A Minimal Book Example
2020-10-05
Chapter 1 Prerequisites
This is a sample book written in Markdown. You can use anything that Pandoc’s Markdown supports, e.g., a math equation \(a^2 + b^2 = c^2\).
The bookdown package can be installed from CRAN or Github:
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading #
.
To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.org/tinytex/.
title: “202AIE31 HW1” output: word_document: default html_document: default —Sorry, Google periodically requires an additional confirmation. Please try again.
## # A tibble: 234 x 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
## 1 audi a4 1.8 1999 4 auto(l~ f 18 29 p comp~
## 2 audi a4 1.8 1999 4 manual~ f 21 29 p comp~
## 3 audi a4 2 2008 4 manual~ f 20 31 p comp~
## 4 audi a4 2 2008 4 auto(a~ f 21 30 p comp~
## 5 audi a4 2.8 1999 6 auto(l~ f 16 26 p comp~
## 6 audi a4 2.8 1999 6 manual~ f 18 26 p comp~
## 7 audi a4 3.1 2008 6 auto(a~ f 18 27 p comp~
## 8 audi a4 quat~ 1.8 1999 4 manual~ 4 18 26 p comp~
## 9 audi a4 quat~ 1.8 1999 4 auto(l~ 4 16 25 p comp~
## 10 audi a4 quat~ 2 2008 4 manual~ 4 20 28 p comp~
## # ... with 224 more rows
ggplot(data = mpg, aes(x = hwy, fill = drv))+
geom_histogram(alpha = 0.5)+
labs(title = "Histogram",
subtitle = "Histogram of Highway Mile Per Gallon",
caption = "Source: mpg",
x = "hwy",
y = "count")+
theme_minimal()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(data = mpg, aes(x = hwy, fill = drv))+
geom_histogram(alpha = 0.5)+
labs(title = "Histogram using facet_grid()",
subtitle = "Histogram of Highway Mile Per Gallon",
caption = "Source: mpg",
x = "hwy",
y = "count")+
theme_minimal()+
facet_grid(drv~.)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## # A tibble: 437 x 28
## PID county state area poptotal popdensity popwhite popblack popamerindian
## <int> <chr> <chr> <dbl> <int> <dbl> <int> <int> <int>
## 1 561 ADAMS IL 0.052 66090 1271. 63917 1702 98
## 2 562 ALEXA~ IL 0.014 10626 759 7054 3496 19
## 3 563 BOND IL 0.022 14991 681. 14477 429 35
## 4 564 BOONE IL 0.017 30806 1812. 29344 127 46
## 5 565 BROWN IL 0.018 5836 324. 5264 547 14
## 6 566 BUREAU IL 0.05 35688 714. 35157 50 65
## 7 567 CALHO~ IL 0.017 5322 313. 5298 1 8
## 8 568 CARRO~ IL 0.027 16805 622. 16519 111 30
## 9 569 CASS IL 0.024 13437 560. 13384 16 8
## 10 570 CHAMP~ IL 0.058 173025 2983. 146506 16559 331
## # ... with 427 more rows, and 19 more variables: popasian <int>,
## # popother <int>, percwhite <dbl>, percblack <dbl>, percamerindan <dbl>,
## # percasian <dbl>, percother <dbl>, popadults <int>, perchsd <dbl>,
## # percollege <dbl>, percprof <dbl>, poppovertyknown <int>,
## # percpovertyknown <dbl>, percbelowpoverty <dbl>, percchildbelowpovert <dbl>,
## # percadultpoverty <dbl>, percelderlypoverty <dbl>, inmetro <int>,
## # category <chr>
ggplot(data = midwest, aes(x = area, y = poptotal))+
scale_x_continuous(limits = c(0,0.1))+
scale_y_continuous(limits = c(0,500000))+
geom_point(aes(color = state, size = popdensity), alpha = 0.4)+
geom_smooth(se = FALSE)+
labs(title = "Scatterplot",
subtitle = "Area Vs Population",
caption = "Source: midwest",
x = "Area",
y = "Population",
options(scipen=999))+
theme_classic()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## Warning: Removed 15 rows containing non-finite values (stat_smooth).
## Warning: Removed 15 rows containing missing values (geom_point).
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point(aes(color=drv)) + geom_smooth(method="lm") +
labs(title ="MPG vs Engine size", x = "Engine size", y = "MPG")
## `geom_smooth()` using formula 'y ~ x'
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width))+
geom_point(aes(color = Species, shape = Species), alpha = 0.5, size = 6)+
labs(title = "Scatterplot",
subtitle = "Sepal.Length Vs Sepal.Width",
caption = "Source: iris",
x = "Sepal.Length",
y = "Sepal.Width",
options(scippen=999))+
theme_minimal()
ggplot(data = heightweight, aes(x = heightIn, y = weightLb))+
geom_point(aes(color = sex), alpha = 0.5, size = 3)+
geom_smooth(aes(color = sex), method = lm, se = FALSE)+
labs(title = "Scatterplot",
subtitle = "Weight Vs Hight",
caption = "Source: heightweight",
x = "heightIn",
y = "weightLb")+
theme_classic()
## `geom_smooth()` using formula 'y ~ x'
ggplot(data = mpg, aes(x = manufacturer, fill = class))+
geom_bar(width = 0.5)+
labs(title = "Barplot",
subtitle = "Manufacturer across Vehicle Classes",
caption = "Source: mpg",
x = "manufacturer",
y = "count")+
theme_minimal()+
theme(axis.text.x=element_text(angle=65, hjust=1))+
scale_fill_brewer(palette = 'Spectral')