h$f
),
class = "canals"
))
}
overals <-
function (data,
sets,
copies,

knots = knotsQ (data),
degrees = rep (2, ncol (data)),
ordinal = rep (TRUE, ncol (data)),

ndim = 2,
itmax = 1000,
eps = le-6,
seed = 123,

verbose = FALSE) {
h <- gifiEngine(
data = data,
knots = knots,
degrees = degrees,
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)

ordinal = ordinal,
sets = sets,
copies = copies,
ndim = ndim,

itmax = itmax,

eps = eps,

seed = seed,
verbose = verbose

xhat <- h$h

rhat <- cor (xhat)
a <- h$a

y <- xhat

for (j in 1:ncol(data)) {
k <- (1:ndim) + (j - 1) * ndim
y[, k] <- xhat[, k] %*} alk,]

}

return (structure (

))

by

list (
xhat = xhat,
rhat = rhat,

objscores = h$x,

quantifications =y,

ntel = h$ntel,
f = h$f
),

class = "overals"

primals <- function () {

}

addals <- function () {

pathals <- function () {

3
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A.1.7 Splines

bsplineBasis <- function (x, degree, innerknots, lowknot = min(x,innerknots), highknot =
innerknots <- unique (sort (innerknots))
knots <- c(rep(lowknot, degree + 1), innerknots, rep(highknot, degree + 1))
n <- length (x)
m <- length (innerknots) + 2 * (degree + 1)
nf <- length (innerknots) + degree + 1
basis <- rep (0, n * nf)
res <- .C("splinebasis", d = as.integer(degree),
n = as.integer(n), m = as.integer (m), x = as.double (x), knots = as.double (kn
basis <- matrix (res$basis, n, nf)
basis <- basis[,which(colSums(basis) > 0)]
return (basis)

knotsQ <- function (x, n = rep (5, ncol (x))) {
do <- function (i) {
y <- quantile (x[, i], probs = seq(0, 1, length = max (2, n[i])))
return (y[-c(1, length(y))])
}
lapply (1:ncol(x), function (i)
do (1))

knotsR <- function (x, n = rep (5, ncol (x))) {
do <- function (i) {
y <- seq (min(x[, i]), max(x[, i]), length = max (2, n[i]))
return (y[-c(1, length(y))])
}
lapply (1:ncol(x), function (i)
do (i))

knotsE <- function (x) {
lapply (1:ncol(x), function (i)
numeric(0))

knotsD <- function (x) {
do <- function (i) {
y <- sort (unique (x[, i]))
return (y[-c(1, length(y))])
}
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lapply (1:ncol(x), function (i)
do (i))

A.1.8 Gram-Schmidt

gsRC <- function (x, eps = 1e-10) {
n <- nrow (%)
m <- ncol (x)

h <-
.C(
"gsC",
x = as.double(x),
r = as.double (matrix (0, m, m)),
n = as.integer (n),
m = as.integer (m),

rank = as.integer (0),
pivot = as.integer (1:m),
eps = as.double (eps)
)
rank = h$rank
return (list (
q = matrix (h$x, n, m)[, 1l:rank, drop
r = matrix (h$r, m, m) [1:rank, , drop
rank = rank,
pivot = h$pivot

FALSE],
FALSE],

))

1sRC <- function (x, y, eps = 1le-10) {
n <- nrow (x)
<- ncol (x)
<- gsRC (x, eps)

<- h$rank

<- order (h$pivot)
1:1

<- h$q

<- h$r[, k, drop = FALSE]
<- h$r[, -k, drop = FALSE]
<- crossprod (q, y)

<- solve (a, u)
res <- drop (y - q %*% w)

o < PO RNT H BB
0
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s <- sum (res ~ 2)
b <- rbind(b, matrix (0, m - 1, ncol(y)))[p, , drop = FALSE]
if (1 ==m) {
e <- matrix(0, m, 1)
} else {
e <- rbind (-solve(a, v), diag(m - 1)) [p, , drop = FALSE]
}
return (list (
solution = b,
residuals = res,
minssq = S,
nullspace = e,
rank = 1,
pivot = p
))

nullRC <- function (x, eps = 1le-10) {
h <- gsRC (x, eps = eps)
rank <- h$rank
r <- h$r
m <- ncol (x)
t <- r[, l:rank, drop = FALSE]
s <- r[, -(1:rank), drop = FALSE]

if (rank == m)
return (matrix(0, m, 1))
else {

nullspace <- rbind (-solve(t, s), diag (m - rank)) [order(h$pivot), , drop = FALSE]
return (gsRC (nullspace)$q)
}
}

ginvRC <- function (x, eps = 1le-10) {
h <- gsRC (x, eps)
<- order (h$pivot)
h$q
<- h$r
<- crossprod (s, (solve (tcrossprod(s), t(q))))
return (z[p, , drop = FALSE])

N Qo T
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A.1.9

dyn.lo

amalgm
n <-
a <-

b <-
g <=
1f <
5J9

)

Cone regression
ad ("pava.so")
<- function (x, w = rep (1, length (x))) {
length (x)
rep (0, n)
rep (0, n)
rep (0, n)
ortran (
"AMALGM",

n = as.integer (n),
x = as.double (x),
w = as.double (w),
a = as.double (a),
b = as.double (b),
y = as.double (y),
tol = as.double(le-15),
ifault = as.integer(0)

return (1f$y)

by

isoton
func

e <-
tion (x,
Yy,

w = rep (1, length (x)),

ties = "s") {

there <- which (l!is.na (x))

notthere <- which (is.na (x))

xthere <- x[there]

f <- sort(unique(xthere))

g <- lapply(f, function (z)
which(x == z))

n <- length (x)

k <- length (f)

if (ties == "s") {
w <- sapply (g, length)

h <- lapply (g, function (z)

y[z])
m <- sapply (h, sum) / w
r <- amalgm (m, w)
s <- rep (0, n)
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for (i in 1:k)
slgllil]] <- rl[il
s[notthere] <- y[notthere]
}
if (ties == "p") {
h <- lapply (g, function (z)
y[z])
m <- rep (0, n)
s <- rep (0, n)
for (i in 1:k) {
ii <- order (h[[il])
gllil] <- gllil] [ii]
h[[il] <- h([[i]][ii]
}
m <- unlist (h)
r <- amalgm (m, w)
s[there] <- r[order (unlist (g))]
s[notthere] <- y[notthere]
}
if (ties == "t") {
w <- sapply (g, length)
h <- lapply (g, function (x)
y[x]1)
m <- sapply (h, sum) / w
r <- amalgm (m, w)
s <- rep (0, n)
for (i in 1:k)
slgllil]l] <- ylgllil]] + (r[i] - m[iD)
s[notthere] <- y[notthere]
}
return (s)

by

coneRegression <-
function (data,

target,

basis = matrix (data, length(data), 1),
type = nqn ,

ties = "g",

missing = "m",

itmax = 1000,
eps = le-6) {
itel <- 1
there <- which (!is.na (data))

APPENDIX A. CODE
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notthere <- which (is.na (data))
nmis <- length (notthere)
solution <- rep(0, length (data))
wdata <- data[there]
wtarget <- target[there]
wbasis <- basis [there, ]
if (type == "s") {
solution <- drop (basis %*}% 1sRC (basis, target)$solution)
}
if ((type == "c") && (missing != "a")) {
solution[there] <- isotone (x = wdata, y = wtarget, ties = ties)
if (amis > 0) {
if (missing == "m"
solution[notthere] <- target[notthere]
if (missing == "s")
solution[notthere] <- mean (target[notthere])
+
}
if ((type == "i") || ((type == "c") && (missing == "a"))) {
solution <-
dykstra (
target = target,
basis = basis,
data = data,
ties = ties,
itmax = itmax,
eps = eps

3

return (solution)

}

dykstra <- function (target, basis, data, ties, itmax, eps) {
x0 <- target
itel <- 1
a <- b <- rep (0, length (target))
fold <- Inf
repeat {
x1 <- drop (basis %*% 1sRC (basis, x0 - a)$solution)
a <-a+zx1l-x0
x2 <- isotone (data, x1 - b, ties = ties)
b <-b + x2 - x1
fnew <- sum ((target - (x1 + x2) / 2) = 2)
xdif <- max (abs (x1 - x2))
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if ((itel == itmax) || (xdif < eps))
break
itel <- itel + 1
x0 <- x2
fold <- fnew
}
return ((x1 + x2) / 2)

3

A.1.10 Coding

dyn.load("coding.so")

decode <- function(cell, dims) {
if (length(cell) != length(dims)) {
stop("Dimension error")
}
if (any(cell > dims) || any (cell < 1)) {
stop("No such cell")
}
.Call("DECODE", as.integer(cell), as.integer(dims))
}

encode <- function(ind, dims) {
if (length(ind) > 1) {
stop ("Dimension error")
}
if ((ind < 1) || (ind > prod(dims))) {
stop ("No such cell")
}
.Call("ENCODE", as.integer(ind), as.integer(dims))
}

A.1.11 Utilities

makeNumeric <- function (x) {
do <- function (y) {
u <- unique (y)
return (drop (ifelse (outer (y, u, "=="), 1, 0) %*% (1:length (u))))
}
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if (is.vector (x)) {
return (do (x))
}
else {
return (apply (x, 2, do))
}
}

center <- function (x) {
do <- function (z) {
z - mean (z)
}
if (is.matrix (x))
return (apply (x, 2, do))
else
return (do (x))

normalize <- function (x) {
do <- function (z) {
z / sqrt (sum (z ~ 2))
}
if (is.matrix (x))
return (apply (x, 2, do))
else
return (do (x))

makeMissing <- function (data, basis, missing) {
there <- which (!is.na (data))
notthere <- which (is.na (data))
nmis <- length (notthere)
nobs <- length (data)
ndim <- ncol (basis)
if (missing == "m") {
abasis <- matrix (0, nobs, ndim + nmis)
abasis [there, 1:ndim] <- basis
abasis [notthere, ndim + 1:nmis] <- diag(nmis)
basis <- abasis
}
if (missing == "a") {
abasis <- matrix (0, nobs, ndim)
abasis [there,] <- basis
abasis [notthere,] <- 1 / ndim
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basis <- abasis

}

if (missing == "s") {
abasis <- matrix (0, nobs, ndim + 1)
abasis [there, 1:ndim] <- basis
abasis [notthere, ndim + 1] <- 1
basis <- abasis

by

return (basis)

b

makeIndicator <- function (x) {
return (as.matrix(ifelse(outer(
X, sort(unique(x)), "=="
), 1, 0)))
}

reshape <- function (x, n) {
if (length (x) == 1)
return (rep (x, n))
else
return (x)

aline <- function (a) {
abline (0, a[2] / al1])

aperp <- function (a, x) {
abline (x * (sum (a ~ 2) / a[2]),-al1] / al2])
}

aproj <- function (a, h, x) {
mu <- (h - sum (a * x)) / (sum (a ~ 2))
return (x + mu * a)

b

stepPlotter <- function (x, y, knots, xlab) {
y <- as.matrix (y)

plot (x,
yL, 11,
type - ||nu’
xlab = xlab,

ylab = "Transform")
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nknots <- length (knots)
knots <- c(min(x) - 1, knots, max(x) + 1)
for (i in 1:(nknots + 1)) {
ind <- which ((x >= knots [i]) & (x < knots[i + 1]))
lev <- median (y [ind, 1])
lines (rbind (c(knots[i], lev), c (knots[i + 1], lev)), col = "RED", lwd = 3)
if (ncol (y) == 2) {
lev <- median (y [ind, 2])
lines (rbind (c(knots[i], lev), c (knots[i + 1], lev)), col = "BLUE", lwd = 3)
}

}
}
starPlotter <- function (x, y, main = "") {
plot (
X,
xlab = "dimension 1",
ylab = "dimension 2",
col = "RED",
cex = .5,
main = main
)
points(y, col = "BLUE", cex = .5)
for (i in 1:nrow(x))
lines (rbind (x[i, ], yl[i, 1))
}

regressionPlotter <-
function (table,

X,
Yy,
xname "Columns",
yname = "Rows",
main = "",
lines = TRUE,
cex = 1.0,
ticks = "n") {

if (ticks != "n") {

ticks <- NULL

}

nr <- nrow (table)

nc <- ncol (table)

sr <- rowSums (table)

sc <- colSums (table)
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rc <- sum (table)
X <- x - sum (sr * x) / rc
y <—y - sum (sc * y) / rc
x <- x / sqrt (sum (sr * (x = 2)) / rc)
y <=y / sqrt (sum (sc * (y = 2)) / rc)
ar <- drop ((table %*% y) / sr)
ac <- drop ((x %*) table) / sc)
plot (

0,

xlim = ¢ (min(y), max(y)),

ylim = ¢ (min(x), max(x)),

xlab = xname,

ylab = yname,

main = main,

xaxt = ticks,

yaxt = ticks,

type = "n"
)
if (lines) {

for (i in 1:nr)

abline (h = x[i])
for (j in 1:nc)
abline (v = y[jl)

}
for (i in 1:nr) {
for (j in 1:nc) {
text(y[jl,
x[nr - i + 1],
as.character(table[i, jl),
cex = cex,
col = "RED")
+
}
lines (y, ac, col = "BLUE")
lines (ar, x, col "BLUE")
+

corList <- function (x) {
m <- length (x)
n <- nrow (x[[1]])
h <- matrix (0, n, 0)
for (i in 1:m) {
h <- cbind (h, x[[i]])
}
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return (cor (h))

b

preCorals <- function (x) {

n <- sum (x)

r <- nrow (x)

s <- ncol (x)

v <- numeric (0)

for (i in 1:r)

for (j in 1:s)
v <= c(v, rep(c(i, j), x[i, j1))

return (matrix (v, n, 2, byrow = TRUE))

}

postCorals <- function (ff, x) {
y <- matrix(0, max(ff), ncol (x))
for (i in 1:nrow (x))
y[££[i],] <- x[i,]
return (y)

}

preCoranals <- function (x, y) {
n <- sum (x)

m <- ncol (y)
r <- nrow (x)
s <- ncol (x)
v <- numeric (0)

for (i in 1:r)
for (j in 1:s)
v <= c(v, rep(c(yli,], j), x[i, j1))
return (matrix (v, n, m + 1, byrow = TRUE))

}

mprint <- function (x, d = 2, w = 5) {
print (noquote (formatC (
x, di =d, wi=w, fo = "f"
)))
}

burtTable <- function (gifi) {
nsets <- length (gifi)
nobs <- length(gifi[[1]] [[1]]$data)
hh <- matrix (0O, nobs, 0)
hl <- list O
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for (i in 1:nsets) {
gifiSet <- gifil[[il]
nvars <- length (gifiSet)
hi <- matrix(0, nobs, 0)
for (j in 1:nvars) {
gifiVariable <- gifiSet[[j]]
hi <- cbind (hi, gifiVariable$basis)
}
hl <- ¢ (hl, list (crossprod (hi)))
hh <- cbind (hh, hi)
}
return (list (cc = crossprod (hh), dd = directSum (hl)))
}

interactiveCoding <- function (data) {
cmin <- apply (data, 2, min)
cmax <- apply (data, 2, max)
if (lall(cmin == 1))
stop ("data must be start at 1")
nobs <- nrow(data)
h <- numeric(0)
for (i in 1:nobs)
h <- c(h, decode (datali, ], cmax))
return (h)

makeColumnProduct <- function (x) {
makeTwoColumnProduct <- function (a, b) {
n <- nrow (a)
ma <- ncol (a)
mb <- ncol (b)
ab <- matrix (0, n, ma * mb)
k <- 1
for (i in 1:ma) {
for (j in 1:mb) {
abl[, k] <- al[, il * b[, j]
k <-k +1
+
}
return (ab)
+
if (lis.list(x)) {
x <- list (x)

3
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m <- length (x)
z <- matrix (1, nrow(x[[1]]), 1)
for (k in 1:m)
z <- makeTwoColumnProduct (z, x[[k]])
return (z)

profileFrequencies <- function (data) {
h <- interactiveCoding (data)
cmax <- apply (data, 2, max)
<- unique (h)
<- length (u)
<- ifelse (outer (h, u, "=="), 1, 0)
<- colSums (g)
<- matrix (0, m, ncol (data))
for (j in 1:m)
h[j, ] <- encode (uljl, cmax)
return (list (h = h, n = n))

5 BMR B e

directSum <- function (x) {
m <- length (x)
nr <- sum (sapply (x, nrow))
nc <- sum (sapply (x, ncol))
z <- matrix (0, nr, nc)
kr <- 0
kc <- 0
for (i in 1:m) {
ir <- nrow (x[[i]])
ic <- ncol (x[[il])
zlkr + (1:ir), kc + (1:ic)] <- x[[i]l]
kr <- kr + ir
kc <- kc + ic
+

return (z)
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A.2 C Code

A.2.1 Splines

double bs (int nknots, int nspline, int degree, double x, double * knots);
int mindex (int i, int j, int nrow);

void splinebasis (int *d, int *n, int *m, double * x, double * knots, double * basis) {
int mm = *m, dd = *d, nn = *n;
int k=mm -dd - 1, i , j, ir, jr;
for (i = 0; i < nn; i++) {
ir =1 + 1;

if (x[i] == knots[mm - 1]) {
basis [mindex (ir, k, nn) - 1] = 1.0;
for (j =0; j < (k-1; j+) {
jr=3+1;
basis [mindex (ir, jr, nn) - 1] = 0.0;
}
} else {
for (j =0; j <k ; j++) {
jr=3+1;
basis [mindex (ir, jr, nn) - 1] = bs (mm, jr, dd + 1, x[i], knots);
}

int mindex (int i, int j, int nrow) {
return (j - 1) * nrow + ij;

}

double bs (int nknots, int nspline, int updegree, double x, double * knots) {
double y, yl, y2, templ, temp2;
if (updegree == 1) {
if ((x >= knots[nspline - 1]) && (x < knots[nspline]))

y = 1.0;
else
y =0.0;
}
else {
templ = 0.0;

if ((knots[nspline + updegree - 2] - knots[nspline - 1]) > 0)
templ = (x - knots[nspline - 1]) / (knots[nspline + updegree - 2] - knots[ns
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temp2 = 0.0;
if ((knots[nspline + updegree - 1] - knots[nspline]) > 0)
temp2 = (knots[nspline + updegree - 1] - x) / (knots[nspline + updegree - 1]
y1l = bs(nknots, nspline, updegree - 1, x, knots);
y2 = bs(nknots, nspline + 1, updegree - 1, x, knots);
y = templ * yl + temp2 * y2;
}

return y;

A.2.2 Gram-Schmidt

#include <math.h>
#define MINDEX(i, j, n) (((j)-1) * (n) + (i)-1)
void gsC(double *, double *, int *, int *, int *, int *, double *);

void gsC(double *x, double *r, int *n, int *m, int *rank, int *pivot,
double *eps) {
int i, j, ip, nn = *n, mm = *m, rk = *m, jwork = 1;
double s = 0.0, p;
for (j = 1; j <= mm; j++) {
pivot[j - 1] = j;
}
while (jwork <= rk) {
for (j = 1; j < jwork; j++) {
s = 0.0;
for (i = 1; i <= nn; i++) {
s += x[MINDEX(i, jwork, nn)] * x[MINDEX(i, j, nn)];
+
r [MINDEX(j, jwork, mm)] = s;
for (i = 1; i <= nn; i++) {
x [MINDEX(i, jwork, nn)] -= s * x[MINDEX(i, j, nn)];
+
}
s = 0.0;
for (i = 1; i <= nn; i++) {
s += x[MINDEX(i, jwork, nn)] * x[MINDEX(i, jwork, nn)];
}
if (s > xeps) {
s = sqrt(s);
r [MINDEX (jwork, jwork, mm)] = s;
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for (i = 1; i <= nn; i++) {
x [MINDEX (i, jwork, nn)] /= s;
}
jwork += 1;
}
if (s <= *eps) {
ip = pivot [rk - 1];
pivot[rk - 1] = pivot[jwork - 1];
pivot [jwork - 1] = ip;
for (i = 1; i <= nn; i++) {
p = x[MINDEX(i, rk, nn)];
x [MINDEX(i, rk, nn)] = x[MINDEX(i, jwork, nn)];
x [MINDEX (i, jwork, nn)] = p;
}
for (j = 1; j <= mm; j++) {
p = r[MINDEX(j, rk, mm)];
r [MINDEX(j, rk, mm)] = r[MINDEX(j, jwork, mm)];
r [MINDEX(j, jwork, mm)] = p;

A.2.3 Coding

#include <R.h>
#include <Rinternals.h>

SEXP DECODE( SEXP, SEXP );
SEXP ENCODE( SEXP, SEXP );

SEXP
DECODE( SEXP cell, SEXP dims )
{
int aux = 1, n = length(dims);
SEXP ind;

PROTECT( ind = allocVector( INTSXP, 1 ) );

INTEGER( ind ) [0] = 1;

for( int i = 0; i < n; i++ ) {
INTEGER( ind ) [0] += aux * ( INTEGER( cell )[i] - 1 );
aux *= INTEGER(dims) [i];
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}

SEXP

C CODE

}
UNPROTECT( 1 );
return (ind);

ENCODE( SEXP ind, SEXP dims )

{

int n = length(dims), aux = INTEGER(ind) [0], pdim

SEXP cell;

PROTECT( cell = allocVector( INTSXP, n ) );

for (int 1 = 0; 1 < n - 1; i++ )
pdim *= INTEGER( dims ) [i];

for (int i =n -1; i > 0; i-- ){
INTEGER( cell )[i] = (aux - 1 ) / pdim;
aux -= pdim * INTEGER( cell ) [i];
pdim /= INTEGER( dims )[i - 1];
INTEGER( cell )[i] += 1;

}

INTEGER( cell )[0] = aux;

UNPROTECT( 1 );

return cell;

L5
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Appendix B

NEWS

001 04/05/16
o started the whole thing
002 04/12/16

 inserted display code

o finished GALO example in MCA chapter
o figured out multiple ordinal

o added empty addals function and chapter
» started caching computations

e added empty introductory chapter

003 04/12/16

 added preface and introduction (partial)
o added cover photo

004 04/13/16

o added text to preface
« gifiEngine() now returns QR decompositions of the bases
o added acknowledgements to preface

005 04/14/16

« small corrections

 refactoring main code

 putting in missing data (4 options)

 putting in monotone regression (3 options for ties)

006 04,/16/16

 completely rewritten R engine (does not work yet)
« new code in last chapter (does not work yet)
 rational treatment of regression and missing data
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o currently cone/subspace regression uses Dykstra algorithm

o a Gifi is a list of gifiSets, a gifiSet is a list of gifiVariables

« a gifiVariable stores the things that stay the same during computation
o an xGifi is a list of xGifiSets, an xGifiSet is a list of xGifiVariables

« an xGifiVariable stores the things that change during computation

007 04/17/16

» more code refactoring
« new code (in appendices) still does not work properly
e old code still used in body of paper for computations

008 04/18/16

o corrected some serious bugs, new gifiEngine() code now runs
« missing data handling still needs work

009 04/18/16

o fixed the homals() wrapper

 added corList() utility

 added starPlotter() utility

o eval = FALSE for wrapper examples that do not work yet
o added section on structures

o cached some computations

o readied the MCA section with new software

010 04/19/16

 fixed the corals wrapper

« added utilities preCorals() and preCoranals
« many small changes

« added CA text

o added empty section on CCA
011 04/21/16

« small edits

 added some preface/introduction

e corals example

 missing data section (as yet empty)

012 04/22/16

e something on missing data
« added to todo list
« more in preface/introduction

013 04/22/16

o added active slot to variables
» preparing to add aspect engine
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o start merging old and new loss functions
014 04/24/16

« utilities for Burt table, profile frequencies, and interactive coding
« include decode and encode in C/R

» gifiEngine takes an object of class gifi as argument

e homals wrapper builds an object of class gifi

» added data weights parameter (does not do anything yet)

015 04/27/16

e changes to correctly handle missing data
o small edits
o simplified notation

016 04/30/16

« additions to intro and history
017 05/02/16

 active and passive variables handling
018 05/03/16

o split gifi.R from gifiEngine.R

» gifiEngine.R just takes a gifi argument, no longer data argument
o split off gifiTransform() from gifiEngine()

« split off dykstra() from coneRegression()

« more on copies and interactive coding

 included updated code in index.Rnw

019 05/04/16

o fixed morals(), but needs some testing

 modified isotone() so that only non-missing data are constrained to be monotone
« adapted coneRegression() to isotone() with missing data

« fixed active/passive variables

« included code for aspectEngine() — not used yet

020 05/05/16

« implemented missing data “average” using dykstra
e repaired princals wrapper
o repaired NLPCA chapter

021 05/05/16

e repaired criminals() wrapper
» repaired CDA chapter

022 05,/06/16
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 added makeColumnProduct() utility
« small example in missing data section

023 05/07/16

« expanded correspondence analysis chapter
o added Glass example

024 05/08/16

o added regressionPlotter() utility
» added regression plots to OCA chapter

025 05/09/16

« small improvement in makelndicator()

o added burt table to corals output

« improved and explained plots in Glass example

« incorporated preCorals() in corals()

o added postCorals() utility

o filled in Galton example

« modified corals() to accept either tables or bivariables
» modified gifiEngine() to do at least two iterations

026 05/10/16

e put in latest code
« worked on preface and introduction

027 05/12/16

o added loss function history
028 05/18/16

» started change to linear systems loss
029 05/19/16

e introduced orthoblocks
e described MVAOS loss

030 05/20/16

o« MVAOS system examples
 Gifi loss as special case
e more on orthoblocks

031 05/21/16
e More on Gifi loss
032 05/25/16

« makePattern() function

NEWS
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e majorization algorithm
033 05/30/16

o rewriting core code — will take a while

e going to aspects completely

» writing out blocks and Gifi

» engine transfors variables and calls pattern subroutine
« pattern subroutines make aspect gradients

» changed title

034 06/04/16

o edits, working the core code
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Appendix C

TO DO

« make gifi R package

o class-specific plot, print, summary routines
 include aspect engine

o get rid of dykstra
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Appendix D

Acronyms

e« MLR — Multivariate Linear Regression

o SEM - Structural Equation Modeling

o MDS — Multidimensional Scaling

o EFA — Exploratory Factor Analysis

o CFA — Confirmatory Factor Analysis

e RRR — Reduced Rank Regression

o MCA — Multiple Correspondence Analysis

o PCA — Principal Component Analysis

o CA - Correspondence Analysis

o CCA — Canonical Correspondence Analysis

o MDA — Multiple Discriminant Analysis

e MVA — Multivariate Analysis

o MVAOS — Multivariate Analysis with Optimal Scaling
o CCA - Canonical Correlation Analysis

o GCCA - Generalized Canonical Correlation Analysis
e« RA — Redundancy Analysis

o MIMIC — Multiple Indicator Multiple Cause

o PA — Path Analysis

o ACE — Alternating Conditional Expectations

o ALS — Alternating Least Squares

e OS - Optimal Scaling

o ALSOS — Alternating Least Squares with Optimal Scaling
« MM - Majorization/Minimization or Minorization/Maximization
« EM - Expectation/Maximization

o ANOVA - Analysis of Variance

e SSQ — Sum of Squares

143



144 APPENDIX D. ACRONYMS



Appendix E

Key Names and Symbols
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