market <- market %>% separate(Quarter, c("Year", "Quarter"), sep = "Q")
market$Quarter = as.factor(market$Quarter)
market$`Price Band` = as.factor(market$`Price Band`)
market %>% group_by(Year) %>% summarise(sv = sum(`Market Size (Volume)`))
## # A tibble: 5 x 2
## Year sv
## <chr> <dbl>
## 1 2013 2074388935
## 2 2014 2082467111
## 3 2015 2108282464
## 4 2016 2139911547
## 5 2017 1559344110
market %>% group_by(Year) %>% summarise(sv = mean(`Market Size (Volume)`))
## # A tibble: 5 x 2
## Year sv
## <chr> <dbl>
## 1 2013 47145203.
## 2 2014 47328798.
## 3 2015 47915511.
## 4 2016 48634353.
## 5 2017 47252852.
market %>% group_by(Year, Quarter) %>% summarise(sv = sum(`Market Size (Volume)`))%>% ggplot(aes(x=Year ,y=sv, fill=fct_rev(Quarter))) + geom_bar(position='stack', stat='identity') + labs(x="Year", y="Market Size (Volume)",title="Total Market Size (Volume) per Year")
market %>% group_by(`Product Category`) %>% summarise(sv = sum(`Market Size (Volume)`))%>% ggplot(aes(x=`Product Category` ,y=sv, fill=`Product Category`)) + geom_bar(position='dodge', stat='identity') + geom_text(aes(label=sv), position=position_dodge(width=0.9), vjust=-0.25, size =3,check_overlap = TRUE) + labs(x="Year", y="Market Size (Volume)",title="Total Market Size (Volume) per Product")
market %>% group_by(Year, `Product Category`) %>% summarise(sv = sum(`Market Size (Volume)`))%>% ggplot(aes(x=Year ,y=sv, fill=`Product Category`)) + geom_bar(position='stack', stat='identity') + labs(x="Product", y="Market Size (Volume)",title="Share of Market Size (Volume) by Product for every Year")
kable(market %>% group_by(`Product Category`, `Price Band`) %>% tally(), caption = "Price Band distribution per Product Category")
Product Category | Price Band | n |
---|---|---|
Feature Phone | $0-$100 | 19 |
Feature Phone | $101-$200 | 19 |
Feature Phone | $201-$300 | 19 |
Feature Phone | $301-$400 | 19 |
Smartphone | $0-$100 | 19 |
Smartphone | $101-$200 | 19 |
Smartphone | $201-$300 | 19 |
Smartphone | $301-$400 | 19 |
Smartphone | $401-$500 | 19 |
Smartphone | $501-$600 | 19 |
Smartphone | $601+ | 19 |
In 2016 the market size (volume) was the highest with a total of 2,139,911,547 volume and an average of 48,634,354 volume.
In total smartphones have the highest market size volume and there was a yearly increase for smartphone market size volume and decrease for feature phones.
Smartphone price bands are higher than for feature phones, and the price band can be 400$ and above.
*The trends do not take into account the 4th quarter of 2017, due to lack of data.
company <- company %>% separate(Quarter, c("Year", "Quarter"), sep = "Q")
company$Quarter = as.factor(company$Quarter)
company$`Price Band` = as.factor(company$`Price Band`)
company %>% group_by(`Product Category`) %>% summarise(sv = sum(`Company X Sales Volumes`))%>% ggplot(aes(x=`Product Category` ,y=sv, fill=`Product Category`)) + geom_bar(position='dodge', stat='identity') + geom_text(aes(label=sv), position=position_dodge(width=0.9), vjust=-0.25, size =3,check_overlap = TRUE) + labs(x="Product", y="Market Size (Volume)",title="Total Company X Sales Volumes per Product")
company %>% group_by(Year, `Product Category`) %>% summarise(sv = sum(`Company X Sales Volumes`))%>% ggplot(aes(x=Year ,y=sv, fill=`Product Category`)) + geom_bar(position='stack', stat='identity') + labs(x="Year", y="Company X Sales Volumes",title="Share of Company X Sales Volumes by Product for every Year")
kable(company %>% group_by(`Product Category`, `Price Band`) %>% tally(), caption = "Company X Price Band distribution per Product Category")
Product Category | Price Band | n |
---|---|---|
Feature Phone | $0-$100 | 19 |
Feature Phone | $101-$200 | 19 |
Feature Phone | $201-$300 | 16 |
Smartphone | $0-$100 | 19 |
Smartphone | $101-$200 | 19 |
Smartphone | $201-$300 | 19 |
Smartphone | $301-$400 | 19 |
Smartphone | $401-$500 | 19 |
Smartphone | $501-$600 | 19 |
Smartphone | $601+ | 19 |
Company X should focus on increasing their smartphone sales and the higher price band feature phones.