Característica | N = 8 |
---|---|
Peso (g) | |
Media (DE) | 1,761 (501) |
Mediana (RIQ) | 1,728 (1,379, 2,054) |
Rango | 1,170, 2,583 |
Sexo, n (%) | |
Hombre | 7 (88) |
Mujer | 1 (12) |
Días de estáncia hospitalaria | |
Media (DE) | 39 (29) |
Mediana (RIQ) | 40 (10, 65) |
Rango | 6, 77 |
Propuesta de Análisis Karen
Tabla 1
La tabla 1 muestra las características de los pacientes en los que le fue evaluada la idoneidad
Fármacos utilizados
La siguiente gráfica muestra los fármacos utilizados para evaluar la idoneidad en el servicio de unidad de cuidados intensivos neonatales
Tabla 2
En la tabla 2 se muestra una descripción de las incompatibilidades, dada la naturaleza del estudio solo se muestra estadística descriptiva
Característica | N = 82 | 95% CI1 |
---|---|---|
Indentificación de incompatibilidades, n / N (%) | ||
No | 44 / 82 (54%) | 42%, 65% |
Si | 36 / 82 (44%) | 33%, 55% |
No se describe | 2 / 82 (2.4%) | 0.42%, 9.4% |
Característica de la incompatibilidad, n / N (%) | ||
Incompatible | 35 / 81 (43%) | 32%, 55% |
Precaución | 27 / 81 (33%) | 23%, 45% |
Incierto | 5 / 81 (6.2%) | 2.3%, 14% |
No probado | 14 / 81 (17%) | 10%, 28% |
Desconocido | 1 | |
Contrainidicaciones, n / N (%) | ||
Correcto o adecuado | 26 / 82 (32%) | 22%, 43% |
Incorrecto o inadecuado | 10 / 82 (12%) | 6.3%, 22% |
No se especifica | 46 / 82 (56%) | 45%, 67% |
Indicaciones, n / N (%) | ||
Correcto o adecuado | 52 / 82 (63%) | 52%, 74% |
Incorrecto o inadecuado | 12 / 82 (15%) | 8.1%, 25% |
No se especifica | 18 / 82 (22%) | 14%, 33% |
Uso off label, n / N (%) | ||
Correcto o adecuado | 0 / 82 (0%) | 0.00%, 5.6% |
Incorrecto o inadecuado | 82 / 82 (100%) | 94%, 100% |
No se especifica | 0 / 82 (0%) | 0.00%, 5.6% |
Rango de dosis, n / N (%) | ||
Correcto o adecuado | 34 / 82 (41%) | 31%, 53% |
Incorrecto o inadecuado | 47 / 82 (57%) | 46%, 68% |
No se especifica | 1 / 82 (1.2%) | 0.06%, 7.5% |
Vía de administración idónea, n / N (%) | ||
Correcto o adecuado | 77 / 82 (94%) | 86%, 98% |
Incorrecto o inadecuado | 5 / 82 (6.1%) | 2.3%, 14% |
No se especifica | 0 / 82 (0%) | 0.00%, 5.6% |
Velocidad de Infusión, n / N (%) | ||
Correcta o adecuada | 30 / 82 (37%) | 26%, 48% |
Incorrecta o inadecuada | 36 / 82 (44%) | 33%, 55% |
No se especifica | 16 / 82 (20%) | 12%, 30% |
Indentificación de reacción adversas, n / N (%) | ||
Si | 1 / 82 (1.2%) | 0.06%, 7.5% |
No se describe | 81 / 82 (99%) | 92%, 100% |
Identificación de interacciones, n / N (%) | ||
No | 51 / 82 (62%) | 51%, 72% |
Si | 30 / 82 (37%) | 26%, 48% |
No se describe | 1 / 82 (1.2%) | 0.06%, 7.5% |
Característica de la interacción, n / N (%) | ||
No se presentó | 51 / 82 (62%) | 51%, 72% |
Menor | 16 / 82 (20%) | 12%, 30% |
Moderada | 4 / 82 (4.9%) | 1.6%, 13% |
Mayor | 10 / 82 (12%) | 6.3%, 22% |
No se describe | 1 / 82 (1.2%) | 0.06%, 7.5% |
Indentificación de reacción alérgica, n / N (%) | ||
No se describe | 82 / 82 (100%) | 94%, 100% |
Sensibilidad, n / N (%) | ||
No se describe | 82 / 82 (100%) | 94%, 100% |
Frecuencia, n / N (%) | ||
Correcta | 32 / 82 (39%) | 29%, 50% |
Incorrecta | 26 / 82 (32%) | 22%, 43% |
No se especifica | 24 / 82 (29%) | 20%, 41% |
1 CI = Intervalo de confianza |
La tabla anterior sin problema se podría fraccionar para que no quede en el documento un tabla extremadamente grand
Gráficas
Se muestran las gráficas con los porcentajes de la descripción de las incompatibilidades. Son los mismo valores de la tabla 2 pero en gráfica. Por favor no hagan caso al texto que aparece abajo de cada gráfica
>>> suggestions
PieChart(Incompati, hole=0) # traditional pie chart
PieChart(Incompati, values="%") # display %'s on the chart
PieChart(Incompati) # bar chart
Plot(Incompati) # bubble plot
Plot(Incompati, values="count") # lollipop plot
--- Incompati ---
No Si No se describe Total
Frequencies: 44 36 2 82
Proportions: 0.537 0.439 0.024 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 36.390, df = 2, p-value = 0.000
>>> suggestions
PieChart(Descrip_Incompati, hole=0) # traditional pie chart
PieChart(Descrip_Incompati, values="%") # display %'s on the chart
PieChart(Descrip_Incompati) # bar chart
Plot(Descrip_Incompati) # bubble plot
Plot(Descrip_Incompati, values="count") # lollipop plot
--- Descrip_Incompati ---
Incompatible Precaución Incierto No probado Total
Frequencies: 35 27 5 14 81
Proportions: 0.432 0.333 0.062 0.173 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 26.407, df = 3, p-value = 0.000
>>> suggestions
PieChart(Contrainidicaciones, hole=0) # traditional pie chart
PieChart(Contrainidicaciones, values="%") # display %'s on the chart
PieChart(Contrainidicaciones) # bar chart
Plot(Contrainidicaciones) # bubble plot
Plot(Contrainidicaciones, values="count") # lollipop plot
--- Contrainidicaciones ---
Contraindccns Count Prop
---------------------------------
Correcto o adecuado 26 0.317
Incorrectooinadecuad 10 0.122
No se especifica 46 0.561
---------------------------------
Total 82 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 23.805, df = 2, p-value = 0.000
>>> suggestions
PieChart(Indicaciones, hole=0) # traditional pie chart
PieChart(Indicaciones, values="%") # display %'s on the chart
PieChart(Indicaciones) # bar chart
Plot(Indicaciones) # bubble plot
Plot(Indicaciones, values="count") # lollipop plot
--- Indicaciones ---
Indicaciones Count Prop
---------------------------------
Correcto o adecuado 52 0.634
Incorrectooinadecuad 12 0.146
No se especifica 18 0.220
---------------------------------
Total 82 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 34.049, df = 2, p-value = 0.000
>>> suggestions
PieChart(Uso_Off_Label, hole=0) # traditional pie chart
PieChart(Uso_Off_Label, values="%") # display %'s on the chart
PieChart(Uso_Off_Label) # bar chart
Plot(Uso_Off_Label) # bubble plot
Plot(Uso_Off_Label, values="count") # lollipop plot
--- Uso_Off_Label ---
Uso_Off_Label Count Prop
---------------------------------
Correcto o adecuado 0 0.000
Incorrectooinadecuad 82 1.000
No se especifica 0 0.000
---------------------------------
Total 82 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 164.000, df = 2, p-value = 0.000
>>> suggestions
PieChart(Rango_Dosis, hole=0) # traditional pie chart
PieChart(Rango_Dosis, values="%") # display %'s on the chart
PieChart(Rango_Dosis) # bar chart
Plot(Rango_Dosis) # bubble plot
Plot(Rango_Dosis, values="count") # lollipop plot
--- Rango_Dosis ---
Rango_Dosis Count Prop
---------------------------------
Correcto o adecuado 34 0.415
Incorrectooinadecuad 47 0.573
No se especifica 1 0.012
---------------------------------
Total 82 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 41.146, df = 2, p-value = 0.000
>>> suggestions
PieChart(Via_Admin_Idone, hole=0) # traditional pie chart
PieChart(Via_Admin_Idone, values="%") # display %'s on the chart
PieChart(Via_Admin_Idone) # bar chart
Plot(Via_Admin_Idone) # bubble plot
Plot(Via_Admin_Idone, values="count") # lollipop plot
--- Via_Admin_Idone ---
Via_Admin_Idn Count Prop
---------------------------------
Correcto o adecuado 77 0.939
Incorrectooinadecuad 5 0.061
No se especifica 0 0.000
---------------------------------
Total 82 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 135.829, df = 2, p-value = 0.000
>>> suggestions
PieChart(Velocidad_Infu, hole=0) # traditional pie chart
PieChart(Velocidad_Infu, values="%") # display %'s on the chart
PieChart(Velocidad_Infu) # bar chart
Plot(Velocidad_Infu) # bubble plot
Plot(Velocidad_Infu, values="count") # lollipop plot
--- Velocidad_Infu ---
Velocidad_Inf Count Prop
---------------------------------
Correcta o adecuada 30 0.366
Incorrectaoinadecuad 36 0.439
No se especifica 16 0.195
---------------------------------
Total 82 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 7.707, df = 2, p-value = 0.021
>>> suggestions
PieChart(Reacciones_Adversas, hole=0) # traditional pie chart
PieChart(Reacciones_Adversas, values="%") # display %'s on the chart
PieChart(Reacciones_Adversas) # bar chart
Plot(Reacciones_Adversas) # bubble plot
Plot(Reacciones_Adversas, values="count") # lollipop plot
--- Reacciones_Adversas ---
Si No se describe Total
Frequencies: 1 81 82
Proportions: 0.012 0.988 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 78.049, df = 1, p-value = 0.000
>>> suggestions
PieChart(Interacciones, hole=0) # traditional pie chart
PieChart(Interacciones, values="%") # display %'s on the chart
PieChart(Interacciones) # bar chart
Plot(Interacciones) # bubble plot
Plot(Interacciones, values="count") # lollipop plot
--- Interacciones ---
No Si No se describe Total
Frequencies: 51 30 1 82
Proportions: 0.622 0.366 0.012 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 46.122, df = 2, p-value = 0.000
>>> suggestions
PieChart(Descripcion_Intera2, hole=0) # traditional pie chart
PieChart(Descripcion_Intera2, values="%") # display %'s on the chart
PieChart(Descripcion_Intera2) # bar chart
Plot(Descripcion_Intera2) # bubble plot
Plot(Descripcion_Intera2, values="count") # lollipop plot
--- Descripcion_Intera2 ---
No se presentó Menor Moderada Mayor No se describe Total
Frequencies: 51 16 4 10 1 82
Proportions: 0.622 0.195 0.049 0.122 0.012 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 99.341, df = 4, p-value = 0.000
>>> suggestions
PieChart(Reacci_Alergica, hole=0) # traditional pie chart
PieChart(Reacci_Alergica, values="%") # display %'s on the chart
PieChart(Reacci_Alergica) # bar chart
Plot(Reacci_Alergica) # bubble plot
Plot(Reacci_Alergica, values="count") # lollipop plot
--- Reacci_Alergica ---
No se describe Total
Frequencies: 82 82
Proportions: 1.000 1.000
>>> suggestions
PieChart(Frecuencia, hole=0) # traditional pie chart
PieChart(Frecuencia, values="%") # display %'s on the chart
PieChart(Frecuencia) # bar chart
Plot(Frecuencia) # bubble plot
Plot(Frecuencia, values="count") # lollipop plot
--- Frecuencia ---
Correcta Incorrecta No se especifica Total
Frequencies: 32 26 24 82
Proportions: 0.390 0.317 0.293 1.000
Chi-squared test of null hypothesis of equal probabilities
Chisq = 1.268, df = 2, p-value = 0.530