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Welcome

This website us the ggplot visulization sections of Hadley Wickham’s book 2nd edition of “R
for Data Science”.
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1 Data visualization

1.1 Introduction

“The simple graph has brought more information to the data analyst’s mind than
any other device.” — John Tukey

R has several systems for making graphs, but ggplot2 is one of the most elegant and most
versatile. ggplot2 implements the grammar of graphics, a coherent system for describing
and building graphs. With ggplot2, you can do more and faster by learning one system and
applying it in many places.

This chapter will teach you how to visualize your data using ggplot2. We will start by creat-
ing a simple scatterplot and use that to introduce aesthetic mappings and geometric objects –
the fundamental building blocks of ggplot2. We will then walk you through visualizing distri-
butions of single variables as well as visualizing relationships between two or more variables.
We’ll finish off with saving your plots and troubleshooting tips.

1.1.1 Prerequisites

This chapter focuses on ggplot2, one of the core packages in the tidyverse. To access the
datasets, help pages, and functions used in this chapter, load the tidyverse by running:

library(tidyverse)
#> -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
#> v dplyr 1.1.3 v readr 2.1.4
#> v forcats 1.0.0 v stringr 1.5.1
#> v ggplot2 3.4.4 v tibble 3.2.1
#> v lubridate 1.9.3 v tidyr 1.3.0
#> v purrr 1.0.2
#> -- Conflicts ------------------------------------------ tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
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That one line of code loads the core tidyverse; the packages that you will use in almost every
data analysis. It also tells you which functions from the tidyverse conflict with functions in
base R (or from other packages you might have loaded)1.

If you run this code and get the error message there is no package called 'tidyverse',
you’ll need to first install it, then run library() once again.

install.packages("tidyverse")
library(tidyverse)

You only need to install a package once, but you need to load it every time you start a new
session.

In addition to tidyverse, we will also use the palmerpenguins package, which includes the
penguins dataset containing body measurements for penguins on three islands in the Palmer
Archipelago, and the ggthemes package, which offers a colorblind safe color palette.

library(palmerpenguins)
library(ggthemes)

1.2 First steps

Do penguins with longer flippers weigh more or less than penguins with shorter flippers?
You probably already have an answer, but try to make your answer precise. What does the
relationship between flipper length and body mass look like? Is it positive? Negative? Linear?
Nonlinear? Does the relationship vary by the species of the penguin? How about by the
island where the penguin lives? Let’s create visualizations that we can use to answer these
questions.

1.2.1 The penguins data frame

You can test your answers to those questions with the penguins data frame found in palmer-
penguins (a.k.a. palmerpenguins::penguins). A data frame is a rectangular collection of
variables (in the columns) and observations (in the rows). penguins contains 344 observa-
tions collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica
LTER2.

1You can eliminate that message and force conflict resolution to happen on demand by using the conflicted
package, which becomes more important as you load more packages. You can learn more about conflicted
at https://conflicted.r-lib.org.

2Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R
package version 0.1.0. https://allisonhorst.github.io/palmerpenguins/. doi: 10.5281/zenodo.3960218.
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To make the discussion easier, let’s define some terms:

• A variable is a quantity, quality, or property that you can measure.

• A value is the state of a variable when you measure it. The value of a variable may
change from measurement to measurement.

• An observation is a set of measurements made under similar conditions (you usually
make all of the measurements in an observation at the same time and on the same object).
An observation will contain several values, each associated with a different variable. We’ll
sometimes refer to an observation as a data point.

• Tabular data is a set of values, each associated with a variable and an observation.
Tabular data is tidy if each value is placed in its own “cell”, each variable in its own
column, and each observation in its own row.

In this context, a variable refers to an attribute of all the penguins, and an observation refers
to all the attributes of a single penguin.

Type the name of the data frame in the console and R will print a preview of its contents.
Note that it says tibble on top of this preview. In the tidyverse, we use special data frames
called tibbles that you will learn more about soon.

penguins
#> # A tibble: 344 x 8
#> species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
#> <fct> <fct> <dbl> <dbl> <int> <int>
#> 1 Adelie Torgersen 39.1 18.7 181 3750
#> 2 Adelie Torgersen 39.5 17.4 186 3800
#> 3 Adelie Torgersen 40.3 18 195 3250
#> 4 Adelie Torgersen NA NA NA NA
#> 5 Adelie Torgersen 36.7 19.3 193 3450
#> 6 Adelie Torgersen 39.3 20.6 190 3650
#> 7 Adelie Torgersen 38.9 17.8 181 3625
#> 8 Adelie Torgersen 39.2 19.6 195 4675
#> 9 Adelie Torgersen 34.1 18.1 193 3475
#> 10 Adelie Torgersen 42 20.2 190 4250
#> # i 334 more rows
#> # i 2 more variables: sex <fct>, year <int>

This data frame contains 8 columns. For an alternative view, where you can see all variables
and the first few observations of each variable, use glimpse(). Or, if you’re in RStudio, run
View(penguins) to open an interactive data viewer.
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glimpse(penguins)
#> Rows: 344
#> Columns: 8
#> $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
#> $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
#> $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
#> $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
#> $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
#> $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
#> $ sex <fct> male, female, female, NA, female, male, female, male~
#> $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~

Among the variables in penguins are:

1. species: a penguin’s species (Adelie, Chinstrap, or Gentoo).

2. flipper_length_mm: length of a penguin’s flipper, in millimeters.

3. body_mass_g: body mass of a penguin, in grams.

To learn more about penguins, open its help page by running ?penguins.

1.2.2 Ultimate goal

Our ultimate goal in this chapter is to recreate the following visualization displaying the rela-
tionship between flipper lengths and body masses of these penguins, taking into consideration
the species of the penguin.

1.2.3 Creating a ggplot

Let’s recreate this plot step-by-step.

With ggplot2, you begin a plot with the function ggplot(), defining a plot object that you
then add layers to. The first argument of ggplot() is the dataset to use in the graph and so
ggplot(data = penguins) creates an empty graph that is primed to display the penguins
data, but since we haven’t told it how to visualize it yet, for now it’s empty. This is not a very
exciting plot, but you can think of it like an empty canvas you’ll paint the remaining layers of
your plot onto.

ggplot(data = penguins)
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Next, we need to tell ggplot() how the information from our data will be visually represented.
The mapping argument of the ggplot() function defines how variables in your dataset are
mapped to visual properties (aesthetics) of your plot. The mapping argument is always
defined in the aes() function, and the x and y arguments of aes() specify which variables to
map to the x and y axes. For now, we will only map flipper length to the x aesthetic and body
mass to the y aesthetic. ggplot2 looks for the mapped variables in the data argument, in this
case, penguins.

The following plot shows the result of adding these mappings.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

)
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Our empty canvas now has more structure – it’s clear where flipper lengths will be displayed
(on the x-axis) and where body masses will be displayed (on the y-axis). But the penguins
themselves are not yet on the plot. This is because we have not yet articulated, in our code,
how to represent the observations from our data frame on our plot.

To do so, we need to define a geom: the geometrical object that a plot uses to represent data.
These geometric objects are made available in ggplot2 with functions that start with geom_.
People often describe plots by the type of geom that the plot uses. For example, bar charts
use bar geoms (geom_bar()), line charts use line geoms (geom_line()), boxplots use boxplot
geoms (geom_boxplot()), scatterplots use point geoms (geom_point()), and so on.

The function geom_point() adds a layer of points to your plot, which creates a scatterplot.
ggplot2 comes with many geom functions that each adds a different type of layer to a plot.
You’ll learn a whole bunch of geoms throughout the book, particularly in Chapter 2.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point()

#> Warning: Removed 2 rows containing missing values (`geom_point()`).
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Now we have something that looks like what we might think of as a “scatterplot”. It doesn’t yet
match our “ultimate goal” plot, but using this plot we can start answering the question that
motivated our exploration: “What does the relationship between flipper length and body mass
look like?” The relationship appears to be positive (as flipper length increases, so does body
mass), fairly linear (the points are clustered around a line instead of a curve), and moderately
strong (there isn’t too much scatter around such a line). Penguins with longer flippers are
generally larger in terms of their body mass.

Before we add more layers to this plot, let’s pause for a moment and review the warning
message we got:

Removed 2 rows containing missing values (geom_point()).

We’re seeing this message because there are two penguins in our dataset with missing body
mass and/or flipper length values and ggplot2 has no way of representing them on the plot
without both of these values. Like R, ggplot2 subscribes to the philosophy that missing values
should never silently go missing. This type of warning is probably one of the most common
types of warnings you will see when working with real data – missing values are a very common
issue and you’ll learn more about them throughout the book, particularly in ?@sec-missing-
values. For the remaining plots in this chapter we will suppress this warning so it’s not printed
alongside every single plot we make.

1.2.4 Adding aesthetics and layers

Scatterplots are useful for displaying the relationship between two numerical variables, but it’s
always a good idea to be skeptical of any apparent relationship between two variables and ask
if there may be other variables that explain or change the nature of this apparent relationship.
For example, does the relationship between flipper length and body mass differ by species?
Let’s incorporate species into our plot and see if this reveals any additional insights into the
apparent relationship between these variables. We will do this by representing species with
different colored points.

To achieve this, will we need to modify the aesthetic or the geom? If you guessed “in the
aesthetic mapping, inside of aes()”, you’re already getting the hang of creating data visual-
izations with ggplot2! And if not, don’t worry. Throughout the book you will make many
more ggplots and have many more opportunities to check your intuition as you make them.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)

) +
geom_point()
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When a categorical variable is mapped to an aesthetic, ggplot2 will automatically assign a
unique value of the aesthetic (here a unique color) to each unique level of the variable (each
of the three species), a process known as scaling. ggplot2 will also add a legend that explains
which values correspond to which levels.

Now let’s add one more layer: a smooth curve displaying the relationship between body mass
and flipper length. Before you proceed, refer back to the code above, and think about how we
can add this to our existing plot.

Since this is a new geometric object representing our data, we will add a new geom as a layer
on top of our point geom: geom_smooth(). And we will specify that we want to draw the line
of best fit based on a linear model with method = "lm".

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)

) +
geom_point() +
geom_smooth(method = "lm")
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We have successfully added lines, but this plot doesn’t look like the plot from Section 1.2.2,
which only has one line for the entire dataset as opposed to separate lines for each of the
penguin species.

When aesthetic mappings are defined in ggplot(), at the global level, they’re passed down
to each of the subsequent geom layers of the plot. However, each geom function in ggplot2
can also take a mapping argument, which allows for aesthetic mappings at the local level that
are added to those inherited from the global level. Since we want points to be colored based
on species but don’t want the lines to be separated out for them, we should specify color =
species for geom_point() only.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point(mapping = aes(color = species)) +
geom_smooth(method = "lm")
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Voila! We have something that looks very much like our ultimate goal, though it’s not yet
perfect. We still need to use different shapes for each species of penguins and improve labels.

It’s generally not a good idea to represent information using only colors on a plot, as people
perceive colors differently due to color blindness or other color vision differences. Therefore,
in addition to color, we can also map species to the shape aesthetic.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point(mapping = aes(color = species, shape = species)) +
geom_smooth(method = "lm")
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Note that the legend is automatically updated to reflect the different shapes of the points as
well.

And finally, we can improve the labels of our plot using the labs() function in a new layer.
Some of the arguments to labs() might be self explanatory: title adds a title and subtitle
adds a subtitle to the plot. Other arguments match the aesthetic mappings, x is the x-axis
label, y is the y-axis label, and color and shape define the label for the legend. In addition,
we can improve the color palette to be colorblind safe with the scale_color_colorblind()
function from the ggthemes package.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point(aes(color = species, shape = species)) +
geom_smooth(method = "lm") +
labs(

title = "Body mass and flipper length",
subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
x = "Flipper length (mm)", y = "Body mass (g)",
color = "Species", shape = "Species"

) +
scale_color_colorblind()
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We finally have a plot that perfectly matches our “ultimate goal”!

1.2.5 Exercises

1. How many rows are in penguins? How many columns?

2. What does the bill_depth_mm variable in the penguins data frame describe? Read the
help for ?penguins to find out.

3. Make a scatterplot of bill_depth_mm vs. bill_length_mm. That is, make a scatterplot
with bill_depth_mm on the y-axis and bill_length_mm on the x-axis. Describe the
relationship between these two variables.

4. What happens if you make a scatterplot of species vs. bill_depth_mm? What might
be a better choice of geom?

5. Why does the following give an error and how would you fix it?

ggplot(data = penguins) +
geom_point()

6. What does the na.rm argument do in geom_point()? What is the default value of the
argument? Create a scatterplot where you successfully use this argument set to TRUE.

7. Add the following caption to the plot you made in the previous exercise: “Data come
from the palmerpenguins package.” Hint: Take a look at the documentation for labs().

8. Recreate the following visualization. What aesthetic should bill_depth_mm be mapped
to? And should it be mapped at the global level or at the geom level?

9. Run this code in your head and predict what the output will look like. Then, run the
code in R and check your predictions.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g, color = island)

) +
geom_point() +
geom_smooth(se = FALSE)

10. Will these two graphs look different? Why/why not?

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)
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) +
geom_point() +
geom_smooth()

ggplot() +
geom_point(

data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_smooth(

data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

)

1.3 ggplot2 calls

As we move on from these introductory sections, we’ll transition to a more concise expression
of ggplot2 code. So far we’ve been very explicit, which is helpful when you are learning:

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +
geom_point()

Typically, the first one or two arguments to a function are so important that you should know
them by heart. The first two arguments to ggplot() are data and mapping, in the remainder
of the book, we won’t supply those names. That saves typing, and, by reducing the amount
of extra text, makes it easier to see what’s different between plots. That’s a really important
programming concern that we’ll come back to in ?@sec-functions.

Rewriting the previous plot more concisely yields:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point()

In the future, you’ll also learn about the pipe, |>, which will allow you to create that plot
with:
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penguins |>
ggplot(aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point()

1.4 Visualizing distributions

How you visualize the distribution of a variable depends on the type of variable: categorical
or numerical.

1.4.1 A categorical variable

A variable is categorical if it can only take one of a small set of values. To examine the
distribution of a categorical variable, you can use a bar chart. The height of the bars displays
how many observations occurred with each x value.

ggplot(penguins, aes(x = species)) +
geom_bar()
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In bar plots of categorical variables with non-ordered levels, like the penguin species above,
it’s often preferable to reorder the bars based on their frequencies. Doing so requires trans-
forming the variable to a factor (how R handles categorical data) and then reordering the
levels of that factor.

ggplot(penguins, aes(x = fct_infreq(species))) +
geom_bar()
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You will learn more about factors and functions for dealing with factors (like fct_infreq()
shown above) in ?@sec-factors.

1.4.2 A numerical variable

A variable is numerical (or quantitative) if it can take on a wide range of numerical values,
and it is sensible to add, subtract, or take averages with those values. Numerical variables can
be continuous or discrete.

One commonly used visualization for distributions of continuous variables is a histogram.

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 200)
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A histogram divides the x-axis into equally spaced bins and then uses the height of a bar to
display the number of observations that fall in each bin. In the graph above, the tallest bar
shows that 39 observations have a body_mass_g value between 3,500 and 3,700 grams, which
are the left and right edges of the bar.

You can set the width of the intervals in a histogram with the binwidth argument, which is
measured in the units of the x variable. You should always explore a variety of binwidths
when working with histograms, as different binwidths can reveal different patterns. In the
plots below a binwidth of 20 is too narrow, resulting in too many bars, making it difficult to
determine the shape of the distribution. Similarly, a binwidth of 2,000 is too high, resulting in
all data being binned into only three bars, and also making it difficult to determine the shape
of the distribution. A binwidth of 200 provides a sensible balance.

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 20)

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 2000)

An alternative visualization for distributions of numerical variables is a density plot. A den-
sity plot is a smoothed-out version of a histogram and a practical alternative, particularly
for continuous data that comes from an underlying smooth distribution. We won’t go into
how geom_density() estimates the density (you can read more about that in the function
documentation), but let’s explain how the density curve is drawn with an analogy. Imagine a
histogram made out of wooden blocks. Then, imagine that you drop a cooked spaghetti string
over it. The shape the spaghetti will take draped over blocks can be thought of as the shape
of the density curve. It shows fewer details than a histogram but can make it easier to quickly
glean the shape of the distribution, particularly with respect to modes and skewness.

ggplot(penguins, aes(x = body_mass_g)) +
geom_density()

#> Warning: Removed 2 rows containing non-finite values (`stat_density()`).
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1.4.3 Exercises

1. Make a bar plot of species of penguins, where you assign species to the y aesthetic.
How is this plot different?

2. How are the following two plots different? Which aesthetic, color or fill, is more useful
for changing the color of bars?

ggplot(penguins, aes(x = species)) +
geom_bar(color = "red")

ggplot(penguins, aes(x = species)) +
geom_bar(fill = "red")

3. What does the bins argument in geom_histogram() do?

4. Make a histogram of the carat variable in the diamonds dataset that is available when
you load the tidyverse package. Experiment with different binwidths. What binwidth
reveals the most interesting patterns?

1.5 Visualizing relationships

To visualize a relationship we need to have at least two variables mapped to aesthetics of a plot.
In the following sections you will learn about commonly used plots for visualizing relationships
between two or more variables and the geoms used for creating them.

1.5.1 A numerical and a categorical variable

To visualize the relationship between a numerical and a categorical variable we can use side-by-
side box plots. A boxplot is a type of visual shorthand for measures of position (percentiles)
that describe a distribution. It is also useful for identifying potential outliers. As shown in
Figure 1.1, each boxplot consists of:

• A box that indicates the range of the middle half of the data, a distance known as the
interquartile range (IQR), stretching from the 25th percentile of the distribution to the
75th percentile. In the middle of the box is a line that displays the median, i.e. 50th
percentile, of the distribution. These three lines give you a sense of the spread of the
distribution and whether or not the distribution is symmetric about the median or skewed
to one side.

• Visual points that display observations that fall more than 1.5 times the IQR from either
edge of the box. These outlying points are unusual so are plotted individually.
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• A line (or whisker) that extends from each end of the box and goes to the farthest
non-outlier point in the distribution.

Figure 1.1: Diagram depicting how a boxplot is created.

Let’s take a look at the distribution of body mass by species using geom_boxplot():

ggplot(penguins, aes(x = species, y = body_mass_g)) +
geom_boxplot()

38



3000

4000

5000

6000

Adelie Chinstrap Gentoo
species

bo
dy

_m
as

s_
g

39



Alternatively, we can make density plots with geom_density().

ggplot(penguins, aes(x = body_mass_g, color = species)) +
geom_density(linewidth = 0.75)
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We’ve also customized the thickness of the lines using the linewidth argument in order to
make them stand out a bit more against the background.

Additionally, we can map species to both color and fill aesthetics and use the alpha
aesthetic to add transparency to the filled density curves. This aesthetic takes values between
0 (completely transparent) and 1 (completely opaque). In the following plot it’s set to 0.5.

ggplot(penguins, aes(x = body_mass_g, color = species, fill = species)) +
geom_density(alpha = 0.5)
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Note the terminology we have used here:

• We map variables to aesthetics if we want the visual attribute represented by that aes-
thetic to vary based on the values of that variable.

• Otherwise, we set the value of an aesthetic.

1.5.2 Two categorical variables

We can use stacked bar plots to visualize the relationship between two categorical variables.
For example, the following two stacked bar plots both display the relationship between island
and species, or specifically, visualizing the distribution of species within each island.

The first plot shows the frequencies of each species of penguins on each island. The plot of
frequencies shows that there are equal numbers of Adelies on each island. But we don’t have
a good sense of the percentage balance within each island.

ggplot(penguins, aes(x = island, fill = species)) +
geom_bar()
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The second plot, a relative frequency plot created by setting position = "fill" in the geom,
is more useful for comparing species distributions across islands since it’s not affected by the
unequal numbers of penguins across the islands. Using this plot we can see that Gentoo
penguins all live on Biscoe island and make up roughly 75% of the penguins on that island,
Chinstrap all live on Dream island and make up roughly 50% of the penguins on that island,
and Adelie live on all three islands and make up all of the penguins on Torgersen.

ggplot(penguins, aes(x = island, fill = species)) +
geom_bar(position = "fill")
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In creating these bar charts, we map the variable that will be separated into bars to the x
aesthetic, and the variable that will change the colors inside the bars to the fill aesthetic.

1.5.3 Two numerical variables

So far you’ve learned about scatterplots (created with geom_point()) and smooth curves
(created with geom_smooth()) for visualizing the relationship between two numerical variables.
A scatterplot is probably the most commonly used plot for visualizing the relationship between
two numerical variables.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point()
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1.5.4 Three or more variables

As we saw in Section 1.2.4, we can incorporate more variables into a plot by mapping them to
additional aesthetics. For example, in the following scatterplot the colors of points represent
species and the shapes of points represent islands.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point(aes(color = species, shape = island))
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However adding too many aesthetic mappings to a plot makes it cluttered and difficult to
make sense of. Another way, which is particularly useful for categorical variables, is to split
your plot into facets, subplots that each display one subset of the data.

To facet your plot by a single variable, use facet_wrap(). The first argument of facet_wrap()
is a formula3, which you create with ~ followed by a variable name. The variable that you
pass to facet_wrap() should be categorical.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point(aes(color = species, shape = species)) +
facet_wrap(~island)

3Here “formula” is the name of the thing created by ~, not a synonym for “equation”.
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You will learn about many other geoms for visualizing distributions of variables and relation-
ships between them in Chapter 2.

1.5.5 Exercises

1. The mpg data frame that is bundled with the ggplot2 package contains 234 observations
collected by the US Environmental Protection Agency on 38 car models. Which variables
in mpg are categorical? Which variables are numerical? (Hint: Type ?mpg to read the
documentation for the dataset.) How can you see this information when you run mpg?

2. Make a scatterplot of hwy vs. displ using the mpg data frame. Next, map a third,
numerical variable to color, then size, then both color and size, then shape. How
do these aesthetics behave differently for categorical vs. numerical variables?

3. In the scatterplot of hwy vs. displ, what happens if you map a third variable to
linewidth?

4. What happens if you map the same variable to multiple aesthetics?

5. Make a scatterplot of bill_depth_mm vs. bill_length_mm and color the points by
species. What does adding coloring by species reveal about the relationship between
these two variables? What about faceting by species?

6. Why does the following yield two separate legends? How would you fix it to combine the
two legends?

ggplot(
data = penguins,
mapping = aes(

x = bill_length_mm, y = bill_depth_mm,
color = species, shape = species

)
) +

geom_point() +
labs(color = "Species")

7. Create the two following stacked bar plots. Which question can you answer with the
first one? Which question can you answer with the second one?

ggplot(penguins, aes(x = island, fill = species)) +
geom_bar(position = "fill")

ggplot(penguins, aes(x = species, fill = island)) +
geom_bar(position = "fill")
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1.6 Saving your plots

Once you’ve made a plot, you might want to get it out of R by saving it as an image that you
can use elsewhere. That’s the job of ggsave(), which will save the plot most recently created
to disk:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point()

ggsave(filename = "penguin-plot.png")

This will save your plot to your working directory, a concept you’ll learn more about in ?@sec-
workflow-scripts-projects.

If you don’t specify the width and height they will be taken from the dimensions of the
current plotting device. For reproducible code, you’ll want to specify them. You can learn
more about ggsave() in the documentation.

Generally, however, we recommend that you assemble your final reports using Quarto, a
reproducible authoring system that allows you to interleave your code and your prose and
automatically include your plots in your write-ups. You will learn more about Quarto in
?@sec-quarto.

1.6.1 Exercises

1. Run the following lines of code. Which of the two plots is saved as mpg-plot.png? Why?

ggplot(mpg, aes(x = class)) +
geom_bar()

ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point()

ggsave("mpg-plot.png")

2. What do you need to change in the code above to save the plot as a PDF instead of a
PNG? How could you find out what types of image files would work in ggsave()?

1.7 Common problems

As you start to run R code, you’re likely to run into problems. Don’t worry — it happens to
everyone. We have all been writing R code for years, but every day we still write code that
doesn’t work on the first try!
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Start by carefully comparing the code that you’re running to the code in the book. R is
extremely picky, and a misplaced character can make all the difference. Make sure that every
( is matched with a ) and every " is paired with another ". Sometimes you’ll run the code
and nothing happens. Check the left-hand of your console: if it’s a +, it means that R doesn’t
think you’ve typed a complete expression and it’s waiting for you to finish it. In this case, it’s
usually easy to start from scratch again by pressing ESCAPE to abort processing the current
command.

One common problem when creating ggplot2 graphics is to put the + in the wrong place: it
has to come at the end of the line, not the start. In other words, make sure you haven’t
accidentally written code like this:

ggplot(data = mpg)
+ geom_point(mapping = aes(x = displ, y = hwy))

If you’re still stuck, try the help. You can get help about any R function by running
?function_name in the console, or highlighting the function name and pressing F1 in RStudio.
Don’t worry if the help doesn’t seem that helpful - instead skip down to the examples and
look for code that matches what you’re trying to do.

If that doesn’t help, carefully read the error message. Sometimes the answer will be buried
there! But when you’re new to R, even if the answer is in the error message, you might not
yet know how to understand it. Another great tool is Google: try googling the error message,
as it’s likely someone else has had the same problem, and has gotten help online.

1.8 Summary

In this chapter, you’ve learned the basics of data visualization with ggplot2. We started with
the basic idea that underpins ggplot2: a visualization is a mapping from variables in your data
to aesthetic properties like position, color, size and shape. You then learned about increasing
the complexity and improving the presentation of your plots layer-by-layer. You also learned
about commonly used plots for visualizing the distribution of a single variable as well as for
visualizing relationships between two or more variables, by leveraging additional aesthetic
mappings and/or splitting your plot into small multiples using faceting.

We’ll use visualizations again and again throughout this book, introducing new techniques as
we need them as well as do a deeper dive into creating visualizations with ggplot2 in Chapter 2
through ?@sec-communication.

With the basics of visualization under your belt, in the next chapter we’re going to switch
gears a little and give you some practical workflow advice. We intersperse workflow advice
with data science tools throughout this part of the book because it’ll help you stay organized
as you write increasing amounts of R code.
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2 Layers

2.1 Introduction

In Chapter 1, you learned much more than just how to make scatterplots, bar charts, and
boxplots. You learned a foundation that you can use to make any type of plot with ggplot2.

In this chapter, you’ll expand on that foundation as you learn about the layered grammar
of graphics. We’ll start with a deeper dive into aesthetic mappings, geometric objects, and
facets. Then, you will learn about statistical transformations ggplot2 makes under the hood
when creating a plot. These transformations are used to calculate new values to plot, such
as the heights of bars in a bar plot or medians in a box plot. You will also learn about
position adjustments, which modify how geoms are displayed in your plots. Finally, we’ll
briefly introduce coordinate systems.

We will not cover every single function and option for each of these layers, but we will walk
you through the most important and commonly used functionality provided by ggplot2 as well
as introduce you to packages that extend ggplot2.

2.1.1 Prerequisites

This chapter focuses on ggplot2. To access the datasets, help pages, and functions used in this
chapter, load the tidyverse by running this code:

library(tidyverse)

2.2 Aesthetic mappings

“The greatest value of a picture is when it forces us to notice what we never expected
to see.” — John Tukey

Remember that the mpg data frame bundled with the ggplot2 package contains 234 observations
on 38 car models.
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mpg
#> # A tibble: 234 x 11
#> manufacturer model displ year cyl trans drv cty hwy fl class
#> <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
#> 1 audi a4 1.8 1999 4 auto~ f 18 29 p comp~
#> 2 audi a4 1.8 1999 4 manu~ f 21 29 p comp~
#> 3 audi a4 2 2008 4 manu~ f 20 31 p comp~
#> 4 audi a4 2 2008 4 auto~ f 21 30 p comp~
#> 5 audi a4 2.8 1999 6 auto~ f 16 26 p comp~
#> 6 audi a4 2.8 1999 6 manu~ f 18 26 p comp~
#> 7 audi a4 3.1 2008 6 auto~ f 18 27 p comp~
#> 8 audi a4 quattro 1.8 1999 4 manu~ 4 18 26 p comp~
#> 9 audi a4 quattro 1.8 1999 4 auto~ 4 16 25 p comp~
#> 10 audi a4 quattro 2 2008 4 manu~ 4 20 28 p comp~
#> # i 224 more rows

Among the variables in mpg are:

1. displ: A car’s engine size, in liters. A numerical variable.

2. hwy: A car’s fuel efficiency on the highway, in miles per gallon (mpg). A car with a low
fuel efficiency consumes more fuel than a car with a high fuel efficiency when they travel
the same distance. A numerical variable.

3. class: Type of car. A categorical variable.

Let’s start by visualizing the relationship between displ and hwy for various classes of cars.
We can do this with a scatterplot where the numerical variables are mapped to the x and y
aesthetics and the categorical variable is mapped to an aesthetic like color or shape.

# Left
ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point()

# Right
ggplot(mpg, aes(x = displ, y = hwy, shape = class)) +

geom_point()
#> Warning: The shape palette can deal with a maximum of 6 discrete values because
#> more than 6 becomes difficult to discriminate; you have 7. Consider
#> specifying shapes manually if you must have them.
#> Warning: Removed 62 rows containing missing values (`geom_point()`).

When class is mapped to shape, we get two warnings:
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1: The shape palette can deal with a maximum of 6 discrete values because more
than 6 becomes difficult to discriminate; you have 7. Consider specifying shapes
manually if you must have them.

2: Removed 62 rows containing missing values (geom_point()).

Since ggplot2 will only use six shapes at a time, by default, additional groups will go unplotted
when you use the shape aesthetic. The second warning is related – there are 62 SUVs in the
dataset and they’re not plotted.

Similarly, we can map class to size or alpha aesthetics as well, which control the shape and
the transparency of the points, respectively.

# Left
ggplot(mpg, aes(x = displ, y = hwy, size = class)) +

geom_point()
#> Warning: Using size for a discrete variable is not advised.

# Right
ggplot(mpg, aes(x = displ, y = hwy, alpha = class)) +

geom_point()
#> Warning: Using alpha for a discrete variable is not advised.

Both of these produce warnings as well:

Using alpha for a discrete variable is not advised.

Mapping an unordered discrete (categorical) variable (class) to an ordered aesthetic (size or
alpha) is generally not a good idea because it implies a ranking that does not in fact exist.

Once you map an aesthetic, ggplot2 takes care of the rest. It selects a reasonable scale to use
with the aesthetic, and it constructs a legend that explains the mapping between levels and
values. For x and y aesthetics, ggplot2 does not create a legend, but it creates an axis line with
tick marks and a label. The axis line provides the same information as a legend; it explains
the mapping between locations and values.

You can also set the visual properties of your geom manually as an argument of your geom func-
tion (outside of aes()) instead of relying on a variable mapping to determine the appearance.
For example, we can make all of the points in our plot blue:

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(color = "blue")
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Here, the color doesn’t convey information about a variable, but only changes the appearance
of the plot. You’ll need to pick a value that makes sense for that aesthetic:

• The name of a color as a character string, e.g., color = "blue"
• The size of a point in mm, e.g., size = 1
• The shape of a point as a number, e.g, shape = 1, as shown in Figure 2.1.

So far we have discussed aesthetics that we can map or set in a scatterplot, when using a point
geom. You can learn more about all possible aesthetic mappings in the aesthetic specifications
vignette at https://ggplot2.tidyverse.org/articles/ggplot2-specs.html.

The specific aesthetics you can use for a plot depend on the geom you use to represent the
data. In the next section we dive deeper into geoms.

2.2.1 Exercises

1. Create a scatterplot of hwy vs. displ where the points are pink filled in triangles.

2. Why did the following code not result in a plot with blue points?

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy, color = "blue"))

3. What does the stroke aesthetic do? What shapes does it work with? (Hint: use
?geom_point)

4. What happens if you map an aesthetic to something other than a variable name, like
aes(color = displ < 5)? Note, you’ll also need to specify x and y.

2.3 Geometric objects

How are these two plots similar?

Both plots contain the same x variable, the same y variable, and both describe the same data.
But the plots are not identical. Each plot uses a different geometric object, geom, to represent
the data. The plot on the left uses the point geom, and the plot on the right uses the smooth
geom, a smooth line fitted to the data.

To change the geom in your plot, change the geom function that you add to ggplot(). For
instance, to make the plots above, you can use the following code:
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Figure 2.1: R has 25 built-in shapes that are identified by numbers. There are some seeming

duplicates: for example, 0, 15, and 22 are all squares. The difference comes from
the interaction of the color and fill aesthetics. The hollow shapes (0–14) have
a border determined by color; the solid shapes (15–20) are filled with color; the
filled shapes (21–24) have a border of color and are filled with fill. Shapes are
arranged to keep similar shapes next to each other.
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# Left
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point()

# Right
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth()
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Every geom function in ggplot2 takes a mapping argument, either defined locally in the geom
layer or globally in the ggplot() layer. However, not every aesthetic works with every geom.
You could set the shape of a point, but you couldn’t set the “shape” of a line. If you try,
ggplot2 will silently ignore that aesthetic mapping. On the other hand, you could set the
linetype of a line. geom_smooth() will draw a different line, with a different linetype, for each
unique value of the variable that you map to linetype.

# Left
ggplot(mpg, aes(x = displ, y = hwy, shape = drv)) +

geom_smooth()

# Right
ggplot(mpg, aes(x = displ, y = hwy, linetype = drv)) +

geom_smooth()

Here, geom_smooth() separates the cars into three lines based on their drv value, which
describes a car’s drive train. One line describes all of the points that have a 4 value, one
line describes all of the points that have an f value, and one line describes all of the points
that have an r value. Here, 4 stands for four-wheel drive, f for front-wheel drive, and r for
rear-wheel drive.

If this sounds strange, we can make it clearer by overlaying the lines on top of the raw data
and then coloring everything according to drv.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth(aes(linetype = drv))
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Notice that this plot contains two geoms in the same graph.

Many geoms, like geom_smooth(), use a single geometric object to display multiple rows of
data. For these geoms, you can set the group aesthetic to a categorical variable to draw
multiple objects. ggplot2 will draw a separate object for each unique value of the grouping
variable. In practice, ggplot2 will automatically group the data for these geoms whenever you
map an aesthetic to a discrete variable (as in the linetype example). It is convenient to rely
on this feature because the group aesthetic by itself does not add a legend or distinguishing
features to the geoms.

# Left
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth()

# Middle
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth(aes(group = drv))

# Right
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth(aes(color = drv), show.legend = FALSE)

If you place mappings in a geom function, ggplot2 will treat them as local mappings for the
layer. It will use these mappings to extend or overwrite the global mappings for that layer
only. This makes it possible to display different aesthetics in different layers.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = class)) +
geom_smooth()
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You can use the same idea to specify different data for each layer. Here, we use red points as
well as open circles to highlight two-seater cars. The local data argument in geom_point()
overrides the global data argument in ggplot() for that layer only.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
geom_point(

data = mpg %>% filter(class == "2seater"),
color = "red"

) +
geom_point(

data = mpg %>% filter(class == "2seater"),
shape = "circle open", size = 3, color = "red"

)
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Geoms are the fundamental building blocks of ggplot2. You can completely transform the
look of your plot by changing its geom, and different geoms can reveal different features of
your data. For example, the histogram and density plot below reveal that the distribution of
highway mileage is bimodal and right skewed while the boxplot reveals two potential outliers.

# Left
ggplot(mpg, aes(x = hwy)) +

geom_histogram(binwidth = 2)

# Middle
ggplot(mpg, aes(x = hwy)) +

geom_density()

# Right
ggplot(mpg, aes(x = hwy)) +

geom_boxplot()

ggplot2 provides more than 40 geoms but these don’t cover all possible plots one could make.
If you need a different geom, we recommend looking into extension packages first to see if
someone else has already implemented it (see https://exts.ggplot2.tidyverse.org/gallery/ for a
sampling).

For example, the ggridges package (https://wilkelab.org/ggridges) is useful for making ridge-
line plots, which can be useful for visualizing the density of a numerical variable for differ-
ent levels of a categorical variable. In the following plot not only did we use a new geom
(geom_density_ridges()), but we have also mapped the same variable to multiple aesthetics
(drv to y, fill, and color) as well as set an aesthetic (alpha = 0.5) to make the density
curves transparent.

library(ggridges)

ggplot(mpg, aes(x = hwy, y = drv, fill = drv, color = drv)) +
geom_density_ridges(alpha = 0.5, show.legend = FALSE)

#> Picking joint bandwidth of 1.28
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The best place to get a comprehensive overview of all of the geoms ggplot2 offers, as well as
all functions in the package, is the reference page: https://ggplot2.tidyverse.org/reference. To
learn more about any single geom, use the help (e.g., ?geom_smooth).

2.3.1 Exercises

1. What geom would you use to draw a line chart? A boxplot? A histogram? An area
chart?

76

https://ggplot2.tidyverse.org/reference


2. Earlier in this chapter we used show.legend without explaining it:

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_smooth(aes(color = drv), show.legend = FALSE)

What does show.legend = FALSE do here? What happens if you remove it? Why do
you think we used it earlier?

3. What does the se argument to geom_smooth() do?

4. Recreate the R code necessary to generate and save the following graphs, and arrange
them in a figure. Note that wherever a categorical variable is used in the plot, it’s drv.

#| message: false
#| layout-ncol: 2
#| fig-width: 3
#| fig-alt: |
#| There are six scatterplots in this figure, arranged in a 3x2 grid.
#| In all plots highway fuel efficiency of cars are on the y-axis and
#| engine size is on the x-axis. The first plot shows all points in black
#| with a smooth curve overlaid on them. In the second plot points are
#| also all black, with separate smooth curves overlaid for each level of
#| drive train. On the third plot, points and the smooth curves are
#| represented in different colors for each level of drive train. In the
#| fourth plot the points are represented in different colors for each
#| level of drive train but there is only a single smooth line fitted to
#| the whole data. In the fifth plot, points are represented in different
#| colors for each level of drive train, and a separate smooth curve with
#| different line types are fitted to each level of drive train. And
#| finally in the sixth plot points are represented in different colors
#| for each level of drive train and they have a thick white border.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth(se = FALSE)

#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth(aes(group = drv), se = FALSE) +
geom_point()

#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point() +
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geom_smooth(se = FALSE)
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +
geom_smooth(se = FALSE)

#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +
geom_smooth(aes(linetype = drv), se = FALSE)

#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(size = 4, color = "white") +
geom_point(aes(color = drv))
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2.4 Facets

In Chapter 1 you learned about faceting with facet_wrap(), which splits a plot into subplots
that each display one subset of the data based on a categorical variable.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_wrap(~cyl)
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To facet your plot with the combination of two variables, switch from facet_wrap() to
facet_grid(). The first argument of facet_grid() is also a formula, but now it’s a dou-
ble sided formula: rows ~ cols.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_grid(drv ~ cyl)
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By default each of the facets share the same scale and range for x and y axes. This is useful
when you want to compare data across facets but it can be limiting when you want to visualize
the relationship within each facet better. Setting the scales argument in a faceting function
to "free" will allow for different axis scales across both rows and columns, "free_x" will allow
for different scales across rows, and "free_y" will allow for different scales across columns.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_grid(drv ~ cyl, scales = "free_y")
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2.4.1 Exercises

1. What happens if you facet on a continuous variable?

2. What do the empty cells in the plot above with facet_grid(drv ~ cyl) mean? Run
the following code. How do they relate to the resulting plot?

ggplot(mpg) +
geom_point(aes(x = drv, y = cyl))

3. What plots does the following code make? What does . do?

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)

4. Take the first faceted plot in this section:

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)

What are the advantages to using faceting instead of the color aesthetic? What are the
disadvantages? How might the balance change if you had a larger dataset?

5. Read ?facet_wrap. What does nrow do? What does ncol do? What other options
control the layout of the individual panels? Why doesn’t facet_grid() have nrow and
ncol arguments?

6. Which of the following plots makes it easier to compare engine size (displ) across cars
with different drive trains? What does this say about when to place a faceting variable
across rows or columns?

ggplot(mpg, aes(x = displ)) +
geom_histogram() +
facet_grid(drv ~ .)

ggplot(mpg, aes(x = displ)) +
geom_histogram() +
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facet_grid(. ~ drv)

7. Recreate the following plot using facet_wrap() instead of facet_grid(). How do the
positions of the facet labels change?

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)

2.5 Statistical transformations

Consider a basic bar chart, drawn with geom_bar() or geom_col(). The following chart
displays the total number of diamonds in the diamonds dataset, grouped by cut. The diamonds
dataset is in the ggplot2 package and contains information on ~54,000 diamonds, including
the price, carat, color, clarity, and cut of each diamond. The chart shows that more
diamonds are available with high quality cuts than with low quality cuts.

ggplot(diamonds, aes(x = cut)) +
geom_bar()
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On the x-axis, the chart displays cut, a variable from diamonds. On the y-axis, it displays
count, but count is not a variable in diamonds! Where does count come from? Many graphs,
like scatterplots, plot the raw values of your dataset. Other graphs, like bar charts, calculate
new values to plot:

• Bar charts, histograms, and frequency polygons bin your data and then plot bin counts,
the number of points that fall in each bin.

• Smoothers fit a model to your data and then plot predictions from the model.

• Boxplots compute the five-number summary of the distribution and then display that
summary as a specially formatted box.

The algorithm used to calculate new values for a graph is called a stat, short for statistical
transformation. Figure 2.2 shows how this process works with geom_bar().

Figure 2.2: When creating a bar chart we first start with the raw data, then aggregate it to
count the number of observations in each bar, and finally map those computed
variables to plot aesthetics.

You can learn which stat a geom uses by inspecting the default value for the stat argu-
ment. For example, ?geom_bar shows that the default value for stat is “count”, which means
that geom_bar() uses stat_count(). stat_count() is documented on the same page as
geom_bar(). If you scroll down, the section called “Computed variables” explains that it
computes two new variables: count and prop.

Every geom has a default stat; and every stat has a default geom. This means that you
can typically use geoms without worrying about the underlying statistical transformation.
However, there are three reasons why you might need to use a stat explicitly:
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1. You might want to override the default stat. In the code below, we change the stat of
geom_bar() from count (the default) to identity. This lets us map the height of the bars
to the raw values of a y variable.

diamonds %>%
count(cut) %>%
ggplot(aes(x = cut, y = n)) +
geom_bar(stat = "identity")
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2. You might want to override the default mapping from transformed variables to aesthetics.
For example, you might want to display a bar chart of proportions, rather than counts:

ggplot(diamonds, aes(x = cut, y = after_stat(prop), group = 1)) +
geom_bar()

97



0.0

0.1

0.2

0.3

0.4

Fair Good Very Good Premium Ideal
cut

pr
op

98



To find the possible variables that can be computed by the stat, look for the section
titled “computed variables” in the help for geom_bar().

3. You might want to draw greater attention to the statistical transformation in your code.
For example, you might use stat_summary(), which summarizes the y values for each
unique x value, to draw attention to the summary that you’re computing:

ggplot(diamonds) +
stat_summary(

aes(x = cut, y = depth),
fun.min = min,
fun.max = max,
fun = median

)
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ggplot2 provides more than 20 stats for you to use. Each stat is a function, so you can get
help in the usual way, e.g., ?stat_bin.

2.5.1 Exercises

1. What is the default geom associated with stat_summary()? How could you rewrite the
previous plot to use that geom function instead of the stat function?

2. What does geom_col() do? How is it different from geom_bar()?

3. Most geoms and stats come in pairs that are almost always used in concert. Make a list of
all the pairs. What do they have in common? (Hint: Read through the documentation.)

4. What variables does stat_smooth() compute? What arguments control its behavior?

5. In our proportion bar chart, we needed to set group = 1. Why? In other words, what
is the problem with these two graphs?

ggplot(diamonds, aes(x = cut, y = after_stat(prop))) +
geom_bar()

ggplot(diamonds, aes(x = cut, fill = color, y = after_stat(prop))) +
geom_bar()

2.6 Position adjustments

There’s one more piece of magic associated with bar charts. You can color a bar chart using
either the color aesthetic, or, more usefully, the fill aesthetic:

# Left
ggplot(mpg, aes(x = drv, color = drv)) +

geom_bar()

# Right
ggplot(mpg, aes(x = drv, fill = drv)) +

geom_bar()

Note what happens if you map the fill aesthetic to another variable, like class: the bars are
automatically stacked. Each colored rectangle represents a combination of drv and class.

ggplot(mpg, aes(x = drv, fill = class)) +
geom_bar()
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The stacking is performed automatically using the position adjustment specified by the
position argument. If you don’t want a stacked bar chart, you can use one of three other
options: "identity", "dodge" or "fill".

• position = "identity" will place each object exactly where it falls in the context of the
graph. This is not very useful for bars, because it overlaps them. To see that overlapping
we either need to make the bars slightly transparent by setting alpha to a small value,
or completely transparent by setting fill = NA.

# Left
ggplot(mpg, aes(x = drv, fill = class)) +

geom_bar(alpha = 1/5, position = "identity")

# Right
ggplot(mpg, aes(x = drv, color = class)) +

geom_bar(fill = NA, position = "identity")

The identity position adjustment is more useful for 2d geoms, like points, where it is the
default.

• position = "fill" works like stacking, but makes each set of stacked bars the same
height. This makes it easier to compare proportions across groups.

• position = "dodge" places overlapping objects directly beside one another. This makes
it easier to compare individual values.

# Left
ggplot(mpg, aes(x = drv, fill = class)) +

geom_bar(position = "fill")

# Right
ggplot(mpg, aes(x = drv, fill = class)) +

geom_bar(position = "dodge")

There’s one other type of adjustment that’s not useful for bar charts, but can be very useful
for scatterplots. Recall our first scatterplot. Did you notice that the plot displays only 126
points, even though there are 234 observations in the dataset?

The underlying values of hwy and displ are rounded so the points appear on a grid and many
points overlap each other. This problem is known as overplotting. This arrangement makes
it difficult to see the distribution of the data. Are the data points spread equally throughout
the graph, or is there one special combination of hwy and displ that contains 109 values?
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You can avoid this gridding by setting the position adjustment to “jitter”. position =
"jitter" adds a small amount of random noise to each point. This spreads the points out
because no two points are likely to receive the same amount of random noise.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(position = "jitter")
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Adding randomness seems like a strange way to improve your plot, but while it makes your
graph less accurate at small scales, it makes your graph more revealing at large scales. Because
this is such a useful operation, ggplot2 comes with a shorthand for geom_point(position =
"jitter"): geom_jitter().

To learn more about a position adjustment, look up the help page associated with each adjust-
ment: ?position_dodge, ?position_fill, ?position_identity, ?position_jitter, and
?position_stack.

2.6.1 Exercises

1. What is the problem with the following plot? How could you improve it?

ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point()

2. What, if anything, is the difference between the two plots? Why?

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(position = "identity")

3. What parameters to geom_jitter() control the amount of jittering?

4. Compare and contrast geom_jitter() with geom_count().

5. What’s the default position adjustment for geom_boxplot()? Create a visualization of
the mpg dataset that demonstrates it.

2.7 The layered grammar of graphics

We can expand on the graphing template you learned in Section 1.3 by adding position adjust-
ments, stats, coordinate systems, and faceting:

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(

mapping = aes(<MAPPINGS>),
stat = <STAT>,
position = <POSITION>

) +
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<COORDINATE_FUNCTION> +
<FACET_FUNCTION>

Our new template takes seven parameters, the bracketed words that appear in the template. In
practice, you rarely need to supply all seven parameters to make a graph because ggplot2 will
provide useful defaults for everything except the data, the mappings, and the geom function.

The seven parameters in the template compose the grammar of graphics, a formal system
for building plots. The grammar of graphics is based on the insight that you can uniquely
describe any plot as a combination of a dataset, a geom, a set of mappings, a stat, a position
adjustment, a coordinate system, a faceting scheme, and a theme.

To see how this works, consider how you could build a basic plot from scratch: you could start
with a dataset and then transform it into the information that you want to display (with a stat).
Next, you could choose a geometric object to represent each observation in the transformed
data. You could then use the aesthetic properties of the geoms to represent variables in the
data. You would map the values of each variable to the levels of an aesthetic. These steps are
illustrated in Figure 2.3. You’d then select a coordinate system to place the geoms into, using
the location of the objects (which is itself an aesthetic property) to display the values of the
x and y variables.

Figure 2.3: Steps for going from raw data to a table of frequencies to a bar plot where the
heights of the bar represent the frequencies.

At this point, you would have a complete graph, but you could further adjust the positions
of the geoms within the coordinate system (a position adjustment) or split the graph into
subplots (faceting). You could also extend the plot by adding one or more additional layers,
where each additional layer uses a dataset, a geom, a set of mappings, a stat, and a position
adjustment.

You could use this method to build any plot that you imagine. In other words, you can use the
code template that you’ve learned in this chapter to build hundreds of thousands of unique
plots.

If you’d like to learn more about the theoretical underpinnings of ggplot2, you might enjoy
reading “The Layered Grammar of Graphics”, the scientific paper that describes the theory of
ggplot2 in detail.
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2.8 Summary

In this chapter you learned about the layered grammar of graphics starting with aesthetics
and geometries to build a simple plot, facets for splitting the plot into subsets, statistics for
understanding how geoms are calculated, position adjustments for controlling the fine details
of position when geoms might otherwise overlap, and coordinate systems which allow you to
fundamentally change what x and y mean. One layer we have not yet touched on is theme,
which we will introduce in ?@sec-themes.

Two very useful resources for getting an overview of the complete ggplot2 functionality are
the ggplot2 cheatsheet (which you can find at https://posit.co/resources/cheatsheets) and the
ggplot2 package website (https://ggplot2.tidyverse.org).

An important lesson you should take from this chapter is that when you feel the need for a
geom that is not provided by ggplot2, it’s always a good idea to look into whether someone
else has already solved your problem by creating a ggplot2 extension package that offers that
geom.

112

https://posit.co/resources/cheatsheets
https://ggplot2.tidyverse.org/

	Welcome
	Data visualization
	Introduction
	Prerequisites

	First steps
	The penguins data frame
	Ultimate goal
	Creating a ggplot
	Adding aesthetics and layers
	Exercises

	ggplot2 calls
	Visualizing distributions
	A categorical variable
	A numerical variable
	Exercises

	Visualizing relationships
	A numerical and a categorical variable
	Two categorical variables
	Two numerical variables
	Three or more variables
	Exercises

	Saving your plots
	Exercises

	Common problems
	Summary

	Layers
	Introduction
	Prerequisites

	Aesthetic mappings
	2.2.1 Exercises
	Geometric objects
	2.3.1 Exercises
	Facets
	2.4.1 Exercises
	Statistical transformations
	2.5.1 Exercises
	Position adjustments
	2.6.1 Exercises
	The layered grammar of graphics
	Summary


