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In the modern landscape of mining engineering, linear algebra serves as a powerful engine
behind data-driven decisions and innovation. From modeling mineral reserves through
complex systems of equations, to applying eigenvalue techniques for assessing slope
stability, and using matrix factorizations to structure and interpret vast datasets, linear
algebra transforms abstract mathematics into practical solutions. By mastering these
tools, students and professionals gain the ability to decode complex mining challenges,
streamline engineering processes, and construct reliable models that drive efficiency,
safety, and technological advancement in the mining industry.

This book offers a practical and application-driven introduction to linear algebra, de-
signed specifically for mining contexts. Key topics include matrices and systems of lin-
ear equations, determinants, matrix inverses, matrix factorizations, vector spaces, inner
product spaces, orthogonality, linear transformations, and eigenvalues. Each chapter
bridges theory with hands-on applications—showing how abstract concepts translate
into tools for mineral reserve planning, mine design, and operational optimization.

Beyond the fundamentals, the book highlights real-world case studies where linear al-
gebra directly powers mining innovation: ore grade modeling, slope stability analysis,
ventilation network design, and optimization of equipment usage. By blending solid
mathematical foundations with cutting-edge engineering challenges, this book equips
readers with both the technical depth and the practical mindset to apply linear algebra
as a driver of efficiency, safety, and innovation in mining engineering.
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Chapter 1

Systems of Linear Equations

Linear algebra begins with one of its most fundamental topics: Systems of Linear
Equations (SLE). These systems appear everywhere in mining engineering, geo-
sciences, mineral processing, and numerical modeling [1]–[4]. Figure 1.1 shows
a mind map of SLE and its main concepts, operations, and applications in mining
engineering.

SYSTEM OF
LINEAR EQUATIONS

Functions

Key Concepts of SLE

Matrix Operations

Gaussian Methods

Applied of SLE

Definition

Type of Functions

Unique Solution

No Solution

Infinite Solutions

Augmented Matrix

Elementary Row Ops

RREF

Gaussian REF

Gauss-Jordan RREF

Back Substitution

Mining Operations

Geology Modeling

Safety & Risk

Resource Allocation

Environmental Monitoring

Figure 1.1: Mind Map of System of Linear Equations

1.1 Functions to Linear Equations

A function is a relation that connects each input value to exactly one output value [5],
[6]. In mathematics, a function is often written as:

𝑓(𝑎𝑥) = 𝑏

5



6 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

• 𝑎 ∶ Coefficient of the independent variable

• 𝑥 ∶ Input (independent variable)

• 𝑏 ∶ Output (dependent variable)

Functions are the foundation of linear equations, since every linear equation can be seen
as a special type of function [2].

Note:

A linear equation is a function where the variables only appear to the first power
and are not multiplied together [1]. In general form:

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝑏
where 𝑎1, 𝑎2, … , 𝑎𝑛 are constants (coefficients), and 𝑏 is a constant term.

• With 1 variable: 𝑎1𝑥1 = 𝑏

• With 2 variables: 𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏

• With N variables: 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝑏

1.2 System of Linear Equations

A SLE is a collection of two or more linear equations involving the same set of variables.
The goal is to find values of the variables that satisfy all equations at once [1], [2].
General form:

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

• 𝑚 = number of equations

• 𝑛 = number of variables

1.3 Key Concepts of SLE

1.3.1 Unique Solution

The system has exactly one solution. This occurs when the equations represent lines
(or planes in higher dimensions) that intersect at a single point [1], [2].
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Example

Consider the following system:

𝑥1 + 𝑥2 = 5
2𝑥1 − 𝑥2 = 1

Solution

Solving the System:

𝑥1 + 𝑥2 = 5 (first equation)

𝑥2 = 5 − 𝑥1 (express 𝑥2 in terms of 𝑥1)

2𝑥1 − 𝑥2 = 1 (second equation)

2𝑥1 − (5 − 𝑥1) = 1 (substitute 𝑥2 = 5 − 𝑥1)

2𝑥1 − 5 + 𝑥1 = 1 (simplify)

3𝑥1 − 5 = 1 (combine like terms)

3𝑥1 = 6 (move constant to RHS)

𝑥1 = 2 (solve for 𝑥1)

𝑥2 = 5 − 2 = 3 (substitute 𝑥1 = 2 into 𝑥2 = 5 − 𝑥1)

(𝑥1, 𝑥2) = (2, 3) (final solution: intersection point)
Conclusion:
The unique solution is:

(𝑥1, 𝑥2) = (2, 3)

Solution: Visualization

We can visualize both equations as straight lines in the coordinate plane. The
intersection point of these lines represents the unique solution [7].



8 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

−1 0 1 2 3 4 5 6
0

1

2

3

4

5

x1	+	x2	=	5 2x1	-	x2	=	1 Solution	(2,	3)

x1

x2

Figure 1.2: Interactive visualization of the system: x1 + x2 = 5 and 2x1 − x2 =
1

1.3.2 No Solution

The system has no solution. This happens when the equations are inconsistent,
typically represented by parallel lines that never intersect [1].

Example

Consider the following system:

𝑥1 + 𝑥2 = 4
𝑥1 + 𝑥2 = 6

Question:
Is there a pair (𝑥1, 𝑥2) that satisfies both equations simultaneously?

Solution

Let’s try solving:
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𝑥1 + 𝑥2 = 4
𝑥1 + 𝑥2 = 6

Subtracting (1) from (2):

(𝑥1 + 𝑥2) − (𝑥1 + 𝑥2) = 6 − 4

0 = 2 (contradiction)

Since we arrive at a contradiction, the system is inconsistent and has no solu-
tion.

Solution: Visualization

Graphically, the two equations are parallel lines. Since they never intersect,
there is no common solution point.

−2 0 2 4 6 8
−2

−1

0

1

2

3

4

5

6

x1	+	x2	=	4 x1	+	x2	=	6

x1

x2

Figure 1.3: Interactive visualization of the inconsistent SLE: x1 + x2 = 4 and x1
+ x2 = 6

1.3.3 Infinite Solutions

The system has infinitely many solutions. This occurs when the equations are
dependent, meaning they represent the same line (or plane) written in different
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forms [1].

Example

Consider the following system:

𝑥1 + 𝑥2 = 5
2𝑥1 + 2𝑥2 = 10

Question:
How many solutions does this system have?

Solution

Let’s check:

𝑥1 + 𝑥2 = 5
2𝑥1 + 2𝑥2 = 10

Notice that equation (2) is just twice equation (1):

2(𝑥1 + 𝑥2) = 2 × 5 = 10
Thus, both equations describe the same line.
This means there are infinitely many solutions.
Every pair (𝑥1, 𝑥2) such that

𝑥1 + 𝑥2 = 5
is a valid solution. For example:

• (𝑥1, 𝑥2) = (0, 5)

• (𝑥1, 𝑥2) = (2, 3)

• (𝑥1, 𝑥2) = (4, 1)

• etc.

Solution: Visualization

Graphically, both equations represent the same line. Hence, instead of inter-
secting at a single point, they overlap completely, which means infinitely many
solutions.
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−1 0 1 2 3 4 5 6
0

1

2

3

4

5

x1	+	x2	=	5 2x1	+	2x2	=	10

x1

x2

Figure 1.4: Interactive visualization of the dependent SLE: x1 + x2 = 5 and 2x1
+ 2x2 = 10

1.4 Matrix Operations

In the final part of Matrix Operations, we focus on three main concepts that are
widely used to solve systems of linear equations (SLE): Augmented Matrix, Ele-
mentary Row Operations (ERO), and Reduced Row Echelon Form (RREF).
These topics provide both the theoretical foundation and practical algorithms used in
engineering and numerical computation [1], [3], [6].

1.4.1 Augmented Matrix

Definition: An augmented matrix is a compact representation of a linear system
where the coefficient matrix and the constant (right-hand side) vector are written side-
by-side, separated by a vertical bar. This representation simplifies applying row opera-
tions and implementing algorithms like Gaussian elimination [1].

⎧{
⎨{⎩

𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏1

𝑎3𝑥1 + 𝑎4𝑥2 = 𝑏2

The system can be written in augmented matrix form:
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[
𝑎1 𝑎2 𝑏1

𝑎3 𝑎4 𝑏2
]

1.4.2 Elementary Row Operations

There are three elementary row operations that do not change the solution set of a
linear system [6]:

1. Swap two rows: 𝑅𝑖 ↔ 𝑅𝑗.

2. Multiply a row by a nonzero scalar: 𝑅𝑖 ← 𝑘𝑅𝑖, 𝑘 ≠ 0.

3. Add a multiple of one row to another: 𝑅𝑖 ← 𝑅𝑖 + 𝑘𝑅𝑗.

These operations are used to transform the augmented matrix toward Row Echelon
Form (REF) or Reduced Row Echelon Form (RREF). Note on determinants (square
coefficient matrices): swapping rows changes the sign of determinant, scaling a row
scales the determinant, and adding a multiple of another row does not change the
determinant [3].

Three basic row operations that do not change the solution set of an SLE:

Step 1: Eliminate entry (2,1)

𝑅2 → 𝑅2 − 𝑎3
𝑎1

𝑅1

[
𝑎1 𝑎2 𝑏1

0 𝑎4 − 𝑎3
𝑎1

𝑎2 𝑏2 − 𝑎3
𝑎1

𝑏1
]

Step 2: Normalize the pivot in row 2

𝑅2 → 1
𝑎4 − 𝑎3

𝑎1
𝑎2

𝑅2

⎡⎢⎢
⎣

𝑎1 𝑎2 𝑏1

0 1
𝑏2 − 𝑎3

𝑎1
𝑏1

𝑎4 − 𝑎3
𝑎1

𝑎2

⎤⎥⎥
⎦

Step 3: Eliminate entry (1,2)

𝑅1 → 𝑅1 − 𝑎2𝑅2
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⎡
⎢⎢
⎣

1 0 𝑏1𝑎4 − 𝑎2𝑏2
𝑎1𝑎4 − 𝑎2𝑎3

0 1 𝑎1𝑏2 − 𝑎3𝑏1
𝑎1𝑎4 − 𝑎2𝑎3

⎤
⎥⎥
⎦

Note:

• EROs preserve the solution set.

• Determinant effects (for square matrices):

– Swapping rows � changes the sign of determinant.

– Multiplying a row by 𝑘 � determinant multiplied by 𝑘.

– Adding a multiple of another row � determinant unchanged.

1.4.3 Reduced Row Echelon Form

RREF is a simplified form of a matrix obtained by applying elementary row oper-
ations (EROs), making the solution easy to read.

Characteristics of RREF [1], [6]:

1. Each nonzero row has a leading 1 (the first nonzero entry).

2. Each leading 1 appears to the right of the leading 1 in the row above.

3. Each pivot column has zeros in all other positions.

4. Any zero rows (if present) are placed at the bottom.

Closed-form solution (2×2 system).

For the system
𝑎1𝑥1 + 𝑎2𝑥2 = 𝑏1,
𝑎3𝑥1 + 𝑎4𝑥2 = 𝑏2,

the solution is:
𝑥1 = 𝑏1𝑎4 − 𝑎2𝑏2

𝑎1𝑎4 − 𝑎2𝑎3
, 𝑥2 = 𝑎1𝑏2 − 𝑎3𝑏1

𝑎1𝑎4 − 𝑎2𝑎3
.

Gaussian elimination reduces a system to row echelon form (REF), which is almost
upper triangular, and then solves by back substitution. Gauss–Jordan elimination
continues the process until the matrix is in RREF, allowing the solution to be read
directly from the augmented matrix without back substitution.
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1.4.4 Step-by-Step Example

Solve:

{
𝑥 + 2𝑦 = 5
3𝑥 − 𝑦 = 4

Initial augmented matrix:

[
1 2 5
3 −1 4 ]

Step 1 — Eliminate (2,1): 𝑅2 ← 𝑅2 − 3𝑅1

[
1 2 5
0 −7 −11 ]

Step 2 — Make leading 1 in row 2: 𝑅2 ← (− 1
7 )𝑅2.

[
1 2 5
0 1 11

7
]

Step 3 — Eliminate above leading 1: 𝑅1 ← 𝑅1 − 2𝑅2.

[
1 0 13

7

0 1 11
7

]

Final solution:

𝑥 = 13
7 , 𝑦 = 11

7

1.5 Gaussian REF

Gaussian methods are systematic ways to solve systems of linear equations (SLE).
The main idea: simplify the system step by step (forward elimination) until the matrix
is in Row Echelon Form (REF), then solve by back-substitution [1], [3].

1.5.1 Row Echelon Form (REF)

The Row Echelon Form (REF) is an intermediate step in Gaussian elimination with
the following properties [6]:

• The matrix looks like a triangle: all entries below each pivot are zero.
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• Each pivot (the first nonzero entry in a row) appears to the right of the pivot in
the row above.

• Any rows consisting entirely of zeros appear at the bottom of the matrix.

REF is obtained by forward elimination (elementary row operations). After REF is
reached, use back-substitution starting from the bottom row to compute the solution.

Example

Consider the following augmented matrix:

[
1 2 1 4
0 −5 1 −1 ]

This matrix represents the system:

𝑥1 + 2𝑥2 + 𝑥3 = 4
−5𝑥2 + 𝑥3 = −1

• In the first row, the pivot is the coefficient of 𝑥1, which is 1.
• In the second row, the pivot is −5 (for 𝑥2), and the entry below the pivot

in the first column is already 0.
• Therefore the matrix is already in Row Echelon Form.

Steps to obtain REF (Gaussian elimination — general procedure)

1. Choose a pivot column: Start from the leftmost column that has a nonzero
entry.

2. Select a pivot row: Choose a row with a nonzero entry in that column (often
the current row).

3. (Optional) Scale pivot to 1: Divide the pivot row by the pivot value if you
want a leading 1 (not required for REF; required for RREF).

4. Eliminate below pivot: Use row operations to make every entry below the
pivot equal to 0.

5. Move to the submatrix below and to the right: Repeat the process for the
remaining rows and columns.

6. Move zero rows to the bottom: If any row becomes all zeros, place it at the
bottom of the matrix.

Row operations allowed (do not change solution set):

• 𝑅𝑖 ↔ 𝑅𝑗 (swap two rows)
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• 𝑅𝑖 ← 𝑘𝑅𝑖 (multiply a row by a nonzero scalar 𝑘)

• 𝑅𝑖 ← 𝑅𝑖 + 𝑘𝑅𝑗 (add a multiple of one row to another)

Solution

From the REF example we have:

(1) 𝑥1 + 2𝑥2 + 𝑥3 = 4
(2) − 5𝑥2 + 𝑥3 = −1

Solve (2) for 𝑥3 in terms of 𝑥2:

−5𝑥2 + 𝑥3 = −1 ⟹ 𝑥3 = 5𝑥2 − 1
Substitute into (1):

𝑥1 + 2𝑥2 + (5𝑥2 − 1) = 4
Simplify:

𝑥1 + 7𝑥2 − 1 = 4 ⟹ 𝑥1 + 7𝑥2 = 5
Thus:

𝑥1 = 5 − 7𝑥2, 𝑥3 = 5𝑥2 − 1
Parameterize the solution by letting 𝑥2 = 𝑡 (free parameter). Then

𝑥1 = 5 − 7𝑡
𝑥2 = 𝑡
𝑥3 = 5𝑡 − 1

for any real number 𝑡.

1.5.2 Gauss–Jordan (RREF)

The Reduced Row Echelon Form (RREF) is the final stage of Gaussian elimination,
obtained using the Gauss–Jordan method. It goes further than Row Echelon Form
(REF) by ensuring that each pivot column contains a leading 1 with zeros both
below and above it [1], [6].
Key Properties of RREF:

• Each pivot (leading 1) is the only nonzero entry in its column.

• The pivot in each successive row appears to the right of the pivot in the row
above.

• Rows consisting entirely of zeros, if any, are always at the bottom.
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• This is the simplest form of a system: the solution can be read directly without
back-substitution.

Example

⎡
⎢⎢
⎣

1 0 0 𝑏1

0 1 0 𝑏2

0 0 1 𝑏3

⎤
⎥⎥
⎦

This corresponds to the system:

𝑥1 = 𝑏1
𝑥2 = 𝑏2
𝑥3 = 𝑏3

So the unique solution is:

𝑥1 = 𝑏1, 𝑥2 = 𝑏2, 𝑥3 = 𝑏3

Steps to Obtain RREF (Gauss–Jordan Elimination)

1. Transform to REF: Use Gaussian elimination to create a triangular form with
pivots.

2. Scale pivots to 1: Divide each pivot row so that the pivot element becomes
exactly 1.

3. Eliminate above pivots: Use row operations to make all entries above each
pivot equal to 0.

4. Check consistency: If a row becomes

[0 0 0 | 𝑏], 𝑏 ≠ 0,

then the system is inconsistent (no solution).

5. Read solution: Once in RREF, the solution can be read directly.

Consider the system:

𝑥1 + 2𝑥2 + 𝑥3 = 4
−5𝑥2 + 𝑥3 = −1

The RREF of its augmented matrix is:
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[
1 0 7 5
0 1 − 1

5
1
5

]

This means:

𝑥1 + 7𝑥3 = 5
𝑥2 − 1

5 𝑥3 = 1
5

Rewriting:

𝑥1 = 5 − 7𝑥3
𝑥2 = 1

5 + 1
5 𝑥3

Let
𝑥3 = 𝑡

(a free parameter). Then the solution set is:

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

5
1
5
0

⎤⎥
⎦

+ 𝑡 ⎡⎢
⎣

−7
1
5
1

⎤⎥
⎦

, 𝑡 ∈ ℝ.

1.5.3 Back Substitution

When we stop at Row Echelon Form (REF) rather than continuing to RREF, we
must use back substitution to solve the system [1], [6].

• Start solving from the bottom row (which involves fewer variables).

• Substitute upward step by step until all variables are expressed (or expressed in
terms of free parameters).

Example

Consider the augmented matrix in REF:

[
1 2 1 4
0 −5 1 −1

]

This corresponds to the system:

𝑥1 + 2𝑥2 + 𝑥3 = 4
−5𝑥2 + 𝑥3 = −1

Step 1: Start with the bottom row, From equation (2):
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−5𝑥2 + 𝑥3 = −1

Rearrange to express 𝑥2 in terms of 𝑥3:

𝑥2 = 1 + 𝑥3
5

Step 2: Substitute into the first row, Plug 𝑥2 = 1+𝑥3
5 into equation (1):

𝑥1 + 2 (1 + 𝑥3
5 ) + 𝑥3 = 4

Simplify:

𝑥1 + 2
5 + 2

5𝑥3 + 𝑥3 = 4

𝑥1 + 7
5𝑥3 + 2

5 = 4

𝑥1 = 4 − 2
5 − 7

5𝑥3

𝑥1 = 18
5 − 7

5𝑥3

Step 3: Express the solution set
Let 𝑥3 = 𝑡 ∈ ℝ (a free parameter). Then:

𝑥1 = 18
5 − 7

5𝑡

𝑥2 = 1 + 𝑡
5

𝑥3 = 𝑡

Final Solution (Parametric Form)

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

18
51
5
0

⎤⎥
⎦

+ 𝑡 ⎡⎢
⎣

− 7
51

5
1

⎤⎥
⎦

, 𝑡 ∈ ℝ.

1.6 Applied of SLE

Systems of Linear Equations (SLE) are widely used in real-world mining and geoscience
problems.
They provide a mathematical way to represent constraints and balances in produc-
tion, blending, transport, and geological modeling.
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1.6.1 Mining Operations

In mining operations, linear equations often appear when formulating real-world de-
cision problems.
They help transform complex constraints into mathematical form, making them easier
to analyze and solve [8], [9].
Some common applications include:

• Production planning: deciding how much ore to extract from different mines
to meet total demand.

• Blending problems: mixing ores of different grades to achieve required quality.

• Transportation optimization: minimizing costs of moving ore from mines to
processing plants.

Case Example

A company extracts ore from two mines (Mine A and Mine B).
Let:
- 𝑥1 = tons of ore from Mine A
- 𝑥2 = tons of ore from Mine B
The company faces the following requirements:

1. Production Target

𝑥1 + 𝑥2 = 100 (tons of ore required)

2. Metal Content Requirement

2𝑥1 + 3𝑥2 = 240 (metal content requirement)

1.6.2 Geology Modeling

In geology and mining engineering, mathematical equations are often used to model
subsurface structures and predict ore grades. These models are essential for
resource estimation, mine planning, and risk reduction in exploration. Some
common applications include:

• Representing subsurface layers using mathematical equations.

• Estimating unknown geological parameters from drilling data.

• 3D modeling of mineral deposits, which often requires solving large systems
of equations.
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Case Example

Suppose a geologist wants to predict the ore grade (𝐺) based on spatial coordi-
nates (𝑥1, 𝑥2) from drilling data. A multiple regression model can be used:

𝐺 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

where:

• 𝐺 = predicted ore grade (% or g/ton)

• 𝑥1 = Easting coordinate (m)

• 𝑥2 = Northing coordinate (m)

• 𝛽0, 𝛽1, 𝛽2 = regression coefficients to be estimated

Assume that drilling results have been collected as follows:

Drill
Hole

Coordinate 𝑥1
(Easting, m)

Coordinate 𝑥2
(Northing, m)

Ore Grade 𝐺
(%)

DH1 10 20 2.5
DH2 15 25 3.0
DH3 20 30 3.5

1.6.3 Safety & Risk

Some common linear applications in underground mining include:

• Modeling air flow and gas concentration in underground mines (ventilation
equations).

• Calculating safe load distribution for mine structures.

• Risk assessment models where multiple factors interact linearly.

A general abstract form is:

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = Safe threshold level

Below is a concrete example with physical interpretation and step-by-step solution.

Case Example

Suppose we define:

• 𝑥1 = control setting 1 (e.g., fan group A, dimensionless speed parameter)
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• 𝑥2 = control setting 2 (e.g., fan group B or auxiliary ventilation)

• 𝑥3 = control setting 3 (e.g., ventilation door/duct opening)

We have three constraints (example values chosen for consistency):

1. Total airflow target (m³/s):

𝑥1 + 𝑥2 + 𝑥3 = 300

2. Effective fresh-air contribution (weighted combination of controls):

0.5𝑥1 + 0.3𝑥2 + 0.2𝑥3 = 98

3. Safety metric (e.g., pressure/load distribution):

0.2𝑥1 + 0.1𝑥2 + 0.7𝑥3 = 112

Augmented matrix form:

⎡⎢
⎣

1 1 1 | 300
0.5 0.3 0.2 | 98
0.2 0.1 0.7 | 112

⎤⎥
⎦

1.6.4 Resource Allocation

Applications of linear models in resource allocation include:

• Optimizing the use of limited resources (machines, workers, energy).

• Scheduling shifts and equipment under constraints.

• Balancing multiple objectives such as cost, time, and productivity.

Case Example

Suppose a mining company must allocate resources to two tasks:

• 𝑥1 = hours allocated to excavation work

• 𝑥2 = hours allocated to transportation work

The constraints are:

2𝑥1 + 4𝑥2 ≤ 200 (available labor hours)

3𝑥1 + 𝑥2 ≤ 150 (available machine hours)
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Additionally, both decision variables must be non-negative:

𝑥1 ≥ 0, 𝑥2 ≥ 0
If the profit function is defined as:

𝑍 = 50𝑥1 + 40𝑥2

then the linear programming problem is:

Maximize 𝑍 = 50𝑥1 + 40𝑥2

subject to:

2𝑥1 + 4𝑥2 ≤ 200
3𝑥1 + 𝑥2 ≤ 150

𝑥1, 𝑥2 ≥ 0

1.6.5 Environmental Monitoring

Linear equations can also be applied to environmental monitoring in mining oper-
ations, where sustainability and safety are critical. Common applications include:

• Tracking pollution levels (air, water, soil) with sensor data.

• Balancing waste treatment inputs and outputs.

• Modeling the dispersion of contaminants using linear systems.

Case Example

A mining company monitors pollution from two main sources:
• 𝑥1 = emission level from the processing plant (in tons of CO� equivalent

per day)

• 𝑥2 = emission level from transportation activities (in tons of CO� equiv-
alent per day)

Each source contributes differently to the overall pollution index:
• The processing plant contributes 2 units per ton of emission (𝑐1 = 2).

• Transportation contributes 3 units per ton of emission (𝑐2 = 3).
The government regulation sets a pollution index target of 100 units.
Tasks:

1. Write down the linear equation that represents the pollution index require-
ment.



24 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

2. If the company emits 𝑥1 = 20 tons from the processing plant, how much 𝑥2
(transportation emission) is allowed to meet the target?

3. If transportation emits 𝑥2 = 10 tons, calculate the maximum processing
plant emission 𝑥1 allowed.

4. Interpret the meaning of these results in terms of environmental compli-
ance.

Hint: Start with the equation

2𝑥1 + 3𝑥2 = 100

Refrences



Chapter 2

Determinants

In the previous chapters, we studied Systems of Linear Equations (SLE) and solved
them using row reduction methods such as Gaussian elimination and Gauss–
Jordan elimination. These methods relied on transforming the augmented matrix
into Row Echelon Form (REF) or Reduced Row Echelon Form (RREF) [1],
lay2012linear?.
However, row reduction is not the only method to solve linear systems. Another powerful
tool is the determinant of a matrix, which provides:

• A criterion for whether a matrix is invertible.

• A method to solve linear systems directly using Cramer’s Rule.

• A way to describe geometric properties such as area and volume [3],
meyer2000?.

Thus, determinants build a natural bridge between row operations and more advanced
concepts like matrix inverse, eigenvalues, and geometric transformations. More
details about this topic can be visualized in the following Mind Map.

2.1 Definition of a Determinant

The determinant is a scalar value associated with a square matrix that provides im-
portant information about the matrix, such as invertibility, scaling of geometric objects,
and solutions of linear systems [1], lay2012linear?, meyer2000?.

2.1.1 Determinat 𝑀2×2

For a 2 × 2 matrix:

𝐴 = [𝑎 𝑏
𝑐 𝑑] , det(𝐴) = 𝑎𝑑 − 𝑏𝑐

25
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DETERMINANTS

Definition

Properties

Cramer

Geometry

Invertibility

Matrix 2x2

Matrix 3x3

Matrix n x n

Triangular

Row Ops

Invertible

Multiplicative

Formula

Example

Area 2D

Volume 3D

Independence

Non-singular

Singular

Shortcut

Figure 2.1: Mind Map of Determinants

2.1.2 Determinat 𝑀3×3

When dealing with a 3 × 3 matrix, one convenient method to calculate its determinant
is Sarrus’ Rule. This method provides a simple visual approach that avoids the longer
Laplace expansion process.

𝐴 = ⎡⎢
⎣

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎤⎥
⎦

, det(𝐴) = 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔 − 𝑏𝑑𝑖 − 𝑎𝑓ℎ

Note:

The Sarrus Rule is a shortcut method to compute the determinant.
Step 1. Rewrite the first two columns of 𝐴 to the right of the matrix:

𝑎 𝑏 𝑐 𝑎 𝑏
𝑑 𝑒 𝑓 𝑑 𝑒
𝑔 ℎ 𝑖 𝑔 ℎ

Step 2. Compute the sum of the products of the three downward diagonals:

• 𝑎 ⋅ 𝑒 ⋅ 𝑖

• 𝑏 ⋅ 𝑓 ⋅ 𝑔

• 𝑐 ⋅ 𝑑 ⋅ ℎ
So the downward sum is:

(𝑎𝑒𝑖) + (𝑏𝑓𝑔) + (𝑐𝑑ℎ)
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Step 3. Compute the sum of the products of the three upward diagonals:

• 𝑐 ⋅ 𝑒 ⋅ 𝑔

• 𝑎 ⋅ 𝑓 ⋅ ℎ

• 𝑏 ⋅ 𝑑 ⋅ 𝑖

So the upward sum is:

(𝑐𝑒𝑔) + (𝑎𝑓ℎ) + (𝑏𝑑𝑖)
Step 4. Subtract the two results:

det(𝐴) = (𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ) − (𝑐𝑒𝑔 + 𝑎𝑓ℎ + 𝑏𝑑𝑖)

Example

Let

𝐴 = ⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

Solution

Apply Sarrus’ Rule:

• Downward diagonals:
1 ⋅ 5 ⋅ 9 + 2 ⋅ 6 ⋅ 7 + 3 ⋅ 4 ⋅ 8 = 45 + 84 + 96 = 225

• Upward diagonals:
3 ⋅ 5 ⋅ 7 + 1 ⋅ 6 ⋅ 8 + 2 ⋅ 4 ⋅ 9 = 105 + 48 + 72 = 225

Thus:

det(𝐴) = 225 − 225 = 0
So the matrix 𝐴 is singular (non-invertible).

2.1.3 Determinat 𝑀𝑛×𝑛

So far, we have seen how to compute determinants of 2×2 and 3×3 matrices. For larger
matrices, however, the computation becomes more complex and tedious. To handle this,
two general approaches are commonly used:

1. Laplace Expansion (Cofactor Expansion) – expands the determinant along
a row or column using minors and cofactors.
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2. Row Reduction / Triangular Form – simplifies the matrix to an upper or lower
triangular form, where the determinant is the product of the diagonal entries [1],
lay2012linear?, meyer2000?.

Laplace Expansion

The Laplace expansion (Cofactor Expansion) allows us to compute the determi-
nant of any 𝑛 × 𝑛 matrix by expanding along a row or column.
For a matrix 𝐴 = [𝑎𝑖𝑗] of order 𝑛:

det(𝐴) =
𝑛

∑
𝑗=1

(−1)1+𝑗 𝑎1𝑗 𝑀1𝑗

where 𝑀1𝑗 is the determinant of the (𝑛 − 1) × (𝑛 − 1) submatrix obtained by deleting
the first row and the 𝑗-th column of 𝐴.
In general, expanding along the 𝑖-th row:

det(𝐴) =
𝑛

∑
𝑗=1

(−1)𝑖+𝑗 𝑎𝑖𝑗 𝑀𝑖𝑗

Here, the factor (−1)𝑖+𝑗 ensures the alternating signs (checkerboard pattern).

Example

Determinant of a 4 × 4 matrix by Laplace Expansion
Consider the matrix

𝐴 =
⎡
⎢⎢
⎣

1 2 0 3
4 1 −1 2
0 5 2 1
2 0 3 4

⎤
⎥⎥
⎦

.

We will compute det(𝐴) using Laplace Expansion along the first row.

Solution: Laplace Expansion along Row 3

We expand along the 3rd row:

det(𝐴) =
4

∑
𝑗=1

(−1)3+𝑗𝑎3𝑗𝑀3𝑗,

where 𝑀3𝑗 is the minor obtained by deleting row 3 and column 𝑗.
Step 1: Identify elements of row 3:

𝑅3 = [0, 5, 2, 1]
Notice 𝑎31 = 0, so the first term contributes 0.
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Step 2: Compute minor 𝑀32 (delete row 3, column 2):
Submatrix:

⎡⎢
⎣

1 0 3
4 −1 2
2 3 4

⎤⎥
⎦

.

Compute determinant using Sarrus’ Rule:

𝑀32 = 1((−1) ⋅ 4 − 2 ⋅ 3) − 0(4 ⋅ 4 − 2 ⋅ 2) + 3(4 ⋅ 3 − (−1) ⋅ 2)
= 1(−4 − 6) − 0(⋯) + 3(12 + 2)
= −10 + 0 + 42 = 32

Cofactor:

𝐶32 = (−1)3+2 ⋅ 𝑎32 ⋅ 𝑀32 = (−1)5 ⋅ 5 ⋅ 32 = −160
Step 3: Compute minor 𝑀33 (delete row 3, column 3):
Submatrix:

⎡⎢
⎣

1 2 3
4 1 2
2 0 4

⎤⎥
⎦

.

Compute determinant:

𝑀33 = 1(1 ⋅ 4 − 2 ⋅ 0) − 2(4 ⋅ 4 − 2 ⋅ 2) + 3(4 ⋅ 0 − 1 ⋅ 2)
= 1(4 − 0) − 2(16 − 4) + 3(0 − 2)
= 4 − 24 − 6 = −26

Cofactor:

𝐶33 = (−1)3+3 ⋅ 𝑎33 ⋅ 𝑀33 = (+1) ⋅ 2 ⋅ (−26) = −52
Step 4: Compute minor 𝑀34 (delete row 3, column 4):
Submatrix:

⎡⎢
⎣

1 2 0
4 1 −1
2 0 3

⎤⎥
⎦

.

Compute determinant:

𝑀34 = 1(1 ⋅ 3 − (−1) ⋅ 0) − 2(4 ⋅ 3 − (−1) ⋅ 2) + 0(4 ⋅ 0 − 1 ⋅ 2)
= 1(3 − 0) − 2(12 + 2) + 0(−2)
= 3 − 28 + 0 = −25

Cofactor:

𝐶34 = (−1)3+4 ⋅ 𝑎34 ⋅ 𝑀34 = (−1) ⋅ 1 ⋅ (−25) = 25
Step 5: Combine terms
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det(𝐴) = 0 + (−160) + (−52) + 25 = −187
Final Result:

det(𝐴) = −187

Row Reduction Method

While Laplace expansion is useful conceptually, it becomes very inefficient for large
matrices because the number of operations grows rapidly. A more practical method is
to transform 𝐴 into an upper triangular matrix using elementary row operations
(Gaussian elimination).

• The determinant of a triangular matrix is the product of its diagonal entries.

• However, we must track the effect of each row operation on the determinant:

1. Swapping two rows ⇒ determinant changes sign.

2. Multiplying a row by 𝑘 ⇒ determinant is multiplied by 𝑘.

3. Adding a multiple of one row to another ⇒ determinant unchanged.

Example

Determinant of a 4 × 4 matrix by row reduction,

𝐴 =
⎡
⎢⎢
⎣

1 2 0 3
4 1 −1 2
0 5 2 1
2 0 3 4

⎤
⎥⎥
⎦

.

We will perform Gaussian elimination to transform 𝐴 into an upper triangular
matrix 𝑈 . All row operations used are of the form 𝑅𝑖 ← 𝑅𝑖 + 𝑘𝑅𝑗 (adding a
multiple of one row to another), which do not change the determinant.

Solution

Step 0: Initial matrix

𝐴(0) =
⎡
⎢⎢
⎣

1 2 0 3
4 1 −1 2
0 5 2 1
2 0 3 4

⎤
⎥⎥
⎦

.

Step 1: Eliminate entries below pivot 𝑎11 = 1
Use 𝑅1 to eliminate the entries in column 1 of 𝑅2 and 𝑅4:
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• 𝑅2 ← 𝑅2 − 4𝑅1

• 𝑅4 ← 𝑅4 − 2𝑅1

Compute:

𝑅2 = [4, 1, −1, 2] − 4[1, 2, 0, 3] = [0, −7, −1, −10],
𝑅4 = [2, 0, 3, 4] − 2[1, 2, 0, 3] = [0, −4, 3, −2].

Thus

𝐴(1) =
⎡
⎢⎢
⎣

1 2 0 3
0 −7 −1 −10
0 5 2 1
0 −4 3 −2

⎤
⎥⎥
⎦

.

Step 2: Pivot at 𝑎22 = −7. Eliminate entries below it (column 2).
We eliminate the (3,2) and (4,2) entries using row 2.

• For row 3: factor = 5
−7 = −5

7 . Use 𝑅3 ← 𝑅3 − (− 5
7 )𝑅2 = 𝑅3 + 5

7 𝑅2.

• For row 4: factor = −4
−7 = 4

7 . Use 𝑅4 ← 𝑅4 − 4
7 𝑅2.

Compute:
5
7 𝑅2 = 5

7 [0, −7, −1, −10] = [0, −5, − 5
7 , − 50

7 ],

𝑅3 = [0, 5, 2, 1] + [0, −5, − 5
7 , − 50

7 ] = [0, 0, 2 − 5
7 , 1 − 50

7 ]

= [0, 0, 9
7 , − 43

7 ] .
and

4
7 𝑅2 = [0, −4, − 4

7 , − 40
7 ],

𝑅4 = [0, −4, 3, −2] − [0, −4, − 4
7 , − 40

7 ]

= [0, 0, 3 + 4
7 , −2 + 40

7 ] = [0, 0, 25
7 , 26

7 ] .
Thus

𝐴(2) =
⎡
⎢⎢
⎣

1 2 0 3
0 −7 −1 −10
0 0 9

7 − 43
7

0 0 25
7

26
7

⎤
⎥⎥
⎦

.

Step 3: Pivot at 𝑎33 = 9
7 . Eliminate entry below it (column 3).

Eliminate the (4,3) entry. Factor:

factor =
25
7
9
7

= 25
9 .
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Perform 𝑅4 ← 𝑅4 − 25
9 𝑅3.

Compute:

25
9 𝑅3 = 25

9 [0, 0, 9
7 , − 43

7 ] = [0, 0, 25
7 , − 1075

63 ],

𝑅4 = [0, 0, 25
7 , 26

7 ] − [0, 0, 25
7 , − 1075

63 ] = [0, 0, 0, 26
7 + 1075

63 ].

Compute the final entry:

26
7 = 234

63 , 234
63 + 1075

63 = 1309
63 .

So

𝑅4 = [0, 0, 0, 1309
63 ].

Now the matrix is upper triangular:

𝑈 =
⎡
⎢⎢
⎣

1 2 0 3
0 −7 −1 −10
0 0 9

7 − 43
7

0 0 0 1309
63

⎤
⎥⎥
⎦

.

Step 4: Determinant from diagonal product
Because all operations were of the form 𝑅𝑖 ← 𝑅𝑖 + 𝑘𝑅𝑗 (determinant-preserving),
the determinant of 𝐴 equals the product of the diagonal entries of 𝑈 :

det(𝐴) = 1 ⋅ (−7) ⋅ 9
7 ⋅ 1309

63 .

Simplify:

(−7) ⋅ 9
7 = −9,

so

det(𝐴) = −9 ⋅ 1309
63 = −9 ⋅ 1309

63 = −1309
7 = −187.

Therefore,

det(𝐴) = −187.

Remarks:

• Laplace expansion works for any 𝑛 × 𝑛 matrix.

• For larger matrices, row reduction is usually faster and less error-prone.
• This method also connects nicely with the earlier discussion of 3 × 3 deter-

minants using Sarrus’ Rule.
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2.2 Properties of Determinants

Determinants have several important properties that make them useful in linear al-
gebra. These properties help simplify computations, analyze matrix invertibility, and
understand geometric interpretations [1], lay2012linear?, meyer2000?:

2.2.1 Triangular Matrices

For any 𝑛 × 𝑛 upper or lower triangular matrix 𝑇 :

𝑇 =
⎡
⎢⎢
⎣

𝑡11 𝑡12 … 𝑡1𝑛
0 𝑡22 … 𝑡2𝑛
⋮ ⋮ ⋱ ⋮
0 0 … 𝑡𝑛𝑛

⎤
⎥⎥
⎦

, det(𝑇 ) =
𝑛

∏
𝑖=1

𝑡𝑖𝑖

Example

𝑇 = ⎡⎢
⎣

2 3 1
0 −1 4
0 0 5

⎤⎥
⎦

, det(𝑇 ) = 2 ⋅ (−1) ⋅ 5 = −10

2.2.2 Row Operations

Let 𝐴 be an 𝑛 × 𝑛 matrix:

Row swap

𝐴 = [1 2
3 4] , 𝑅1 ↔ 𝑅2 ⇒ det(swapped) = − det(𝐴)

Row Scaling

Multiplying a row by a scalar 𝑘 multiplies the determinant by 𝑘.

𝐴 = [1 2
3 4] , 2 ⋅ 𝑅1 ⇒ 𝐵 = [2 4

3 4]

Compute determinants:

det(𝐴) = 1 ⋅ 4 − 2 ⋅ 3 = −2

det(𝐵) = 2 ⋅ 4 − 4 ⋅ 3 = −4 = 2 ⋅ det(𝐴)
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Row addition

𝐴 = [1 2
3 4] , 𝑅2 → 𝑅2 + 3𝑅1 ⇒ det = det(𝐴)

2.2.3 Invertibility

A square matrix 𝐴 is invertible iff det(𝐴) ≠ 0.

Example

𝐴 = [1 2
3 4] , det(𝐴) = 1 ⋅ 4 − 2 ⋅ 3 = −2 ≠ 0

2.2.4 Multiplicative Property

For 𝐴, 𝐵 ∈ ℝ𝑛×𝑛:

det(𝐴𝐵) = det(𝐴) ⋅ det(𝐵)

Example

𝐴 = [1 0
0 2] , 𝐵 = [3 0

0 4] , det(𝐴𝐵) = (1 ⋅ 2)(3 ⋅ 4) = 24

2.2.5 Determinant of Transpose

det(𝐴𝑇 ) = det(𝐴)

Example

𝐴 = [1 2
3 4] , 𝐴𝑇 = [1 3

2 4] , det(𝐴𝑇 ) = −2 = det(𝐴)

2.2.6 Scalar Multiplication

det(𝑘𝐴) = 𝑘𝑛 ⋅ det(𝐴)
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Example

𝐴 = [1 2
3 4] , 𝑘 = 2, det(2𝐴) = 22 ⋅ (−2) = −8

2.2.7 Block Diagonal Matrices

𝐴 = [𝐵 0
0 𝐶] , det(𝐴) = det(𝐵) ⋅ det(𝐶)

Example

𝐵 = [2], 𝐶 = [1 3
0 4] , 𝐴 = ⎡⎢

⎣

2 0 0
0 1 3
0 0 4

⎤⎥
⎦

, det(𝐴) = 2 ⋅ (1 ⋅ 4 − 0 ⋅ 3) = 8

2.2.8 Zero Row or Column

If any row or column is all zeros, then det(𝐴) = 0.

Example

𝐴 = ⎡⎢
⎣

1 2 3
0 0 0
4 5 6

⎤⎥
⎦

, det(𝐴) = 0

2.2.9 Linear Dependence

If the rows (or columns) are linearly dependent:

det(𝐴) = 0

Example

𝐴 = ⎡⎢
⎣

1 2 3
2 4 6
0 1 1

⎤⎥
⎦

, row 2 = 2 * row 1 ⇒ det(𝐴) = 0
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2.3 Cramer’s Rule

Determinants allow us to solve linear systems using Cramer’s Rule. For a system of
𝑛 equations with 𝑛 unknowns 𝐴x = b where 𝐴 is an 𝑛 × 𝑛 matrix with det(𝐴) ≠ 0, the
solution is:

𝑥𝑖 = det(𝐴𝑖)
det(𝐴) , 𝑖 = 1, 2, … , 𝑛

Here, 𝐴𝑖 is the matrix formed by replacing the 𝑖-th column of 𝐴 with the vector b [1],
lay2012linear?, meyer2000?.

Example

𝑎1𝑥 + 𝑏1𝑦 = 𝑐1
𝑎2𝑥 + 𝑏2𝑦 = 𝑐2

Solution

The solution is:

𝑥 =
∣𝑐1 𝑏1
𝑐2 𝑏2

∣

∣𝑎1 𝑏1
𝑎2 𝑏2

∣
, 𝑦 =

∣𝑎1 𝑐1
𝑎2 𝑐2

∣

∣𝑎1 𝑏1
𝑎2 𝑏2

∣

This method is elegant but becomes computationally expensive for large 𝑛, where
row-reduction methods are more efficient.

2.4 Geometric Interpretation

Determinants are not only an algebraic tool but also have a geometric meaning.
For example:

• In 2D, the absolute value of the determinant of a 2 × 2 matrix formed by two
vectors gives the area of the parallelogram spanned by those vectors.

• In 3D, the absolute value of the determinant of a 3 × 3 matrix formed by three
vectors gives the volume of the parallelepiped spanned by those vectors.

• The sign of the determinant indicates the orientation (whether the vectors pre-
serve or reverse orientation) [1], lay2012linear?, meyer2000?.

This geometric interpretation provides an intuitive understanding of why a determinant
of zero implies linear dependence among vectors: the area or volume collapses to
zero.
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2.4.1 Area in 2D

For two vectors in 2D:

u = [𝑢1
𝑢2

] , v = [𝑣1
𝑣2

] ,

the determinant of the 2 × 2 matrix formed by these vectors gives the signed area of
the parallelogram spanned by u and v:

det([u v]) = ∣𝑢1 𝑣1
𝑢2 𝑣2

∣ = 𝑢1𝑣2 − 𝑢2𝑣1

• The absolute value |det([u v])| gives the area.

• The sign indicates the orientation (clockwise or counterclockwise).

Example

A mining engineer is mapping the cross-section of a mineral deposit. Two vectors
in the plane represent edges of a small parallelogram section of the deposit:

u = [2
3] , v = [1

4] .

Determine the area of the parallelogram formed by these two vectors.

Solution

The area of the parallelogram is given by the absolute value of the determi-
nant:

det([u v]) = ∣2 1
3 4∣ = 2 ⋅ 4 − 3 ⋅ 1 = 5

Thus, the area is:

Area = | det([u v])| = 5
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Visualization
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Figure 2.2: Visualization of Parallelogram Formed by Vectors u = [2,3] and v =
[1,4]

2.4.2 Volume in 3D

For three vectors in 3D:

u = ⎡⎢
⎣

𝑢1
𝑢2
𝑢3

⎤⎥
⎦

, v = ⎡⎢
⎣

𝑣1
𝑣2
𝑣3

⎤⎥
⎦

, w = ⎡⎢
⎣

𝑤1
𝑤2
𝑤3

⎤⎥
⎦

,

the determinant of the 3 × 3 matrix formed by these vectors gives the signed volume
of the parallelepiped spanned by u, v, w:

det([u v w]) = ∣
𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3

∣

• The absolute value |det([u v w])| gives the volume.

• The sign indicates the orientation in space (right-hand or left-hand system).
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Example: Mining Storage Container

A mining company is designing a custom-shaped container to store rare ore.
The container is a parallelepiped in 3D space, but the edges are not aligned
with the standard axes. The vectors representing the edges originating from
one corner are:

u = ⎡⎢
⎣

3
1
2
⎤⎥
⎦

, v = ⎡⎢
⎣

2
4
1
⎤⎥
⎦

, w = ⎡⎢
⎣

1
2
5
⎤⎥
⎦

.

Tasks:
1. Find the volume of the container.
2. Calculate the area of the parallelogram formed by edges v and w. 3.
Determine the height of the parallelepiped relative to the base formed by v
and w.

Solution

Step 1 – Volume using determinant:
The volume of a parallelepiped formed by vectors u, v, w is the absolute value of
the determinant of the matrix formed by these vectors:

𝑉 = ∣det⎡⎢
⎣

3 2 1
1 4 2
2 1 5

⎤⎥
⎦

∣

Compute the determinant:

det = 3(4⋅5−2⋅1)−2(1⋅5−2⋅2)+1(1⋅1−4⋅2) = 3(18)−2(1)+1(−7) = 54−2−7 = 45
So the volume:

𝑉 = |45| = 45 m3

Step 2 – Area of the base formed by v and w:
The area of a parallelogram formed by two vectors is the magnitude of their cross
product. Compute the cross product:

v × w = ⎡⎢
⎣

𝑣2𝑤3 − 𝑣3𝑤2
𝑣3𝑤1 − 𝑣1𝑤3
𝑣1𝑤2 − 𝑣2𝑤1

⎤⎥
⎦

= ⎡⎢
⎣

4 ⋅ 5 − 1 ⋅ 2
1 ⋅ 1 − 2 ⋅ 5
2 ⋅ 2 − 4 ⋅ 1

⎤⎥
⎦

= ⎡⎢
⎣

18
−9
0

⎤⎥
⎦

Magnitude of the cross product:

𝐴base = ‖v × w‖ = √182 + (−9)2 + 02 =
√

324 + 81 + 0 =
√

405 ≈ 20.12 m2

Step 3 – Height relative to the base:
Height of the parallelepiped is:

ℎ = Volume
Area of base = 45

20.12 ≈ 2.24 m
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Visualization

Vector	u
Vector	v
Vector	w
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Figure 2.3: 3D Parallelepiped with Shaded Surfaces

Remark:

Determinants also help determine whether vectors are linearly independent:

• If det([u v]) = 0 in 2D, vectors are collinear.

• If det([u v w]) = 0 in 3D, vectors are coplanar.

2.5 Invertibility

Determinants provide a quick test for the invertibility of a square matrix [1],
lay2012linear?, meyer2000?:

• Non-singular matrix (det(𝐴) ≠ 0):
The matrix 𝐴 is invertible, meaning an inverse exists:

𝐴−1 exists.
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• Singular matrix (det(𝐴) = 0):
The matrix 𝐴 is not invertible, meaning no inverse exists:

𝐴−1 does not exist.

This directly connects to solving linear systems 𝐴x = b:

• Non-singular matrix (det(𝐴) ≠ 0):
The system has a unique solution, which can be found using:

– Inverse method:

x = 𝐴−1b
– Gaussian elimination / RREF

• Singular matrix (det(𝐴) = 0):
The system may have:

– No solution (inconsistent system)

– Infinitely many solutions (dependent system)

Example: Non-singular

𝐴 = [2 1
3 4] , det(𝐴) = 2 ⋅ 4 − 1 ⋅ 3 = 5 ≠ 0

• 𝐴 is invertible.

• The system 𝐴x = b has a unique solution for any vector b.

Example: Singular

𝐵 = [1 2
2 4] , det(𝐵) = 1 ⋅ 4 − 2 ⋅ 2 = 0

• 𝐵 is non-invertible.

• The system 𝐵x = b may have no solution (if b is inconsistent) or in-
finitely many solutions (if b is in the column space of 𝐵).

Remark:

Determinants act as a shortcut to check invertibility before attempting more
computationally expensive methods like RREF or computing the inverse.

Refrences
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Chapter 3

Matrix Inverse

In this chapter, we explore the concept of the matrix inverse and its applications.
A mind map provides a structured overview of the key topics discussed:

MATRIX INVERSE

Definition

Formula / Methods

Properties

Visualization

Applications

Undo effect of A

Square matrices only

det(A) ≠ 0

Adjoint / Cofactor

Gauss-Jordan

(A⁻¹)⁻¹ = A

(AB)⁻¹ = B⁻¹A⁻¹

(A^T)⁻¹ = (A⁻¹)^T

AA⁻¹ = I

2D Grid / Square

3D Cube / Volume

Machine Allocation

Ore Transport

Mineral Concentration

Energy Distribution

Figure 3.1: Mind Map of Matrix Inverse

The matrix inverse is one of the most important concepts in linear algebra [1], [2],
lay2012linear?. Think of it as the matrix version of division for numbers. Just
like dividing a number 𝑏 by 𝑎 (where 𝑎 ≠ 0) gives 𝑥 = 𝑏/𝑎, the matrix inverse allows us
to “divide” by a matrix to solve equations. It is primarily used for solving systems
of linear equations (SLE) [3], meyer2000?.

For example, if we have 𝐴x = b where 𝐴 is a square matrix and b is a column vector,
the solution can be written as x = 𝐴−1b. Here, 𝐴−1 is the inverse of matrix 𝐴,

43



44 CHAPTER 3. MATRIX INVERSE

which “undoes” the effect of 𝐴 on x, similar to how 1/𝑎 undoes multiplication by 𝑎 for
numbers [4], trefethen1997?.

Key Notes:

• The inverse exists only for square matrices (𝑛 × 𝑛). Rectangular ma-
trices do not have inverses in the usual sense.

• Think of 𝐴−1 as the “undo button” for 𝐴:

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛

where 𝐼𝑛 is the identity matrix of size 𝑛×𝑛. - If a matrix is singular (det(𝐴) = 0),
the “undo button” does not exist.

3.1 Inverse Definition

A matrix 𝐵 is called the inverse of a square matrix 𝐴 if it satisfies:

𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.

• Notation: 𝐵 = 𝐴−1

• Existence condition: det(𝐴) ≠ 0

• If det(𝐴) = 0, then 𝐴 is called a singular matrix, and the inverse does not exist.

The inverse of a matrix plays the role of “division” in linear algebra: it allows us to
solve systems of linear equations efficiently by undoing the effect of multiplication by 𝐴
turn0search0?, turn0search1?.

3.2 Inverse Formula

In linear algebra, several methods can be used to compute the inverse of a square matrix.
One of the most classical and commonly taught approaches is the Adjoint (Cofactor)
Method, which expresses the inverse in terms of the determinant and the adjoint of
the matrix. This formula provides not only a theoretical foundation but also a practical
way to compute inverses for small matrices.

3.2.1 Adjoint / Cofactor Method

For a square matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛, the inverse is given by:
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𝐴−1 = 1
det(𝐴) adj(𝐴)

where adj(𝐴) is the adjoint matrix, obtained by taking the transpose of the cofactor
matrix of 𝐴.

• Condition: det(𝐴) ≠ 0

• If det(𝐴) = 0, then 𝐴 is not invertible (singular).

This method is practical for small matrices (e.g., 2 × 2 or 3 × 3), but computation-
ally expensive for large matrices, where Gaussian elimination or LU decomposition is
preferred [1], [3], lay2012linear?.

Note

Step 1: Adjoint (Adjugate) Matrix
The adjoint matrix adj(𝐴) is defined as the transpose of the cofactor matrix:

adj(𝐴) = [𝐶𝑗𝑖]
This means:

• Compute all cofactors 𝐶𝑖𝑗

• Then take the transpose to form adj(𝐴).

Step 2 Cofactor
The cofactor 𝐶𝑖𝑗 is defined as:

𝐶𝑖𝑗 = (−1)𝑖+𝑗 det(𝑀𝑖𝑗)
where 𝑀𝑖𝑗 is the minor of 𝐴, obtained by removing the 𝑖-th row and the 𝑗-th
column from 𝐴.

• The factor (−1)𝑖+𝑗 is called the cofactor sign.

• The cofactor signs follow a checkerboard pattern:

⎡
⎢
⎢
⎢
⎣

+ − + − …
− + − + …
+ − + − …
− + − + …
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

Step 3 Steps to Compute 𝐴−1 using the Adjoint Method

1. Compute the determinant det(𝐴). If det(𝐴) = 0, stop (no inverse
exists).
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2. Compute all minors 𝑀𝑖𝑗 for each element 𝑎𝑖𝑗.

3. Compute the cofactors using:

𝐶𝑖𝑗 = (−1)𝑖+𝑗 det(𝑀𝑖𝑗)

4. Construct the cofactor matrix 𝐶 = [𝐶𝑖𝑗].

5. Transpose the cofactor matrix to get adj(𝐴).

6. Apply the formula:

𝐴−1 = 1
det(𝐴) adj(𝐴)

Example: 2D Matrix

𝐴 = [𝑎 𝑏
𝑐 𝑑]

• Determinant: det(𝐴) = 𝑎𝑑 − 𝑏𝑐

• Cofactors:

– 𝐶11 = 𝑑, 𝐶12 = −𝑐, 𝐶21 = −𝑏, 𝐶22 = 𝑎

Cofactor matrix:
𝐶 = [ 𝑑 −𝑐

−𝑏 𝑎 ]

Adjoint:
adj(𝐴) = [ 𝑑 −𝑏

−𝑐 𝑎 ]

Thus:
𝐴−1 = 1

𝑎𝑑 − 𝑏𝑐 [ 𝑑 −𝑏
−𝑐 𝑎 ]

Example: 3D Matrix

𝐴 = ⎡⎢
⎣

1 2 3
0 4 5
1 0 6

⎤⎥
⎦

• Determinant:

det(𝐴) = 1(4 ⋅ 6 − 5 ⋅ 0) − 2(0 ⋅ 6 − 5 ⋅ 1) + 3(0 ⋅ 0 − 4 ⋅ 1)
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= 24 − (−10) − 12 = 22

• Some cofactors:

– 𝑀11 = [4 5
0 6] , det(𝑀11) = 24 ⟹ 𝐶11 = +24

– 𝑀12 = [0 5
1 6] , det(𝑀12) = −5 ⟹ 𝐶12 = +5

– 𝑀13 = [0 4
1 0] , det(𝑀13) = −4 ⟹ 𝐶13 = −4

(Continue this process for all 𝐶𝑖𝑗, then construct the cofactor matrix, transpose
it, and finally compute 𝐴−1).

Key Notes:

• The adjoint method is practical for small matrices (2×2, 3×3).

• For larger matrices, it is usually more efficient to use Gauss-Jordan
elimination or other numerical methods.

3.2.2 Gauss-Jordan Method

The Gauss–Jordan method is one of the most systematic ways to compute the inverse
of a square matrix.
Unlike the adjoint/cofactor method, it avoids computing determinants and cofactors,
which can become tedious for larger matrices.

If 𝐴 is an invertible 𝑛 × 𝑛 matrix, then there exists 𝐴−1 such that:

𝐴𝐴−1 = 𝐼𝑛

To find 𝐴−1, we apply row operations to reduce 𝐴 to the identity matrix, while
performing the same operations on 𝐼𝑛.
The resulting right-hand side will then be 𝐴−1 [1], [3], lay2012linear?.

Note:

Step 1: Form the Augmented Matrix
Construct the augmented matrix by placing the identity matrix 𝐼𝑛 to the right of
𝐴:

[𝐴 ∣ 𝐼𝑛]
This creates a block matrix with 𝐴 on the left and 𝐼𝑛 on the right.
Step 2: Apply Gauss–Jordan Elimination
Use elementary row operations to reduce the left block (𝐴) into the identity matrix
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𝐼𝑛. At the same time, apply those same operations to the right block. The goal
is to transform:

[𝐴 ∣ 𝐼𝑛] ⟶ [𝐼𝑛 ∣ 𝐴−1]
Step 3: Extract the Inverse
Once the left block is the identity matrix 𝐼𝑛, the right block will be the inverse of
𝐴:

[𝐴 ∣ 𝐼𝑛] ∼ [𝐼𝑛 ∣ 𝐴−1]

Example:

Let
𝐴 = [2 1

5 3]

Step 1: Form the augmented matrix

[𝐴 ∣ 𝐼2] = [2 1 ∣ 1 0
5 3 ∣ 0 1]

Step 2: Apply row operations

1. Make the pivot in the first row equal to 1:
𝑅1 → 1

2 𝑅1

[1 0.5 ∣ 0.5 0
5 3 ∣ 0 1]

2. Eliminate the 5 below the pivot:
𝑅2 → 𝑅2 − 5𝑅1

[1 0.5 ∣ 0.5 0
0 0.5 ∣ −2.5 1]

3. Scale the second row to make the pivot 1:
𝑅2 → 2𝑅2

[1 0.5 ∣ 0.5 0
0 1 ∣ −5 2]

4. Eliminate the 0.5 above the pivot:
𝑅1 → 𝑅1 − 0.5𝑅2

[1 0 ∣ 3 −1
0 1 ∣ −5 2 ]

Step 3: Extract the inverse

𝐴−1 = [ 3 −1
−5 2 ]
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Key Notes:

• This method is highly effective for both hand calculations (small
matrices) and computer algorithms (large matrices).

• If at any step a pivot element is 0, row exchanges may be needed.

• If the matrix cannot be reduced to 𝐼𝑛, then 𝐴 is singular and has no
inverse.

3.3 Inverse Properties

The inverse of a matrix has several important properties that are fundamental in linear
algebra.These properties describe how inverses behave under various operations such as
taking another inverse, multiplying matrices, or transposing them. They also establish
the necessary conditions for the existence of an inverse and its relation to the identity
matrix turn0search1?, turn0search0?, turn0search2?.

• Inverse of inverse: (𝐴−1)−1 = 𝐴
• Inverse of product: (𝐴𝐵)−1 = 𝐵−1𝐴−1

• Inverse of transpose: (𝐴𝑇 )−1 = (𝐴−1)𝑇

• Existence: det(𝐴) ≠ 0 ⇒ 𝐴−1 exists
• Non-existence: det(𝐴) = 0 ⇒ 𝐴−1 does not exist (singular)
• Identity relation: 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛

3.4 Inverse Visualizations

The matrix inverse can also be understood geometrically. An invertible matrix 𝐴
represents a linear transformation in space. Its inverse 𝐴−1 reverses that transfor-
mation, mapping transformed points back to their original positions.

3.4.1 2D Matrix

The concept of a matrix inverse can be better understood in 2D using a unit square
and its corner points. A 2 × 2 matrix can be seen as a way to move points in the
plane. The inverse matrix undoes that movement and brings the points back to their
original positions.

Example

Imagine working with an underground mining survey grid:

• Original Square:
The survey grid starts from (0, 0) with corners: (0, 0), (1, 0), (0, 1), (1, 1).
This represents an ideal survey map, perfectly aligned and scaled.
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• After Matrix 𝐴: Due to measurement errors in the field (e.g., compass
deviation, magnetic interference, or narrow tunnel conditions), the survey
grid may become skewed or distorted. The square then turns into a
parallelogram. In practice, this is like a survey map drawn with errors in
scale or orientation.

• After 𝐴−1

By applying the inverse matrix, the distorted data can be corrected. The
parallelogram is restored back to the original square. This is similar to
correcting a survey map so it matches the proper engineering coordinate
system.

Key Notes:

• Matrix 𝐴 = represents the distortion in the survey grid.

• Inverse Matrix 𝐴−1 = provides the correction that restores the map.

• Determinant det(𝐴) = shows whether the correction is possible.

– If det(𝐴) = 0, the grid collapses into a line → information is lost →
the map cannot be corrected.
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Visualization

(0,0) (1,0)

(1,1)(0,1)

(0,0)

(1,0)

(1,1)

(0,1)

(0,0) (1,0)

(1,1)(0,1)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

Original
After	A
After	A⁻¹

2D	Matrix	Inverse	Visualization	(Mining	Grid)

x₁

x₂

OriginalOriginal

After	AAfter	A

After	A⁻¹After	A⁻¹

Figure 3.2: 2D Matrix Inverse in Mining Grid

3.4.2 3D Matrix Inverse

A 3 × 3 matrix in 3D space is closely related to the concept of volume and the
existence of an inverse:

• If det(𝐴) ≠ 0, then 𝐴−1 exists.

• The determinant det(𝐴) gives the volume scaling factor.

• If det(𝐴) = 0, the unit cube collapses into a lower dimension (a plane or a
line) → no volume → no inverse.

• 𝐴−1 restores the cube to its original geometry.

Example

In mining engineering, this is important in block modeling:

• 𝐴 modifies the unit cube (mining block).
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• det(𝐴) indicates how much the ore volume is scaled.

• 𝐴−1 ensures we can recover the true geometry for accurate resource
estimation.

𝐴 = ⎡⎢
⎣

1 2 0
0 1 3
2 −1 1

⎤⎥
⎦

, 𝐴−1 = 1
9

⎡⎢
⎣

4 −2 6
6 1 −3

−2 2 1
⎤⎥
⎦

Key Notes:

• det(𝐴) = 9 ⇒ volume scaled by factor 9.

• After 𝐴: the original cube is transformed into a parallelepiped with 9
times the volume. This represents how a mining block might be distorted
due to coordinate transformation or survey error.

• After 𝐴−1: the parallelepiped is transformed back into the original cube,
ensuring that the true block geometry is recovered for accurate mine
planning and resource estimation.
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Visualization

Matrix	A	vs	A⁻¹	on	a	Unit	Cube

WebGL	is	not	supported	by	your	browser	-	visit	https://get.webgl.org	for	more	info

Figure 3.3: Transformation by A and A�¹ on a Unit Cube

3.5 Applied of Invers

Here are some example problems showing applications of matrix inversion in min-
ing operations.

3.5.1 Mining Equipment Allocation

A mine has three types of machines: Excavator (E), Dump Truck (D), and Con-
veyor (C). Each machine produces a certain output per hour:

Machine Ore (ton) Waste (ton) Energy (kWh)
E 5 2 10
D 2 3 5
C 1 0 3

If the total ore, waste, and energy required per hour are:
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Ore = 20, Waste = 15, Energy = 50

Determine the number of machines of each type needed using inverse matrix.

3.5.2 Ore Transport System

Three locations in a mine have different transport capacities and interdependencies:

⎧{
⎨{⎩

𝑥1 + 2𝑥2 + 𝑥3 = 100
2𝑥1 + 𝑥2 + 3𝑥3 = 150
𝑥1 + 𝑥2 + 2𝑥3 = 120

• 𝑥1, 𝑥2, 𝑥3 = number of trucks used on routes 1, 2, and 3.
Use inverse matrix to determine 𝑥1, 𝑥2, 𝑥3.

3.5.3 Mineral Concentration Modeling

A mineral separation process produces three by-products: A, B, C. The relationship
between raw material and products is:

⎡⎢
⎣

2 1 1
1 3 2
1 2 2

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

100
150
120

⎤⎥
⎦

Calculate 𝑥1, 𝑥2, 𝑥3 = raw materials used per hour using 𝐴−1.

3.5.4 Energy Distribution

A mine has three sectors: Excavation, Transportation, and Processing. Energy
(kWh) required in each sector depends on the number of machine units:

⎡⎢
⎣

3 1 2
2 4 1
1 1 3

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

60
70
50

⎤⎥
⎦

Use inverse matrix to find the optimal machine distribution 𝑥1, 𝑥2, 𝑥3.

Refrences



Chapter 4

Matrix Factorization

In this chapter, we explore the concept of matrix factorization and its applications. A
mind map provides a structured overview of the key topics discussed:

MATRIX FACTORIZATION

Purpose / Benefits

Types

Applications

Simplify Solutions

Numerical Efficiency

Basis for Algorithms

LU Decomposition

QR Decomposition

Cholesky Decomposition

Singular Value Decomposition (SVD)

Non-negative Matrix Factorization

Solving Linear Systems

Optimization Problems

Recommender Systems

Data Compression

Figure 4.1: Mind Map of Matrix Factorization

Matrix factorization is a powerful tool in linear algebra that decomposes a matrix into a
product of two or more matrices. It is widely used in solving linear systems, numerical
algorithms, optimization, and data analysis [3], meyer2000?.

55
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4.1 Purpose / Benefits

Matrix factorization is useful for several reasons, particularly in simplifying computa-
tions and supporting advanced methods in linear algebra.

Reason Description
Simplify Solutions Decomposing a matrix into

simpler matrices can make
solving linear systems faster and
easier.

Numerical Efficiency Factorization allows for stable
and efficient computations,
especially for large matrices.

Basis for Algorithms Many advanced algorithms in
numerical linear algebra rely on
matrix factorization as a
foundation.

4.2 Types of Matrix Factorization

Several types of matrix factorizations are commonly used:

4.2.1 LU Decomposition

• Decomposes a square matrix 𝐴 into a product of a lower triangular matrix 𝐿 and
an upper triangular matrix 𝑈 :

𝐴 = 𝐿𝑈
• Useful for solving linear systems and inverting matrices efficiently.

4.2.2 QR Decomposition

• Decomposes a matrix 𝐴 into an orthogonal matrix 𝑄 and an upper triangular
matrix 𝑅:

𝐴 = 𝑄𝑅
• Often used in least squares problems and eigenvalue computations.

4.2.3 Cholesky Decomposition

• Applicable to symmetric, positive-definite matrices.



4.1. PURPOSE / BENEFITS 57

• Decomposes 𝐴 as:

𝐴 = 𝐿𝐿𝑇

where 𝐿 is a lower triangular matrix.

• Common in optimization and numerical simulations.

4.2.4 Singular Value Decomposition

• Any 𝑚 × 𝑛 matrix 𝐴 can be decomposed as:

𝐴 = 𝑈Σ𝑉 𝑇

where 𝑈 and 𝑉 are orthogonal matrices and Σ is diagonal with singular values.

• Widely used in data compression, dimensionality reduction, and recommender
systems.

4.2.5 Non-negative Matrix Factorization

• Decomposes a matrix 𝐴 into matrices 𝑊 and 𝐻 with non-negative entries:

𝐴 ≈ 𝑊𝐻
• Used in feature extraction, text mining, and image processing.

4.3 Applications

Matrix factorization has diverse applications across engineering, data science, and ap-
plied mathematics. The table below summarizes key use cases:

Application Area Description Methods Commonly Used
Solving Linear Systems Factorizations such

as LU or Cholesky
allow faster and
more stable
solutions to 𝐴𝑥 = 𝑏.

LU, Cholesky

Optimization Problems Many optimization
algorithms rely on
matrix
factorizations to
improve
computational
efficiency.

QR, Cholesky
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Application Area Description Methods Commonly Used
Recommender Systems SVD and NMF are

used in
collaborative
filtering for
predicting user
preferences.

SVD, NMF

Data Compression SVD reduces
dimensionality of
data while
preserving essential
structure, widely
used in image and
signal processing.

SVD

4.3.1 Solving Linear Systems with LU

Suppose we have a linear system:

𝐴𝑥 = 𝑏, 𝐴 = ⎡⎢
⎣

2 1 1
4 −6 0

−2 7 2
⎤⎥
⎦

, 𝑏 = ⎡⎢
⎣

5
−2
9

⎤⎥
⎦

, 𝑥 = ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

LU decomposition:

𝐴 = 𝐿𝑈 = ⎡⎢
⎣

1 0 0
2 1 0

−1 −1 1
⎤⎥
⎦

⎡⎢
⎣

2 1 1
0 −8 −2
0 0 3

⎤⎥
⎦

Solve in two steps:

1. Forward substitution 𝐿𝑦 = 𝑏:

⎡⎢
⎣

1 0 0
2 1 0

−1 −1 1
⎤⎥
⎦

⎡⎢
⎣

𝑦1
𝑦2
𝑦3

⎤⎥
⎦

= ⎡⎢
⎣

5
−2
9

⎤⎥
⎦

⟹ 𝑦1 = 5, 𝑦2 = −12, 𝑦3 = 16

2. Backward substitution 𝑈𝑥 = 𝑦:

⎡⎢
⎣

2 1 1
0 −8 −2
0 0 3

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

5
−12
16

⎤⎥
⎦

⟹ 𝑥3 = 16
3 , 𝑥2 = 1

6, 𝑥1 = 11
12

Solution:
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𝑥 = ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

11
121
616
3

⎤⎥
⎦

4.3.2 Optimization Problems

Matrix factorization is widely used in optimization to improve computational effi-
ciency and simplify complex calculations. Many optimization algorithms require
solving linear systems or decomposing matrices multiple times, and factorization helps
speed up these computations.

Example: Quadratic Optimization Problem

Suppose we want to minimize a quadratic function:

𝑓(𝑥) = 1
2𝑥𝑇 𝑄𝑥 − 𝑏𝑇 𝑥

where 𝑄 is a symmetric positive definite matrix, 𝑏 is a vector, and 𝑥 is the variable
vector:

𝑄 = ⎡⎢
⎣

4 2 0
2 5 1
0 1 3

⎤⎥
⎦

, 𝑏 = ⎡⎢
⎣

2
−1
3

⎤⎥
⎦

, 𝑥 = ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

Step 1: Factorize 𝑄 using Cholesky decomposition

Since 𝑄 is symmetric positive definite:

𝑄 = 𝐿𝐿𝑇 , 𝐿 = ⎡⎢
⎣

2 0 0
1 2 0
0 0.5

√
2.75

⎤⎥
⎦

Step 2: Solve 𝑄𝑥 = 𝑏 using forward and backward substitution

1. Forward substitution: 𝐿𝑦 = 𝑏

⎡⎢
⎣

2 0 0
1 2 0
0 0.5

√
2.75

⎤⎥
⎦

⎡⎢
⎣

𝑦1
𝑦2
𝑦3

⎤⎥
⎦

= ⎡⎢
⎣

2
−1
3

⎤⎥
⎦

⟹ 𝑦1 = 1, 𝑦2 = −1.5, 𝑦3 ≈ 2.70

2. Backward substitution: 𝐿𝑇 𝑥 = 𝑦

⎡⎢
⎣

2 1 0
0 2 0.5
0 0

√
2.75

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

1
−1.5
2.70

⎤⎥
⎦

⟹ 𝑥3 ≈ 1.63, 𝑥2 ≈ −1.92, 𝑥1 ≈ 1.46
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Solution:

𝑥 ≈ ⎡⎢
⎣

1.46
−1.92
1.63

⎤⎥
⎦

Key Takeaways:

• Factorization (like LU or Cholesky) allows efficient repeated solutions when
𝑄 changes slightly, common in iterative optimization.

• Reduces computational cost from 𝑂(𝑛3) to roughly 𝑂(𝑛2) per solve in large
systems.

• Ensures numerical stability, critical in sensitive optimization problems.

4.3.3 Recommender Systems

Matrix factorization plays a crucial role in collaborative filtering, which is widely
used in recommender systems to predict user preferences based on historical data.

Problem Setup: User-Item Ratings

Suppose we have a user-item rating matrix 𝑅:

𝑅 =
⎡
⎢⎢
⎣

5 3 0 1
4 0 0 1
1 1 0 5
0 0 5 4

⎤
⎥⎥
⎦

• Rows represent users (𝑢1, 𝑢2, 𝑢3, 𝑢4)

• Columns represent items (𝑖1, 𝑖2, 𝑖3, 𝑖4)

• A value of 0 indicates a missing rating.

Step 1: Factorize 𝑅 using low-rank approximation

We approximate 𝑅 by the product of two smaller matrices:

𝑅 ≈ 𝑈𝑉 𝑇

where:
- 𝑈 ∈ ℝ4×2 represents user features
- 𝑉 ∈ ℝ4×2 represents item features

Example:
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𝑈 =
⎡
⎢⎢
⎣

1 0.5
0.9 0.4
0.2 1
0.1 0.9

⎤
⎥⎥
⎦

, 𝑉 =
⎡
⎢⎢
⎣

1 0.3
0.8 0.5
0.2 1
0.5 0.7

⎤
⎥⎥
⎦

Step 2: Predict missing ratings

The predicted rating for user 𝑢𝑖 and item 𝑖𝑗 is:

𝑅̂𝑖𝑗 = 𝑈𝑖 ⋅ 𝑉 𝑇
𝑗

Example: Predict the missing rating for 𝑢1 on item 𝑖3:

𝑅̂13 = [1, 0.5] ⋅ [0.2, 1]𝑇 = 1 ∗ 0.2 + 0.5 ∗ 1 = 0.7

Step 3: Recommendation

• Recommend items with highest predicted ratings for each user.

• Helps in personalized suggestions even with sparse data.

Key Takeaways:

• SVD or NMF (Non-negative Matrix Factorization) are common factorization
methods.

• Reduces dimensionality of the rating matrix while capturing latent user and
item features.

• Enables scalable and accurate recommendations for large datasets.

4.3.4 Data Compression

Matrix factorization is widely used in data compression to reduce the dimensionality
of datasets while retaining important structure. This is especially common in images,
videos, and signals.

Problem Setup: Image as a Matrix

Suppose we have a grayscale image represented as a matrix 𝐴:

𝐴 = ⎡⎢
⎣

255 200 180
240 190 170
230 180 160

⎤⎥
⎦

Each entry represents the intensity of a pixel (0 = black, 255 = white).

Step 1: Apply Singular Value Decomposition (SVD)
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We factorize 𝐴 into three matrices:

𝐴 = 𝑈Σ𝑉 𝑇

where:
- 𝑈 contains left singular vectors (features of rows)
- Σ is a diagonal matrix with singular values (importance of features)
- 𝑉 𝑇 contains right singular vectors (features of columns)
Example:

Σ = ⎡⎢
⎣

600 0 0
0 50 0
0 0 10

⎤⎥
⎦

Step 2: Reduce Rank for Compression
Keep only the largest 𝑘 singular values (rank-𝑘 approximation):

𝐴𝑘 = 𝑈𝑘Σ𝑘𝑉 𝑇
𝑘

For example, keeping 𝑘 = 2 largest singular values:

Σ2 = [600 0
0 50]

Step 3: Reconstruct Compressed Data
The compressed matrix 𝐴2 approximates 𝐴 with fewer data:

𝐴2 ≈ ⎡⎢
⎣

254 199 179
239 189 169
231 181 161

⎤⎥
⎦

• Notice that the image is almost identical but requires less storage.

• Compression ratio improves as 𝑘 decreases.

Key Takeaways:

• SVD is effective for low-rank approximation and noise reduction.

• Useful in image compression, signal processing, and dimensionality
reduction.

• Retains the most important features while discarding less significant informa-
tion.
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Chapter 5

Vector Spaces

In this chapter, we explore the concept of vector spaces and their fundamental prop-
erties. A mind map provides a structured overview of the key topics discussed:

VECTOR SPACES

Definition

Properties

Examples

Applications

Set of Vectors

Commutative addition

Associative addition

Zero vector exists

Additive inverse exists

Scalar multiplication properties

Euclidean space ℝⁿ

Polynomial spaces

Matrix spaces

Function spaces

Solving linear systems

Computer graphics

Data analysis & ML

Control & signal processing

Figure 5.1: Mind Map of Vector Spaces

Vector spaces are a fundamental concept in linear algebra and have significant appli-
cations in mining engineering. A vector space is a set of vectors that is closed under
vector addition and scalar multiplication, satisfying properties such as commutativity,
associativity, the existence of a zero vector, and additive inverses.
In the context of mining:

• Ore Modeling: Vectors can represent ore grades at different locations in a
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mine. This allows for geostatistical analysis and estimation of ore quality across
a deposit.

• Resource Allocation: Equipment, labor, and material assignments can be
expressed as vectors, enabling efficient planning and optimization of mining
operations.

• Geospatial Analysis: Positions of mining points, boreholes, or sensors are
naturally represented in ℝ3, allowing for 3D modeling, visualization, and spatial
transformations.

• Production Planning: Production rates over time can be modeled as vectors,
facilitating adjustments and optimization of extraction schedules.

• Risk Assessment: Safety levels or hazard indices across mine zones can be
represented as vectors. Norms of these vectors help quantify overall risk and
guide mitigation strategies.

Vector spaces provide a rigorous mathematical framework that underpins linear sys-
tem solutions, optimization, and modeling in mining. They also enable a unified
understanding of matrices, polynomials, and function spaces, making them essential for
advanced mining analytics and operational decision-making [3], meyer2000?.

5.1 Definition

A set 𝑉 is a vector space over a field 𝔽 if it satisfies the following conditions:

1. Closure under addition:
For all 𝑢, 𝑣 ∈ 𝑉 , 𝑢 + 𝑣 ∈ 𝑉 .

2. Closure under scalar multiplication:
For all 𝑣 ∈ 𝑉 and 𝑐 ∈ 𝔽, 𝑐𝑣 ∈ 𝑉 .

3. Zero vector exists:
There exists a vector 0 ∈ 𝑉 such that 𝑣 + 0 = 𝑣 for all 𝑣 ∈ 𝑉 .

4. Additive inverse exists:
For each 𝑣 ∈ 𝑉 , there exists −𝑣 ∈ 𝑉 such that 𝑣 + (−𝑣) = 0.

5. Commutativity of addition:
𝑢 + 𝑣 = 𝑣 + 𝑢 for all 𝑢, 𝑣 ∈ 𝑉 .

6. Associativity of addition:
(𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 .

7. Distributivity of scalar multiplication over vector addition:
𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣.

8. Distributivity of scalar multiplication over field addition:
(𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣.
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9. Compatibility of scalar multiplication:
(𝑎𝑏)𝑣 = 𝑎(𝑏𝑣).

10. Identity element of scalar multiplication:
1𝑣 = 𝑣.

These properties ensure that vector addition and scalar multiplication be-
have in a consistent and predictable way.

5.2 Properties

Vector spaces exhibit several important properties that can be used to simplify analysis
and computations:

Property Description
Commutative Addition 𝑢 + 𝑣 = 𝑣 + 𝑢
Associative Addition (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤)
Zero Vector Exists 0 ∈ 𝑉 such that 𝑣 + 0 = 𝑣
Additive Inverse For 𝑣 ∈ 𝑉 , −𝑣 ∈ 𝑉 satisfies 𝑣 + (−𝑣) = 0
Scalar Multiplication 𝑐𝑣 ∈ 𝑉 for 𝑐 ∈ 𝔽 and 𝑣 ∈ 𝑉
Distributive Laws 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣, (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣
Compatibility (𝑎𝑏)𝑣 = 𝑎(𝑏𝑣)
Multiplicative Identity 1𝑣 = 𝑣

5.3 Examples of Vector Spaces

Vector spaces can take many forms. Common examples include:

1. Euclidean space ℝ𝑛

The set of all 𝑛-dimensional real vectors:

ℝ𝑛 = {𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑇 ∶ 𝑥𝑖 ∈ ℝ}

2. Polynomial spaces
All polynomials of degree ≤ 𝑛:

𝑃𝑛 = {𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + ... + 𝑎𝑛𝑥𝑛 ∶ 𝑎𝑖 ∈ ℝ}

3. Matrix spaces
All 𝑚 × 𝑛 matrices over ℝ:

𝑀𝑚×𝑛 = {𝐴 = [𝑎𝑖𝑗] ∶ 𝑎𝑖𝑗 ∈ ℝ}

4. Function spaces
Continuous functions on an interval [𝑎, 𝑏]:

𝐶[𝑎, 𝑏] = {𝑓 ∶ [𝑎, 𝑏] → ℝ, 𝑓 continuous}
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5.4 Applications

Vector spaces provide a powerful framework to model and analyze mining operations.
Examples include:

5.4.1 Ore Grade Estimation

Ore grades at different locations in a mine can be represented as vectors:

g = [𝑔1, 𝑔2, 𝑔3, ..., 𝑔𝑛]𝑇

where 𝑔𝑖 is the ore grade at location 𝑖.
Using vector operations and interpolation techniques (e.g., Kriging), we can estimate
ore quality across the deposit.

5.4.2 Resource Allocation

Equipment, labor, and material allocation can be modeled as vectors:

x = [𝑥1, 𝑥2, ..., 𝑥𝑚]𝑇

where 𝑥𝑖 represents the amount of resource 𝑖 assigned.
Vector addition and scalar multiplication help in scaling and combining allocation strate-
gies for optimal production.

5.4.3 Geospatial Modeling

Positions of mining points, boreholes, or sensors can be expressed in ℝ3:

p𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]𝑇

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are coordinates of point 𝑖.
Operations in vector spaces enable transformations, rotations, and translations for 3D
mine modeling and visualization.

5.4.4 Production Planning

Production rates over multiple time periods can be represented as vectors:

r = [𝑟1, 𝑟2, ..., 𝑟𝑇 ]𝑇

Vector addition allows combining different schedules, while scalar multiplication adjusts
production levels to meet targets efficiently.
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5.4.5 Safety and Risk Analysis

Risk levels of different zones in a mine can be modeled as vectors:

s = [𝑠1, 𝑠2, ..., 𝑠𝑘]𝑇

Vector norms (‖s‖) provide a measure of overall risk, and vector operations help in
evaluating mitigation strategies across zones.

Summary:
Using vector spaces, mining engineers can represent complex multi-dimensional data,
perform calculations efficiently, and optimize operational decisions. This provides a
strong mathematical foundation for geostatistics, production planning, and risk assess-
ment in mining.
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Chapter 6

Inner Product Spaces

In this chapter, we explore the concept of inner product spaces and their fundamental
properties. A mind map provides a structured overview of the key topics discussed:

INNER PRODUCT SPACES

Definition

Properties

Examples

Applications

Vector space with inner product

Positive-definite

Linear in first argument

Conjugate symmetry

Norm can be derived

Defines orthogonality

Euclidean space ℝⁿ

Function spaces

Polynomial spaces

Ore grade similarity

Sensor signal correlations

Optimization & projections

Spatial estimation & kriging

Figure 6.1: Mind Map of Inner Product Spaces

Inner product spaces extend vector spaces by introducing a notion of length and angle
between vectors. They provide a structured way to measure similarity, correlation, and
projections of data represented as vectors.

In the context of mining engineering:

• Ore Similarity: Ore grades at different locations can be represented as vectors
in ℝ𝑛. The inner product allows computation of similarity measures between
samples, aiding in ore classification and blending chiles2012?, rubinstein2016?.
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• Sensor Signal Analysis: Signals from monitoring equipment or geotechnical
sensors can be treated as vectors. Inner products enable correlation analysis,
anomaly detection, and pattern recognition [3].

• Resource Allocation Optimization: Tasks such as distributing equipment,
workforce, and materials can be modeled as vectors, and inner products can
support least-squares optimization to minimize cost or maximize efficiency
meyer2000?.

• Spatial Estimation / Geostatistics: Inner products underlie kriging and
other spatial interpolation methods, enabling accurate estimation of mineral
concentrations at unsampled locations chiles2012?.

• 3D Modeling and Projections: Positions of boreholes, tunnels, or ore bodies in
ℝ3 can be analyzed using inner products to compute angles, distances, and orthog-
onal projections, useful for mine planning and visualization rubinstein2016?.

Inner product spaces provide a rigorous way to quantify length, similarity, and or-
thogonality of vectors, which is crucial for optimization, geostatistical modeling,
and operational decision-making in mining. They extend the utility of vector spaces
by enabling precise measurement and projection operations that underpin advanced an-
alytics and planning [3], meyer2000?, chiles2012?, rubinstein2016?.

6.1 Definition

An inner product space is a vector space 𝑉 equipped with an inner product ⟨⋅, ⋅⟩ ∶
𝑉 × 𝑉 → ℝ (or ℂ) that satisfies:

1. Positivity:

⟨𝑣, 𝑣⟩ ≥ 0, ∀𝑣 ∈ 𝑉

and ⟨𝑣, 𝑣⟩ = 0 ⟺ 𝑣 = 0.

2. Linearity in the first argument:

⟨𝑎𝑢 + 𝑏𝑣, 𝑤⟩ = 𝑎⟨𝑢, 𝑤⟩ + 𝑏⟨𝑣, 𝑤⟩

for scalars 𝑎, 𝑏 and vectors 𝑢, 𝑣, 𝑤 ∈ 𝑉 .

3. Conjugate symmetry (for complex spaces):

⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩

4. Real symmetry (for real spaces):

⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩
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6.2 Properties

The inner product induces several important properties:

• Norm / Length:

‖𝑣‖ = √⟨𝑣, 𝑣⟩

• Distance:

𝑑(𝑢, 𝑣) = ‖𝑢 − 𝑣‖

• Angle between vectors:

cos 𝜃 = ⟨𝑢, 𝑣⟩
‖𝑢‖‖𝑣‖

• Orthogonality:
Two vectors 𝑢, 𝑣 are orthogonal if ⟨𝑢, 𝑣⟩ = 0.

• Projection:
The projection of 𝑢 onto 𝑣 is

proj𝑣(𝑢) = ⟨𝑢, 𝑣⟩
⟨𝑣, 𝑣⟩ 𝑣

6.3 Examples

1. Euclidean space ℝ𝑛

Standard inner product:

⟨𝑢, 𝑣⟩ =
𝑛

∑
𝑖=1

𝑢𝑖𝑣𝑖

2. Function space 𝐿2[𝑎, 𝑏]

⟨𝑓, 𝑔⟩ = ∫
𝑏

𝑎
𝑓(𝑥)𝑔(𝑥)𝑑𝑥

3. Polynomial space

⟨𝑝, 𝑞⟩ =
𝑛

∑
𝑖=0

𝑝(𝑖)𝑞(𝑖)

4. Matrix space

⟨𝐴, 𝐵⟩ = trace(𝐴𝑇 𝐵)
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6.4 Applications

• Ore Similarity and Blending:
Vectors represent ore grades at different locations. Inner products measure simi-
larity for classification and blending strategies.

• Sensor Data Analysis:
Signals from monitoring sensors can be represented as vectors. Inner products
allow correlation and anomaly detection.

• Resource Allocation Optimization:
Allocation of equipment, labor, and materials can be modeled as vectors. Inner
products are used in least-squares optimization to minimize costs or maximize
efficiency.

• Spatial Estimation / Geostatistics:
Inner products underpin kriging and other interpolation methods for estimating
mineral concentrations at unsampled locations.

• 3D Modeling and Projections:
Positions of boreholes, tunnels, and ore bodies in ℝ3 allow calculations of angles,
distances, and orthogonal projections, aiding mine planning and visualization.

• Risk Assessment:
Safety indices across mine zones can be represented as vectors. Norms and pro-
jections help quantify risk and guide mitigation strategies.
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Chapter 7

Orthogonality

In this chapter, we explore the concept of orthogonality in vector and inner product
spaces, along with its fundamental properties. A mind map provides a structured
overview of the key topics discussed:

ORTHOGONALITY

Definition

Properties

Examples

Applications

Vectors with zero inner product

Linearly independent

Pythagorean theorem

Orthogonal projection

Orthogonal complement

Euclidean space ℝⁿ

Function spaces

Polynomial spaces

Ore grade decomposition

Sensor signal separation

Resource allocation optimization

Principal Component Analysis

3D spatial modeling & projections

Figure 7.1: Mind Map of Orthogonality in Inner Product Spaces

Orthogonality is a key concept in inner product spaces, describing vectors that are per-
pendicular to each other. Two vectors 𝑢 and 𝑣 are orthogonal if their inner product
satisfies 𝑢 ⋅ 𝑣 = 0. Orthogonal vectors provide a framework for decomposition, projec-
tions, and simplification of vector representations.

In the context of mining engineering:

• Ore Classification: Different ore samples can be represented as vectors in ℝ𝑛.
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Orthogonal vectors indicate uncorrelated ore characteristics, which is useful for
separating ore types or creating independent quality indices chiles2012?.

• Sensor Data Decorrelation: Sensor measurements across mine sites can be
transformed into orthogonal components to reduce redundancy and highlight
independent signal features, aiding in anomaly detection and predictive mainte-
nance [3].

• Projection for Resource Optimization: Tasks such as workforce or equipment
assignment can be projected onto orthogonal directions to isolate independent
effects, supporting least-squares optimization and operational efficiency
meyer2000?.

• Geostatistical Modeling: Spatial data vectors can be decomposed into or-
thogonal components, facilitating kriging, spatial variance analysis, and reducing
multicollinearity in predictive models rubinstein2016?.

• 3D Spatial Planning: Orthogonality in ℝ3 helps in tunnel design, shaft align-
ment, and modeling ore body orientations, ensuring minimal interference and
accurate geometric calculations chiles2012?.

Orthogonality provides a robust tool for simplifying complex vector interactions,
enabling decomposition, projection, and independent analysis. This is essential for opti-
mization, geostatistical modeling, and operational planning in mining, extend-
ing the analytical capabilities of inner product spaces [3], meyer2000?, chiles2012?,
rubinstein2016?.

7.1 Definition

Two vectors 𝑢 and 𝑣 in an inner product space 𝑉 are orthogonal if their inner product
is zero:

⟨𝑢, 𝑣⟩ = 0

Key points:

• Orthogonal vectors are “perpendicular” in a generalized sense.
• Orthogonality extends to sets of vectors: a set {𝑣1, 𝑣2, … , 𝑣𝑛} is orthogonal if

⟨𝑣𝑖, 𝑣𝑗⟩ = 0 for 𝑖 ≠ 𝑗.
• If additionally ‖𝑣𝑖‖ = 1, the set is orthonormal.

7.2 Properties

• Pythagorean Theorem:
If 𝑢 ⟂ 𝑣, then

‖𝑢 + 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2
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• Linear Independence:
Nonzero orthogonal vectors are linearly independent.

• Projection:
The orthogonal projection of 𝑢 onto 𝑣 is

proj𝑣(𝑢) = ⟨𝑢, 𝑣⟩
⟨𝑣, 𝑣⟩ 𝑣

• Orthogonal Complement:
For a subspace 𝑊 ⊂ 𝑉 ,

𝑊 ⟂ = {𝑣 ∈ 𝑉 ∶ ⟨𝑣, 𝑤⟩ = 0, ∀𝑤 ∈ 𝑊}

7.3 Examples

1. Euclidean space ℝ2 or ℝ3

Standard basis vectors are orthogonal:

𝑒1 = ⎡⎢
⎣

1
0
0
⎤⎥
⎦

, 𝑒2 = ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝑒3 = ⎡⎢
⎣

0
0
1
⎤⎥
⎦

2. Function space 𝐿2[𝑎, 𝑏]
Functions 𝑓 and 𝑔 are orthogonal if

∫
𝑏

𝑎
𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 0

3. Polynomial space
Polynomials 𝑝𝑖(𝑥) and 𝑝𝑗(𝑥) can be orthogonal under a weighted inner product

⟨𝑝𝑖, 𝑝𝑗⟩ = ∫
𝑏

𝑎
𝑝𝑖(𝑥)𝑝𝑗(𝑥)𝑤(𝑥)𝑑𝑥 = 0

7.4 Applications

• Ore Grade Decomposition:
Orthogonal vectors can represent independent ore grade variations. This
allows separation of correlated and uncorrelated components in ore modeling
chiles2012?.

• Signal Processing / Sensor Analysis:
Orthogonal signals reduce interference and enable independent feature extraction
from geotechnical or seismic sensors [3].

• Resource Allocation Optimization:
Using orthogonal vectors in task allocation ensures non-overlapping re-
sponsibilities, minimizing redundancy in equipment or workforce assignments
meyer2000?.
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• 3D Spatial Modeling:
Orthogonal basis vectors in ℝ3 support coordinate transformations, visualiza-
tion of tunnels, boreholes, and ore bodies, and accurate geometric calculations for
mine planning rubinstein2016?.

• Principal Component Analysis (PCA):
Orthogonal directions (principal components) are used to reduce dimensionality of
ore grade datasets while preserving maximum variance, aiding in geostatistical
modeling and risk assessment [3].
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Chapter 8

Linear Transformations

In this chapter, we explore the concept of linear transformations in vector and in-
ner product spaces, along with their fundamental properties. A mind map provides a
structured overview of the key topics discussed:

LINEAR TRANSFORMATIONS

Definition

Properties

Examples

Applications

Function Preserving

Additivity: T(u+v)=T(u)+T(v)

Homogeneity: T(cu)=cT(u)

Kernel & Range

Matrix representation

Scaling / Dilation

Rotation

Reflection

Projection

Ore body transformations

Sensor signal transformations

Optimization in planning

3

3D mine modeling

PCA for ore data

Figure 8.1: Mind Map of Linear Transformations

Linear transformations are functions between vector spaces that preserve vector addition
and scalar multiplication. They provide a framework to map vectors from one space to
another while maintaining the structure of the space.
In the context of mining engineering:

• Ore Body Mapping & Alignment: Linear transformations can represent
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rotations, scaling, and translations of ore bodies to align geological survey
data from multiple sources, ensuring consistency in 3D models chiles2012?.

• Geotechnical Sensor Data Processing: Measurements from strain gauges,
accelerometers, or seismic sensors can be linearly transformed to extract
independent components, filter noise, and improve signal interpretation [3].

• Production & Resource Planning: Extraction schedules, equipment deploy-
ment, and workforce assignments can be modeled as linear transformations to
optimize operations under given constraints meyer2000?.

• 3D Mine Design & Modeling: Tunnel layouts, boreholes, and ore body
geometries can be transformed in ℝ3 to enable visualization, simulation, and
coordinate system adjustments for mine planning rubinstein2016?.

• Dimensionality Reduction of Ore Grade Data: Linear transformations such
as Principal Component Analysis (PCA) identify orthogonal directions that
maximize variance, helping to simplify datasets, reduce computational complexity,
and enhance geostatistical modeling [3].

8.1 Definition

A transformation 𝑇 ∶ 𝑉 → 𝑊 between vector spaces 𝑉 and 𝑊 is linear if, for all
𝑢, 𝑣 ∈ 𝑉 and scalars 𝑐 ∈ ℝ:

𝑇 (𝑢 + 𝑣) = 𝑇 (𝑢) + 𝑇 (𝑣), 𝑇 (𝑐𝑢) = 𝑐 𝑇 (𝑢)

Key concepts:

• Kernel (Null Space):

ker(𝑇 ) = {𝑣 ∈ 𝑉 ∶ 𝑇 (𝑣) = 0}

• Range (Image):

range(𝑇 ) = {𝑇 (𝑣) ∶ 𝑣 ∈ 𝑉 }

• Matrix Representation:
Every linear transformation can be represented by a matrix relative to chosen
bases, enabling computation and composition.

8.2 Properties

• Additivity:

𝑇 (𝑢 + 𝑣) = 𝑇 (𝑢) + 𝑇 (𝑣)
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• Homogeneity (Scalar Multiplication):

𝑇 (𝑐𝑢) = 𝑐 𝑇 (𝑢)
• Kernel & Range: Describe the null space and image of 𝑇 .

• Matrix Representation: Enables computation, composition, and application
of transformations.

8.3 Examples

1. Scaling / Dilation:

𝑇 (𝑥) = 𝑘𝑥

Stretches or shrinks vectors by a factor 𝑘.
2. Rotation:

Rotates vectors around an origin in ℝ2 or ℝ3.

3. Reflection:
Reflects vectors across a line, plane, or hyperplane.

4. Projection:
Projects vectors onto a subspace.

8.4 Applications

• Ore Body Transformations:
Linear transformations can adjust survey data for modeling and alignment of
ore bodies chiles2012?.

• Sensor Signal Analysis:
Transform signals from monitoring equipment for feature extraction or filter-
ing, enabling better interpretation of geotechnical or seismic data [3].

• Optimization of Resources:
Apply linear mappings to planning constraints and allocation strategies for
workforce, equipment, and materials meyer2000?.

• 3D Mine Modeling:
Transform mine coordinates for visualization, simulation, and planning in
ℝ3 rubinstein2016?.

• PCA Transformations:
Reduce dimensionality of ore grade datasets while preserving key variance, aiding
geostatistical modeling and predictive analytics [3].

References



80 CHAPTER 8. LINEAR TRANSFORMATIONS



Chapter 9

Eigenvalues

In this chapter, we explore the concept of eigenvalues and eigenvectors, their prop-
erties, and applications. A mind map provides a structured overview of the key topics
discussed:

EIGENVALUES & EIGENVECTORS

Definition

Properties

Examples

Applications

λ and v: Av=λv

Characteristic polynomial

Diagonalization

Algebraic & geometric multiplicity

2x2 matrices

Diagonal matrices

Symmetric matrices

Ore grade variability

Machine & structural vibrations

PCA for dimensionality reduction

Slope & tunnel stability

Stress-strain decomposition

Figure 9.1: Mind Map of Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental concepts in linear algebra. For a linear
transformation represented by a matrix 𝐴, an eigenvector 𝑣 satisfies:

𝐴𝑣 = 𝜆𝑣

where 𝜆 is the eigenvalue associated with 𝑣. Eigenvalues describe scaling factors
along certain directions (eigenvectors) and are central to understanding the behavior of
linear systems.

In the context of mining engineering:
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• Ore Grade Variability: Eigenvectors can identify principal directions of
variation in ore properties, and eigenvalues quantify the magnitude of these
variations chiles2012?.

• Machine & Structural Vibrations: Vibration modes of mining equipment
or tunnels correspond to eigenvectors, with eigenvalues representing frequencies,
aiding maintenance and safety analysis [3].

• Principal Component Analysis (PCA): Eigenvectors of the covariance
matrix determine principal components, enabling dimensionality reduction of ore
grade datasets while preserving maximum variance [3].

• Slope & Tunnel Stability: Eigenvalue analysis of stiffness or stress matrices
helps predict failure directions and magnitudes, improving safety and design
meyer2000?.

• Stress-Strain Decomposition: In rock mechanics, eigenvectors of the stress
tensor indicate principal stress directions, and eigenvalues quantify stress magni-
tude for modeling and simulation rubinstein2016?.

9.1 Definition

An eigenvector 𝑣 ≠ 0 of a square matrix 𝐴 satisfies:

𝐴𝑣 = 𝜆𝑣

where 𝜆 is the corresponding eigenvalue.

• Eigenvectors define directions preserved by the transformation.

• Eigenvalues define scaling factors along these directions.

9.2 Properties

• Characteristic Polynomial:

det(𝐴 − 𝜆𝐼) = 0

Solutions 𝜆 are eigenvalues of 𝐴.

• Diagonalization:
If 𝐴 has 𝑛 linearly independent eigenvectors, 𝐴 can be written as:

𝐴 = 𝑃𝐷𝑃 −1
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where 𝐷 is a diagonal matrix of eigenvalues and the columns of 𝑃 are the corre-
sponding eigenvectors.

• Multiplicity:

– Algebraic multiplicity: Number of times an eigenvalue appears as a root.

– Geometric multiplicity: Dimension of the eigenspace corresponding to the
eigenvalue.

9.3 Examples

1. 2x2 Matrix:

𝐴 = [4 1
2 3]

2. Diagonal Matrix: Eigenvalues are the diagonal entries, and eigenvectors are
standard basis vectors.

3. Symmetric Matrix: Real eigenvalues with orthogonal eigenvectors.

9.4 Applications

• Ore Grade Analysis: Identify principal directions of variability and correlations
between ore properties.

• Vibration Analysis: Determine natural frequencies and mode shapes of mining
equipment or structures.

• PCA for Ore Data: Reduce dimensionality while preserving variance for
geostatistical modeling.

• Stability Analysis: Assess slope, tunnel, or foundation stability using eigen-
value decomposition of stiffness matrices.

• Stress-Strain Modeling: Decompose stress tensors to identify principal stresses
and directions in rock mechanics.

References
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Chapter 10

Case Studies

In this chapter, we present case studies applying all the concepts covered in the pre-
vious chapters, from systems of linear equations to eigenvalues, within the context of
mining engineering. A mind map provides a structured overview of how the topics
interrelate:

CASE STUDIES

Ore Grade Modeling

Sensor Data Analysis

Mine Planning & Optimization

Slope Stability Analysis

Ventilation System Optimization

SLE & Matrix Inverse

Determinants

Matrix Factorization

Vector & Inner Product

Orthogonality

Linear Transformations

Eigenvalues

Vector & Inner Product

Orthogonality

Linear Transformations

Eigenvalues & PCA

SLE & Linear Transformations

Matrix Factorization & Inverse

Orthogonality & Inner Product

Eigenvalues

SLE & Factorization

Determinants

Vector & Inner Product

Orthogonality

Linear Transformations

Eigenvalues

SLE & Inverse

Matrix Factorization

Vector & Inner Product

Orthogonality

Linear Transformations

Eigenvalues

Figure 10.1: Mind Map of Case Studies in Mining Engineering
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10.1 Ore Grade Modeling

• SLE & Matrix Inverse: Solve for unknown ore grade distributions from sample
measurements using linear systems.

• Determinants: Check solvability and dependency of ore sampling equations.

• Matrix Factorization (LU/Cholesky): Efficiently solve large sparse systems
representing ore grade correlations.

• Vector & Inner Product Spaces: Represent ore grades as vectors and measure
similarity between samples.

• Orthogonality: Decompose ore grade vectors into independent components.

• Linear Transformations: Rotate or scale ore body data for alignment of
surveys.

• Eigenvalues: Determine principal directions of ore grade variability for PCA and
risk assessment.

10.2 Sensor Data Analysis

• Vector Spaces & Inner Products: Model sensor readings as vectors to
measure correlations.

• Orthogonality: Separate independent signal components for anomaly detection.

• Linear Transformations: Filter and transform signals for feature extraction.

• Eigenvalues & PCA: Reduce dimensionality while preserving important vari-
ance in geotechnical sensor datasets.

10.3 Mine Planning and Optimization

• SLE & Linear Transformations: Model resource allocation, scheduling, and
material flows.

• Matrix Factorization & Inverse: Solve optimization problems efficiently
using linear algebra.

• Orthogonality & Inner Product: Project tasks onto independent directions
to minimize interference.

• Eigenvalues: Analyze stiffness matrices, stress tensors, and vibration modes to
ensure tunnel stability and equipment safety.
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10.4 Slope Stability Analysis

• SLE & Matrix Factorization: Solve equilibrium equations for slopes under
various load conditions.

• Determinants: Check dependency of stress and force equations to ensure
solvability.

• Vector & Inner Product Spaces: Represent force vectors and displacement
vectors in slope models.

• Orthogonality: Decompose stress and displacement vectors into independent
components.

• Linear Transformations: Transform slope models under different coordinate
systems for simulation.

• Eigenvalues: Determine critical directions of stress and potential failure planes.

10.5 Ventilation System Optimization

• SLE & Matrix Inverse: Solve airflow distribution and pressure balance
equations in underground tunnels.

• Matrix Factorization (LU/Cholesky): Efficiently solve large systems repre-
senting complex ventilation networks.

• Vector & Inner Product Spaces: Model airflow vectors and velocity correla-
tions.

• Orthogonality: Separate independent airflow components for identifying
bottlenecks.

• Linear Transformations: Simulate airflow changes due to opening/closing of
shafts or fans.

• Eigenvalues: Identify dominant modes in airflow or pressure fluctuations for
system stability and optimization.
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