Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., … Iannone, R. (2020). rmarkdown: Dynamic documents for R. Retrieved from

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17–21.

Bache, S. M., & Wickham, H. (2014). magrittr: A forward-pipe operator for R. Retrieved from

Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2(2), 131–160.

Bertin, J. (2011). Semiology of graphics: Diagrams, networks, maps (Vol. 1). ESRI Press.

Breiman, L., & others. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199–231.

Brewer, C. (2019). ColorBrewer 2.0: Color advice for cartography. Retrieved from

Cairo, A. (2012). The functional art: An introduction to information graphics and visualization. Berkeley CA: New Riders.

Cairo, A. (2016). The truthful art: Data, charts, and maps for communication. Berkeley CA: New Riders.

Crameri, F. (2018). Scientific colour-maps. Zenodo.

Donoho, D. (2017). 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745–766. Retrieved from

Dowle, M., & Srinivasan, A. (2019). data.table: Extension of ‘data.frame‘. Retrieved from

Garnier, S. (2018a). viridis: Default color maps from ’matplotlib’. Retrieved from

Garnier, S. (2018b). viridisLite: Default color maps from ’matplotlib’ (lite version). Retrieved from

Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33(5), 587–606.

Henry, L., & Wickham, H. (2019). purrr: Functional programming tools. Retrieved from

Ihaka, R., Murrell, P., Hornik, K., Fisher, J. C., Stauffer, R., Wilke, C. O., … Zeileis, A. (2019). colorspace: A toolbox for manipulating and assessing colors and palettes. Retrieved from

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111.

Locke, S., & D’Agostino McGowan, L. (2018). datasauRus: Datasets from the datasaurus dozen. Retrieved from

Matejka, J., & Fitzmaurice, G. (2017). Same stats, different graphs: Generating datasets with varied appearance and identical statistics through simulated annealing. Proceedings of the 2017 CHI conference on human factors in computing systems, 1290–1294.

Müller, K. (2017). here: A simpler way to find your files. Retrieved from

Müller, K. (2020). hms: pretty time of day. Retrieved from

Müller, K., & Wickham, H. (2019). tibble: Simple data frames. Retrieved from

Neth, H. (2019). ds4psy: Data science for psychologists. Retrieved from

Neth, H., & Gradwohl, N. (2019). unikn: Graphical elements of the University of Konstanz’s corporate design. Retrieved from

Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes. Retrieved from

Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5(2), 241–301.

Okabe, M., & Ito, K. (2008). Color universal design (CUD): How to make figures and presentations that are friendly to colorblind people. J*Fly: Data Depository for Drosophila Researchers. Retrieved from

Phillips, N. (2017). yarrr: A companion to the e-book “yarrr!: The pirate’s guide to R”. Retrieved from

R Core Team. (2019). R: A language and environment for statistical computing. Retrieved from

Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.

Seligman, M. E., Steen, T. A., Park, N., & Peterson, C. (2005). Positive psychology progress: Empirical validation of interventions. American Psychologist, 60(5), 410.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366.

Simmons, J., Nelson, L., & Simonsohn, U. (2014). Data from paper “False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant”. Journal of Open Psychology Data, 2(1).

Spinu, V., Grolemund, G., & Wickham, H. (2018). lubridate: Make dealing with dates a little easier. Retrieved from

Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, CT: Graphics Press.

Tufte, E. R. (2006). Beautiful evidence (Vol. 1). Cheshire, CT: Graphics Press.

Tufte, E. R., Goeler, N. H., & Benson, R. (1990). Envisioning information (Vol. 126). Cheshire, CT: Graphics Press.

Tukey, J. W. (1969). Analyzing data: Sanctification or detective work. American Psychologist, 2, 83–91.

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25. Retrieved from

Wickham, H. (2014a). Advanced R (1st ed.). Retrieved from

Wickham, H. (2014b). Tidy data. Journal of Statistical Software, 59(10), 1–23.

Wickham, H. (2015). R packages: Organize, test, document, and share your code. Retrieved from

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Retrieved from

Wickham, H. (2017). tidyverse: Easily install and load the ’tidyverse’. Retrieved from

Wickham, H. (2019). stringr: Simple, consistent wrappers for common string operations. Retrieved from

Wickham, H., & Grolemund, G. (2017). R for data science: Import, tidy, transform, visualize, and model data. Retrieved from

Wickham, H., & Henry, L. (2020). tidyr: Easily tidy data with ’spread()’ and ’gather()’ functions. Retrieved from

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., … Yutani, H. (2019a). ggplot2: Create elegant data visualisations using the grammar of graphics. Retrieved from

Wickham, H., François, R., Henry, L., & Müller, K. (2019b). dplyr: A grammar of data manipulation. Retrieved from

Wickham, H., Hester, J., & Francois, R. (2018). readr: Read rectangular text data. Retrieved from

Wilkinson, L. (2005). The grammar of graphics (2nd edition). Springer.

Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2017). Web-based positive psychology interventions: A reexamination of effectiveness. Journal of Clinical Psychology, 73(3), 218–232.

Woodworth, R. J., O’Brien-Malone, A., Diamond, M. R., & Schüz, B. (2018). Data from “Web-based positive psychology interventions: A reexamination of effectiveness”. Journal of Open Psychology Data, 6(1).

Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Retrieved from

Xie, Y. (2019). bookdown: Authoring books and technical documents with R Markdown. Retrieved from

Xie, Y. (2020). knitr: A general-purpose package for dynamic report generation in R. Retrieved from

Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R Markdown: The definitive guide. Retrieved from

Yau, N. (2011). Visualize this: The FlowingData guide to design, visualization, and statistics. Hoboken, NJ: John Wiley & Sons.

Yau, N. (2013). Data points: Visualization that means something. Hoboken, NJ: John Wiley & Sons.