

Linear Algebra

Bakti Siregar, M.Sc., CDS

Table of contents

Preface 3
Advantages of This Book . 3
About the Author . 4
Acknowledgments . 4
Feedback & Suggestions . 4

1 Introduction 5
1.1 Key Concepts in Linear Algebra: . 5

1.1.1 Vectors and Vector Spaces . 5
1.1.2 Matrices and Matrix Operations 6
1.1.3 Systems of Linear Equations . 7
1.1.4 Linear Transformations . 8

1.2 Applications of Linear Algebra . 10
1.2.1 Finance: Portfolio Optimization 10
1.2.2 Business: Linear Regression . 10
1.2.3 Machine Learning: Matrix Multiplication in Neural Networks . . 10
1.2.4 Physics and Engineering: Stress and Strain 11
1.2.5 Computer Graphics: 3D Rotation 11
1.2.6 Natural Language Processing: Word Embeddings 11
1.2.7 Image Processing: Image Compression 12
1.2.8 Economics: Input-Output Model 12
1.2.9 E-commerce: Recommendation System 12
1.2.10 Health: Medical Imaging . 12

2 Vectors 13
2.1 Definition . 13
2.2 Properties . 13

2.2.1 Dimension . 14
2.2.2 Types of Vectors . 14
2.2.3 Addition and Subtraction . 14
2.2.4 Scalar Multiplication . 14
2.2.5 Magnitude . 15
2.2.6 Dot Product . 15
2.2.7 Cross Product . 15

2.3 Simple Applied . 16
2.3.1 Vectors in 2D . 16
2.3.2 Vectors in 3D . 21

1

2 TABLE OF CONTENTS

2.4 K-Means Clustering . 25
2.4.1 Step 1: Data Preparation . 25
2.4.2 Step 2: Initialization . 26
2.4.3 Step 3: Assignment . 26
2.4.4 Step 4: Assign Customers to Clusters 27
2.4.5 Step 5: Update Centroids . 27
2.4.6 Repeat Steps . 27

2.5 Use Vector in Python . 28

3 Matrix 29
3.1 Definition of a Matrix . 29
3.2 General Form of a Matrix . 29
3.3 Matrix Operations . 30

3.3.1 Addition and Subtraction . 30
3.3.2 Multiplication . 30
3.3.3 Transpose . 32

3.4 Determinant . 32
3.4.1 Calculating the Determinant: . 32
3.4.2 Determinant Calculation Methods 33
3.4.3 Properties of Determinants: . 35

3.5 Inverse . 36
3.5.1 How to Calculate the Inverse of a Matrix: 36
3.5.2 Properties of Inverses: . 37
3.5.3 Study Case in Data Science . 37

3.6 Use Matrices in Python . 38

4 SLE 39
4.1 Introduction . 39

4.1.1 Function . 39
4.1.2 Equation . 40
4.1.3 Functions vs Equations . 41

4.2 SLE in 2D . 41
4.2.1 Substitution . 41
4.2.2 Elimination . 43
4.2.3 Augmented Matrix . 44
4.2.4 Invers Matrix . 46
4.2.5 Graphical . 47

4.3 SLE in 3D . 49
4.3.1 Invers Matrix Method . 49
4.3.2 Graphical Method . 51

4.4 SLE in n-Dimensions . 52
4.4.1 Write in Matrix Form . 53
4.4.2 Ensure A is Invertible . 53
4.4.3 Find the Inverse of Matrix A . 54
4.4.4 Multiply 𝐴−1 by B . 54

4.5 Case Study of SLE . 54
4.5.1 Overview: XYZ Manufacturing Co. 54
4.5.2 Industry: Consumer Goods . 54
4.5.3 Products . 54
4.5.4 Objective . 55

TABLE OF CONTENTS 3

4.5.5 Constraints . 55
4.5.6 System of Equations . 55
4.5.7 Decision Variables . 55
4.5.8 Goals . 55
4.5.9 Coefficient Matrix 𝐴 . 56
4.5.10 Constant Matrix 𝐵 . 56
4.5.11 Python Code to Solve the System 56

4.6 SLE in Python . 57

5 Linear Transformations 59
5.1 2D Linear Transformation . 59

5.1.1 2D Rotation . 59
5.1.2 2D Reflection . 61
5.1.3 2D Scaling . 62
5.1.4 2D Shearing . 63
5.1.5 2D Translation . 64

5.2 3D Linear Transformation . 66
5.2.1 3D Rotation . 67
5.2.2 3D Reflection . 68
5.2.3 3D Scaling . 70
5.2.4 3D Shearing . 73
5.2.5 3D Translation . 75

5.3 Case Study 1 . 77
5.3.1 Background . 77
5.3.2 Objectives . 77
5.3.3 Solution Steps . 78

5.4 Case Study 2 . 79
5.4.1 Problem Context . 79
5.4.2 Steps of the Analysis . 79
5.4.3 Code Implementation . 79

5.5 Case Study 3 . 80
5.5.1 Background . 81
5.5.2 Given Data . 81
5.5.3 Problem Statement . 81
5.5.4 Solution . 81

5.6 Linear Transformations in Python . 83

6 Eigenvalues and Eigenvectors 85
6.1 Eigenvalue . 85
6.2 Eigenvector . 86
6.3 Eigenvalues & Eigenvectors 2D . 86

6.3.1 Step 1: Finding Eigenvalues . 86
6.3.2 Step 2: Finding Eigenvectors . 87
6.3.3 Calculation using Python . 87
6.3.4 Visualization using Python . 88

6.4 Eigenvalues & Eigenvectors 2D . 91
6.4.1 Step 1: Finding Eigenvalues . 91
6.4.2 Step 2: Finding Eigenvectors . 92
6.4.3 Summary . 94
6.4.4 Calculation using Python . 94

4 TABLE OF CONTENTS

6.4.5 Visualization using Python . 96
6.5 Case Study . 98

6.5.1 Problem Statement . 99
6.5.2 Dataset . 99
6.5.3 Step 1: Data Preparation . 99
6.5.4 Step 2: Compute the Covariance Matrix 100
6.5.5 Step 3: Calculate Eigenvalues and Eigenvectors 100
6.5.6 Step 4: Transform the Data . 101
6.5.7 Step 5: Visualize the PCA Result 101

7 Singular Value Decomposition 105
7.1 What is SVD? . 105
7.2 SVD in 2D Matrix . 105

7.2.1 Step 1: Compute 𝐴𝑇 𝐴 and 𝐴𝐴𝑇 106
7.2.2 Step 2: Compute Eigenvalues and Singular Values 106
7.2.3 Step 3: Compute 𝑉 (Right Singular Vectors) 107
7.2.4 Step 4: Compute 𝑈 (Left Singular Vectors) 107
7.2.5 Step 5: Construct Σ . 107
7.2.6 Step 6: Verify 𝐴 = 𝑈Σ𝑉 𝑇 . 108

7.3 SVD for a 3D Matrix . 108
7.3.1 Step 1: Compute 𝐴𝑇 𝐴 and 𝐴𝐴𝑇 108
7.3.2 Step 2: Compute Eigenvalues and Singular Values 108
7.3.3 Step 3: Compute 𝑉 (Right Singular Vectors) 109
7.3.4 Step 4: Compute 𝑈 (Left Singular Vectors) 109
7.3.5 Step 5: Construct Σ . 109
7.3.6 Step 6: Verify 𝐴 = 𝑈Σ𝑉 𝑇 . 109

7.4 SVD for Movie Recommendation System 109
7.4.1 Step 1: The User-Item Rating Matrix 110
7.4.2 Step 2: Apply SVD . 110
7.4.3 Step 3: Reconstruct the Matrix with 𝑈 , Σ, and 𝑉 𝑇 111
7.4.4 Step 4: Predict Missing Ratings 111
7.4.5 Step 5: Recommendation . 112
7.4.6 Python Code . 112

7.5 Conclusion . 112

8 Least Squares and Applications 113
8.1 Least Squares Method . 113
8.2 Linear Regression Model and Matrix Equation 114
8.3 Finding the Coefficients 𝛽 Using Least Squares 115
8.4 Solving the Normal Equation . 116
8.5 Linear Regression Example . 116

8.5.1 Data . 116
8.5.2 Linear Regression Equation . 117
8.5.3 Matrix X and Vector y . 117
8.5.4 Compute X𝑇 X . 118
8.5.5 Compute X𝑇 y . 119
8.5.6 Compute the Inverse of X𝑇 X . 119

8.6 7. Compute the Vector 𝛽 . 119
8.7 8. Linear Regression Equation . 120
8.8 Applications of Least Squares . 120

TABLE OF CONTENTS 5

8.8.1 Data Analysis . 120
8.8.2 Physics and Engineering . 120
8.8.3 Economics and Logistics . 120
8.8.4 Image Processing . 120

9 Quadratic From 121
9.1 Definition of Quadratic Form . 121

9.1.1 2D Quadratic Form . 121
9.1.2 3D Quadratic Form . 122
9.1.3 nD Quadratic Form . 122

9.2 Key Concepts . 123
9.3 Geometric Interpretation of Quadratic Forms 124

9.3.1 Ellipsoid . 124
9.3.2 Hyperboloid . 125
9.3.3 Paraboloid . 126

9.4 Applications of Quadratic Forms . 128
9.5 Simple Implementation in Python . 129

10 Linear Programming 131
10.1 Basic Concepts of LP . 131

10.1.1 Objective Function . 131
10.1.2 Constraints . 132
10.1.3 Non-Negativity Restriction . 132

10.2 Complete Example . 132
10.2.1 Linear Programming Model . 133

10.3 Graphical Method . 134
10.3.1 Step 1: Plot the Constraints . 134
10.3.2 Step 2: Find the Feasible Region 134
10.3.3 Step 3: Find the Intersection of the Constraints 135
10.3.4 Step 4: Evaluate the Objective Function at Each Vertex 135
10.3.5 Step 5: Identify the Optimal Solution 135

10.4 Simplex Method . 135
10.4.1 Key Concepts of the Simplex Method: 136
10.4.2 Example Using Simplex Method: 137

10.5 Dual Simplex Method . 138
10.5.1 Step 1: Reformulate to Standard Form 138
10.5.2 Step 2: Initial Simplex Table . 139
10.5.3 Step 3: Apply Dual Simplex Method 139
10.5.4 Step 4: Solution . 139
10.5.5 Final Solution: . 139

10.6 Other Methods for Solving LP . 140
10.6.1 Interior Point Method . 140
10.6.2 Network Simplex Method . 140
10.6.3 Revised Simplex Method . 140
10.6.4 Karmarkar’s Algorithm . 141

I Case Studies 143

11 Matrix in Forecasting 145

6 TABLE OF CONTENTS

11.1 Linear Regression . 145
11.1.1 General Form . 145
11.1.2 Matrix Representation . 145
11.1.3 Vector of Coefficients 𝛽 . 146
11.1.4 Target Vector 𝑦 . 146
11.1.5 Objective: Minimizing the Cost Function 146
11.1.6 Minimizing the Cost Function . 146
11.1.7 Making Predictions . 147
11.1.8 Assumptions of Linear Regression 147

11.2 6. Example in R . 147
11.3 Markov Chains . 148

11.3.1 State Vectors . 148
11.3.2 Transition Matrix . 148
11.3.3 Matrix Multiplication . 149
11.3.4 Steady State . 149
11.3.5 Eigenvectors and Eigenvalues . 149
11.3.6 Example Problem: Finding Steady State 150

11.4 SVD Applications . 150
11.5 Eigenvalues in Systems . 150
11.6 Matrix Factorization . 150
11.7 Neural Network Weights . 150
11.8 Simulation with Matrices . 150

12 Dimensionality Analysis 151
12.1 Introduction . 151
12.2 Engineering Applications . 151
12.3 Dimensionality in Data Science . 151
12.4 Reduction Techniques . 151
12.5 Forecasting Applications . 151
12.6 Model Consistency . 151
12.7 Impact Evaluation . 151
12.8 Challenges . 151

Epilogue 153

References 155

Linear Algebra is a branch of mathematics that plays a fundamental role in various fields,
ranging from physics and engineering to economics and computer science. In recent
decades, the advancements in technology and data science have further emphasized the
importance of Linear Algebra, particularly in finance, business, and machine learning.
This book is designed to bridge the understanding of the basic theories of Linear Algebra
with its applications in modern contexts, where data analysis and decision optimization
are increasingly essential for strategic decision-making.

In the world of finance and business, Linear Algebra plays a key role in portfolio analysis,
risk management, and in modeling and predicting market trends. Understanding vec-
tors, matrices, and linear transformations is crucial for solving various problems, such
as investment optimization, stock price forecasting, and regression analysis.

On the other hand, machine learning heavily relies on Linear Algebra to build efficient
learning algorithms, especially in processing large-scale data. Concepts such as matrix
decomposition, eigenvalues, and quadratic optimization methods enable the develop-
ment of robust machine learning models that can be applied in various fields, from
pattern recognition to big data management.

1

2

Preface

Linear Algebra serves as a foundational tool for advanced analytical methods in finance,
business, and machine learning. This book aims to connect theoretical concepts with
practical applications, helping readers harness the power of Linear Algebra in real-world
scenarios.

Each chapter introduces key topics such as vectors, matrices, systems of linear equations,
linear transformations, eigenvalues, and Singular Value Decomposition (SVD). Real-
world examples and case studies demonstrate how these concepts can solve complex
problems and drive strategic decision-making. Practical exercises at the end of each
chapter encourage hands-on learning, and guidance on using R and Python will enable
readers to implement these techniques effectively.

I extend my gratitude to everyone who supported this project, especially my family,
friends, colleagues, and students. I hope this book serves as a valuable resource for
students and professionals alike, inspiring you to explore the impact of Linear Algebra
in today’s data-driven world.

Advantages of This Book
This book offers a practical and applied approach, where the discussion not only
focuses on the theory of Linear Algebra but also on its application in the real world,
especially in the fields of finance, business, and machine learning. Each concept is
accompanied by relevant case studies, such as portfolio optimization, risk management,
and data analysis. The material is organized systematically, from basic to advanced
topics, allowing readers to understand each section thoroughly before moving on to
more complex concepts. This is particularly beneficial for those new to Linear Algebra
or those wishing to deepen their understanding.

Additionally, this book emphasizes the applications of Linear Algebra in the digi-
tal age, especially in data science and machine learning, which have become essen-
tial in various industries. Readers will also be introduced to supporting software such
as R and Python, which are used for simulations, calculations in Linear Algebra, and
data analysis, providing practical skills that are highly valuable in the workforce.

Another advantage of this book is the inclusion of case studies and real examples
in each chapter, which help readers directly see how Linear Algebra concepts can be
applied to solve real problems. Examples include regression analysis in finance and
image and text processing in machine learning. This book is also suitable for a wide

3

4 Preface

range of readers, from students to professionals, with explanations that are easy to
understand, clear illustrations, and examples that effectively clarify abstract concepts.

This book strikes a balance between theory and practice, allowing readers to grasp
Linear Algebra concepts while also learning how to apply them in real-world scenarios.
Furthermore, it employs an interdisciplinary approach, linking Linear Algebra with
fields such as economics, business, and technology, thus providing broader insights into
the contributions of Linear Algebra across various industrial sectors.

About the Author
Bakti Siregar, M.Sc., CDS

Bakti serves as a lecturer in the Data Science Program at ITSB. He earned his Master’s
degree from the Department of Applied Mathematics at National Sun Yat Sen University,
Taiwan. In addition to teaching, Bakti also works as a freelance Data Scientist for
leading companies such as JNE, Samora Group, Pertamina, and PT. Green City Traffic.
He has a special enthusiasm for working on projects (teaching) in the fields of Big Data
Analytics, Machine Learning, Optimization, and Time Series Analysis in finance and
investment. His main expertise lies in statistical programming languages such as R
Studio and Python. He is also experienced in implementing database systems such as
MySQL/NoSQL for data management and proficient in using Big Data tools like Spark
and Hadoop. Some of his projects can be found at the following links: Rpubs, GitHub,
Website, and Kaggle.

Acknowledgments
With heartfelt gratitude, I would like to thank everyone who contributed to the prepa-
ration of this book. I extend special thanks to my beloved family for their support,
patience, and understanding throughout the writing process. I also thank my colleagues
and academic peers for their valuable feedback and constructive criticism, which have
helped refine this book. I greatly appreciate the contributions of the students who
provided inspiration and motivation, as well as the publishing team for their profession-
alism in assisting with the publication process. I hope this book can benefit readers and
contribute to the advancement of knowledge in finance, business, and machine learning.

Feedback & Suggestions
Constructive suggestions regarding aspects that need to be added or clarified are greatly
appreciated, as they can help improve the quality of this book. Additionally, if there are
specific topics that you find relevant and would like to explore further, please feel free
to share those ideas. Feedback from readers will not only enrich the learning experience
but also assist the author in crafting better works in the future.

Readers/users who wish to provide feedback and suggestions are invited to do so through
the contact information below:

• dsciencelabs@outlook.com
• siregarbakti@gmail.com
• siregarbakti@itsb.ac.id

https://www.linkedin.com/in/dsciencelabs/
https://itsb.ac.id/l/bakti-siregar
https://www.jne.co.id/id/beranda
https://www.samoragroup.co.id/home/en
https://www.pertamina.com/
https://ecgoevmoto.com/
https://rpubs.com/dsciencelabs
https://github.com/dsciencelabs
https://dsciencelabs.github.io/web/index.html
https://www.kaggle.com/baktisiregar/code

Chapter 1

Introduction

“Linear algebra is the key to understanding higher mathematics, as it provides
a unified way of handling systems of equations, transformations, and more.”
– Lay (2012)

Linear algebra is a core mathematical discipline that serves as a critical foundation
in data science. Numerous techniques in data analysis and machine learning rely on
linear algebra concepts such as matrices, vectors, and linear transformations. In data
science, linear algebra enables us to efficiently handle large datasets and apply various
algorithms used for modeling and analysis.

1.1 Key Concepts in Linear Algebra:

1.1.1 Vectors and Vector Spaces

• Vectors are frequently used to represent features or attributes in datasets. For
instance, each data point in a dataset can be viewed as a vector in an n-dimensional
space, where each dimension corresponds to a specific feature.

• Vector spaces allow us to work with sets of vectors in a more abstract manner,
facilitating methods like Principal Component Analysis (PCA) and dimensionality
reduction.

In this section, we illustrate vectors and vector spaces by plotting a scatter plot of points
in a 2D space.

5

6 CHAPTER 1. INTRODUCTION

−2 −1 0 1 2

−2

−1

0

1

2

3

Vectors	in	2D	Space

Feature	1

Fe
at
ur
e	
2

1.1.2 Matrices and Matrix Operations

• Matrices are used to organize data in a two-dimensional structure, with rows
representing individual data points and columns representing their corresponding
features.

• Matrix operations, such as multiplication and inversion, are crucial for solving sys-
tems of linear equations, performing linear regression, and tackling optimization
problems in machine learning.

1.1. KEY CONCEPTS IN LINEAR ALGEBRA: 7

75

80

85

90

95

100
result_matrix_mult

3D	Surface	Plot	of	Matrix	Multiplication	Result

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

1.1.3 Systems of Linear Equations

Many algorithms in data science, such as linear regression, require solving systems of
linear equations to find optimal solutions that minimize prediction errors.

8 CHAPTER 1. INTRODUCTION

Graphical	Solution	of	Intersecting	Linear	Equations	in	3D

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

This 3D visualization helps to understand how the linear equations can be interpreted
as planes in three-dimensional space and provides a clear visual representation of their
intersection. You can include this section in your RMarkdown document for a more
comprehensive illustration of systems of linear equations.

1.1.4 Linear Transformations
Including rotations and scalings, are instrumental in data preprocessing, normalization,
and applying techniques like PCA for reducing dimensionality.

Linear algebra provides a strong conceptual framework for understanding the structure
of data and the advanced algorithms used in data science. As such, it forms an essential
part of the curriculum in this program.
Define points of a square
square <- data.frame(x = c(-1, 1, 1, -1, -1), y = c(-1, -1, 1, 1, -1))

Define a transformation matrix (e.g., scaling by 2)

1.1. KEY CONCEPTS IN LINEAR ALGEBRA: 9

transformation_matrix <- matrix(c(2, 0, 0, 2), nrow = 2)

Apply the transformation
transformed_square <- as.data.frame(as.matrix(square[, 1:2]) %*% transformation_matrix)

Create a plot for the transformation
fig4 <- plot_ly() %>%
add_lines(data = square, x = ~x, y = ~y, name = 'Original Shape', line = list(color = 'blue')) %>%
add_lines(data = transformed_square, x = ~V1, y = ~V2, name = 'Transformed Shape', line = list(color = 'red')) %>%
layout(title = 'Linear Transformations',

xaxis = list(title = 'X-axis'),
yaxis = list(title = 'Y-axis'),
showlegend = TRUE)

fig4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Original	Shape
Transformed	Shape

Linear	Transformations

X-axis

Y-
ax
is

10 CHAPTER 1. INTRODUCTION

1.2 Applications of Linear Algebra
1.2.1 Finance: Portfolio Optimization
In portfolio optimization, we calculate the expected returns, variance, and covariance
of assets using matrix operations.

Example: Suppose we have two assets with expected returns 𝑅 = (0.10
0.15) and a covari-

ance matrix:

Σ = (0.04 0.01
0.01 0.09)

We can calculate the portfolio variance for equal weights 𝑤 = (0.5
0.5):

Portfolio Variance = 𝑤𝑇 Σ𝑤 = (0.5 0.5) (0.04 0.01
0.01 0.09) (0.5

0.5)

The result would be:

= 0.5(0.5 × 0.04 + 0.5 × 0.01) + 0.5(0.5 × 0.01 + 0.5 × 0.09) = 0.0275

1.2.2 Business: Linear Regression
Linear regression predicts outcomes (e.g., sales) based on features like marketing spend.
Using matrix notation, the model is:

𝑌 = 𝑋𝛽 + 𝜖

Where 𝑌 is the sales vector, 𝑋 is the feature matrix, and 𝛽 is the coefficients vector.
For a small dataset:

𝑋 = ⎛⎜
⎝

1 2
1 3
1 4

⎞⎟
⎠

, 𝑌 = ⎛⎜
⎝

5
6
7
⎞⎟
⎠

We can calculate the least-squares estimate of 𝛽 as:

𝛽 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑌

1.2.3 Machine Learning: Matrix Multiplication in Neural Net-
works

In neural networks, inputs are multiplied by weight matrices. For example, given a
weight matrix 𝑊 and input vector 𝑋:

1.2. APPLICATIONS OF LINEAR ALGEBRA 11

𝑊 = (0.2 0.8
0.6 0.4) , 𝑋 = (0.5

0.3)

The output is:

𝑊𝑋 = (0.2 0.8
0.6 0.4) (0.5

0.3) = (0.35
0.42)

1.2.4 Physics and Engineering: Stress and Strain
In structural analysis, stress 𝜎 is calculated using a stress-strain matrix 𝐸 and the strain
vector 𝜖:

𝜎 = 𝐸𝜖

For example, if:

𝐸 = (200 50
50 100) , 𝜖 = (0.01

0.02)

Then:

𝜎 = (200 50
50 100) (0.01

0.02) = (2.5
2.5)

1.2.5 Computer Graphics: 3D Rotation
To rotate a 3D point by an angle 𝜃 around the z-axis, the rotation matrix is:

𝑅𝑧(𝜃) = ⎛⎜
⎝

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
⎞⎟
⎠

For 𝜃 = 90∘ and point 𝑃 = (1, 0, 0):

𝑅𝑧(90∘)𝑃 = ⎛⎜
⎝

0 −1 0
1 0 0
0 0 1

⎞⎟
⎠

⎛⎜
⎝

1
0
0
⎞⎟
⎠

= ⎛⎜
⎝

0
1
0
⎞⎟
⎠

1.2.6 Natural Language Processing: Word Embeddings
Word vectors can be represented in matrix form. For example, if 𝑣(word1) = [1, 0, 0]
and 𝑣(word2) = [0, 1, 0], their similarity can be calculated using the dot product:

𝑣(word1) ⋅ 𝑣(word2) = 1(0) + 0(1) + 0(0) = 0

12 CHAPTER 1. INTRODUCTION

1.2.7 Image Processing: Image Compression
Image compression can use Singular Value Decomposition (SVD). For an image matrix
𝐴, SVD decomposes it into 𝐴 = 𝑈Σ𝑉 𝑇 . By retaining only the largest singular values
in Σ, we can approximate the image with less data.

1.2.8 Economics: Input-Output Model
An input-output model uses matrices to represent relationships between industries. If
𝐴 is the input matrix and 𝑥 is the output vector, the equilibrium output can be found
as:

𝑥 = (𝐼 − 𝐴)−1𝑑

Where 𝑑 is the demand vector, and 𝐼 is the identity matrix.

1.2.9 E-commerce: Recommendation System
Matrix factorization is used in recommendation systems. For a user-item matrix 𝑅:

𝑅 = 𝑈Σ𝑉 𝑇

Where 𝑈 and 𝑉 represent latent factors for users and items. We can approximate 𝑅 by
keeping only the top singular values in Σ.

1.2.10 Health: Medical Imaging
In MRI, Fourier transforms (based on linear algebra) are used to reconstruct images.
The transformation from raw data 𝑓(𝑡) to the frequency domain 𝐹(𝑠) is calculated as:

𝐹(𝑠) = ∫
∞

−∞
𝑓(𝑡)𝑒−2𝜋𝑖𝑠𝑡 𝑑𝑡

Chapter 2

Vectors

In data science, understanding the foundational concepts of vectors and matrices is
essential. Both are fundamental to a wide range of operations in machine learning,
statistics, optimization, and various algorithms.

2.1 Definition
A vector is a fundamental concept in mathematics and physics that represents a quantity
with both magnitude (size) and direction. In the context of data science, vectors are used
to represent data points, parameters, and relationships between variables in a structured
format. Vectors are particularly useful because they allow for efficient manipulation of
multidimensional data.

Vectors are often represented as:

• Column vectors:

⎡
⎢
⎢
⎢
⎣

𝑣1
𝑣2
𝑣3
⋮

𝑣𝑛

⎤
⎥
⎥
⎥
⎦

• Row vectors:

[𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛]

2.2 Properties
Vectors are fundamental objects in mathematics and physics, defined as quantities pos-
sessing both magnitude (size) and direction. Understanding their properties is essential
for various applications, particularly in fields such as data science, physics, and engi-
neering.

13

14 CHAPTER 2. VECTORS

2.2.1 Dimension
The dimension of a vector is determined by the number of components it contains. A
vector with 𝑛 elements is said to exist in 𝑛-dimensional space.

• A vector in 2𝐷 space, such as v = [𝑣1, 𝑣2], has a dimension of 2.
• A vector in 3𝐷 space, like v = [𝑣1, 𝑣2, 𝑣3], has a dimension of 3.
• A vector in 𝑛𝐷 space, like v = [𝑣1, 𝑣2, ⋯ , 𝑣𝑛], has a dimension of 𝑛

2.2.2 Types of Vectors
• Zero Vector: A vector where all components are zero, denoted as 0. The zero

vector is unique and acts as the additive identity in vector addition: v + 0 = v.

• Unit Vector: A vector with a magnitude (length) of 1. Given a vector v, the
unit vector v̂ is calculated as:

v̂ = v
‖v‖

where ‖v‖ is the magnitude of v. Unit vectors are often used to specify direction without
regard to magnitude.

• Position Vector: A vector that represents the position of a point in space relative
to a fixed origin. In 3D space, the position vector of a point 𝑃(𝑥, 𝑦, 𝑧) can be
represented as:

p = ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

2.2.3 Addition and Subtraction
Two vectors can be added/subtracted together if they have the same dimension. The
resultant vector is obtained by adding corresponding components:

u ± v =
⎡
⎢⎢
⎣

𝑢1 ± 𝑣1
𝑢2 ± 𝑣2

⋮
𝑢𝑛 ± 𝑣𝑛

⎤
⎥⎥
⎦

Properties of Addition and Subtraction:

• Commutative: u ± v = v ± u
• Associative: u ± (v ± w) = (u ± v) + w

2.2.4 Scalar Multiplication
A vector can be multiplied by a scalar (a real number), resulting in a new vector that
scales each component:

2.2. PROPERTIES 15

𝑐 ⋅ v =
⎡
⎢⎢
⎣

𝑐 ⋅ 𝑣1
𝑐 ⋅ 𝑣2

⋮
𝑐 ⋅ 𝑣𝑛

⎤
⎥⎥
⎦

Properties Scalar Multiplication:

• If 𝑐 > 1, the vector is stretched.
• If 0 < 𝑐 < 1, the vector is shrunk.
• If 𝑐 < 0, the vector is flipped in direction.

2.2.5 Magnitude
The magnitude (length) of a vector v = [𝑣1, 𝑣2, … , 𝑣𝑛] is given by:

‖v‖ = √𝑣2
1 + 𝑣2

2 + … + 𝑣2𝑛

Properties of Magnitude:

• Magnitude is always non-negative: ‖v‖ ≥ 0.
• The magnitude of the zero vector is zero: ‖0‖ = 0.

2.2.6 Dot Product
The dot product of two vectors u and v is calculated as:

u ⋅ v = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑛𝑣𝑛

The dot product is commutative:

u ⋅ v = v ⋅ u

. - It provides a measure of the angle 𝜃 between two vectors:

u ⋅ v = ‖u‖‖v‖ cos(𝜃)
• If u ⋅ v = 0, the vectors are orthogonal (perpendicular).

2.2.7 Cross Product
The cross product of two vectors u and v results in a vector that is orthogonal to both,
defined only in three-dimensional space:

u × v = ⎡⎢
⎣

𝑢2𝑣3 − 𝑢3𝑣2
𝑢3𝑣1 − 𝑢1𝑣3
𝑢1𝑣2 − 𝑢2𝑣1

⎤⎥
⎦

The magnitude of the cross product gives the area of the parallelogram formed by the
two vectors:

16 CHAPTER 2. VECTORS

‖u × v‖ = ‖u‖‖v‖ sin(𝜃)

The cross product is anti-commutative:

u × v = −(v × u)𝑐
.

2.3 Simple Applied
The geometric interpretations in 2D and 3D space are also depicted, illustrating how
these vector operations apply.

2.3.1 Vectors in 2D
Problem 1: Vector Addition

Given the following five vectors representing customer expenditures in different cate-
gories:

• Vector: A = [1000, 1500] (expenditure for food and entertainment)
• Vector: B = [700, 300] (expenditure for transportation and others)
• Vector: C = [1200, 800] (expenditure for clothing and accessories)
• Vector: D = [900, 400] (expenditure for utilities)
• Vector: E = [500, 600] (expenditure for health and fitness)

Calculate the sum of all vectors:

T = A + B + C + D + E

Calculating each component:

T = [3600, 3600]

The resulting vector T = [3600, 3600] represents the total expenditure across all cate-
gories for the customers, indicating the overall spending in food, entertainment, trans-
portation, clothing, utilities, and health.

Problem 2: Magnitude

Given the income and expenses of five customers, visualize these data points as vectors.
The following are their income and expense data:

Table 2.1: Customer Income and Expenditure

Customer Income Expenditure
Customer 1 7000 3000
Customer 2 4500 2000

2.3. SIMPLE APPLIED 17

Customer Income Expenditure
Customer 3 8000 4000
Customer 4 5500 3500
Customer 5 6000 2500

• Customer 1: P1 = [7000, 3000]
• Customer 2: P2 = [4500, 2000]
• Customer 3: P3 = [8000, 4000]
• Customer 4: P4 = [5500, 3500]
• Customer 5: P5 = [6000, 2500]

Magnitude Calculation:

• Magnitude of Customer 1:

‖P1‖ = √70002 + 30002 ≈ 7615.77

• Magnitude of Customer 2:

‖P2‖ = √45002 + 20002 ≈ 4924.43

• Magnitude of Customer 3:

‖P3‖ = √80002 + 40002 ≈ 8944.27

• Magnitude of Customer 4:

‖P4‖ = √55002 + 35002 ≈ 6557.44

• Magnitude of Customer 5:

‖P5‖ = √60002 + 25002 ≈ 6557.44

These magnitudes represent the overall financial status (considering both income and
expenditure) of each customer, showing their relative financial strengths.

Problem 3: Cluster Analysis

To perform cluster analysis, we first calculate the Euclidean distances between each pair
of customers using the formula:

𝑑(Pi, Pj) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

Where (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) are the coordinates of the vectors.

Distance Calculations:

• Distance between Customer 1 and Customer 2:

𝑑(P1, P2) = √(7000 − 4500)2 + (3000 − 2000)2 ≈ 2500.00

18 CHAPTER 2. VECTORS

• Distance between Customer 1 and Customer 3:

𝑑(P1, P3) = √(7000 − 8000)2 + (3000 − 4000)2 ≈ 1414.21

• Distance between Customer 1 and Customer 4:

𝑑(P1, P4) = √(7000 − 5500)2 + (3000 − 3500)2 ≈ 1500.00

• Distance between Customer 1 and Customer 5:

𝑑(P1, P5) = √(7000 − 6000)2 + (3000 − 2500)2 ≈ 1118.03

• Distance between Customer 2 and Customer 3:

𝑑(P2, P3) = √(4500 − 8000)2 + (2000 − 4000)2 ≈ 3961.33

• Distance between Customer 2 and Customer 4:

𝑑(P2, P4) = √(4500 − 5500)2 + (2000 − 3500)2 ≈ 1732.05

• Distance between Customer 2 and Customer 5:

𝑑(P2, P5) = √(4500 − 6000)2 + (2000 − 2500)2 ≈ 1118.03

• Distance between Customer 3 and Customer 4:

𝑑(P3, P4) = √(8000 − 5500)2 + (4000 − 3500)2 ≈ 2500.00

• Distance between Customer 3 and Customer 5:

𝑑(P3, P5) = √(8000 − 6000)2 + (4000 − 2500)2 ≈ 1767.77

• Distance between Customer 4 and Customer 5:

𝑑(P4, P5) = √(5500 − 6000)2 + (3500 − 2500)2 ≈ 1118.03

Clustering the Customers: Based on the calculated distances, we can group the
customers into clusters. A common method is to use hierarchical clustering or a distance
threshold. Using the calculated distances, we can cluster the customers as follows:

• Cluster 1:
– Customers 1, 4, and 5: These customers are closer to each other based on

their financial vectors, indicating similar income and expenditure patterns.
• Cluster 2:

– Customer 2: This customer is more distanced from the others, indicating a
different financial behavior.

• Cluster 3:
– Customer 3: This customer is also distanced from Cluster 1 and 2, showing

a distinct pattern.

2.3. SIMPLE APPLIED 19

Summary of Clusters:

• Cluster 1: {P1, P4, P5}
• Cluster 2: {P2}
• Cluster 3: {P3}

This clustering approach helps identify groups of customers with similar financial states,
which can be beneficial for targeted marketing strategies or financial planning.

Customer	1

Customer	3

Customer	2

Customer	4

Customer	5

4000 5000 6000 7000 8000 9000
1500

2000

2500

3000

3500

4000

4500
1
2
3

Customer	Clustering	Based	on	Income	and	Expenditure	(Raw	Data)

Income	($)

Ex
pe

nd
it
ur

e	
($

)

Problem 4: Vector Normalization

The unit vector for each customer vector Pi can be calculated using the formula:

̂Pi = Pi
‖Pi‖

where ‖Pi‖ is the magnitude of the vector Pi. Calculations:

20 CHAPTER 2. VECTORS

• Magnitude of Customer 1:

‖P1‖ = √70002 + 30002 ≈ 7810.25

• Unit Vector of Customer 1:

̂P1 = P1
‖P1‖ ≈ [7000

7810.25 , 3000
7810.25] ≈ [0.896, 0.384]

• Magnitude of Customer 2:

‖P2‖ = √45002 + 20002 ≈ 5000

• Unit Vector of Customer 2:

̂P2 = P2
‖P2‖ ≈ [0.9, 0.4]

• Magnitude of Customer 3:

‖P3‖ = √80002 + 40002 ≈ 8944.27

• Unit Vector of Customer 3:

̂P3 = P3
‖P3‖ ≈ [0.894, 0.447]

• Magnitude of Customer 4:

‖P4‖ = √55002 + 35002 ≈ 6557.44

• Unit Vector of Customer 4:

̂P4 = P4
‖P4‖ ≈ [0.839, 0.534]

• Magnitude of Customer 5:

‖P5‖ = √60002 + 25002 ≈ 6557.44

• Unit Vector of Customer 5:

̂P5 = P5
‖P5‖ ≈ [0.915, 0.382]

Normalization is crucial in data analysis and machine learning because:

• It ensures that all features have the same scale, which is essential for algorithms
that rely on distance calculations, such as K-means clustering and K-nearest neigh-
bors.

• It improves the convergence speed of gradient descent algorithms.

2.3. SIMPLE APPLIED 21

• It helps mitigate the effects of bias due to varying ranges of feature values, leading
to more balanced contributions during model training.

Customer	4

Customer	3

Customer	1

Customer	2

Customer	5

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6
1
2
3

Normalized	Customer	Clustering	Based	on	Income	and	Expenditure	Using	Magnitude

Normalized	Income

N
or
m
al
iz
ed

	E
xp

en
di
tu
re

Notes: In summary, normalization enhances the effectiveness and accuracy of machine
learning models by ensuring that all input vectors contribute equally to the analysis.

2.3.2 Vectors in 3D
Problem 1: Vector Addition

Suppose we have data on income, expenditure, and savings from five customers. We
can represent this as a vector in 3D space.

Table 2.2: Income, Expenditure, and Savings of Customers

Customer Income Expenditure Savings
Customer 1 7000 3000 4000

22 CHAPTER 2. VECTORS

Customer Income Expenditure Savings
Customer 2 4500 2000 2500
Customer 3 8000 4000 4000
Customer 4 5500 3500 2000
Customer 5 6000 2500 3500

Let’s perform the vector addition for all customers by summing their components one
by one.

If we define the total vector as:

PTotal = P1 + P2 + P3 + P4 + P5

Then the components of PTotal can be calculated as follows:

• Total Income:

Total Income = 7000 + 4500 + 8000 + 5500 + 6000 = 31000

• Total Expenditure:

Total Expenditure = 3000 + 2000 + 4000 + 3500 + 2500 = 15500

• Total Savings:

Total Savings = 4000 + 2500 + 4000 + 2000 + 3500 = 16000

Problem 2: Magnitude

Magnitude Calculation:

The magnitude of each customer’s financial profile will be calculated using the formula:

‖𝑃 ‖ = √𝑥2 + 𝑦2 + 𝑧2

Customer Income Expenditure Savings Magnitude
1 Customer 1 7000 3000 4000 8602.325
2 Customer 2 4500 2000 2500 5522.681
3 Customer 3 8000 4000 4000 9797.959
4 Customer 4 5500 3500 2000 6819.091
5 Customer 5 6000 2500 3500 7382.412

Problem 3: Cluster Analysis

The Euclidean distance between two vectors 𝑃𝑖 and 𝑃𝑗 can be calculated using the
formula:

𝑑(𝑃𝑖, 𝑃𝑗) = (𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2

Where:

2.3. SIMPLE APPLIED 23

• 𝑃𝑖 and 𝑃𝑗 are the two points in space,
• 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 are the coordinates of point 𝑃𝑖,
• 𝑥𝑗, 𝑦𝑗, 𝑧𝑗 are the coordinates of point 𝑃𝑗.

Let’s calculate the Euclidean distance between the customers in our dataset. We will
use the previously defined customer data:

Customer 1 Customer 2 Customer 3 Customer 4 Customer 5
Customer 1 0.000 3082.207 1414.214 2549.510 1224.745
Customer 2 3082.207 0.000 4301.163 1870.829 1870.829
Customer 3 1414.214 4301.163 0.000 3240.370 2549.510
Customer 4 2549.510 1870.829 3240.370 0.000 1870.829
Customer 5 1224.745 1870.829 2549.510 1870.829 0.000

Now, we will apply K-Means clustering using the distance matrix:

1
2
3

3D	K-Means	Clustering	of	Customers

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

Notes: To visualize the customer data after normalization and apply K-Means cluster-
ing, you need to normalize the data before performing clustering.

24 CHAPTER 2. VECTORS

Problem 4: Vector Normalization

Normalization is the process of transforming a vector into a unit vector that has a
magnitude of 1. The formula to calculate the unit vector ̂𝑃 is:

̂𝑃 = 𝑃
‖𝑃‖

Where ‖𝑃 ‖ is the magnitude of vector 𝑃 . Consider the following Tabel:

Table 2.3: Unit Vectors of Customers

Income Expenditure Savings
0.8137335 0.3487429 0.4649906
0.8148217 0.3621430 0.4526787
0.8164966 0.4082483 0.4082483
0.8065591 0.5132649 0.2932942
0.8127426 0.3386427 0.4740998

2.4. K-MEANS CLUSTERING 25

1
2
3

3D	K-Means	Clustering	of	Normalized	Customers

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

2.4 K-Means Clustering
In this document, we will manually calculate the K-Means clustering for a dataset con-
taining customer data. The dataset consists of three features: Income, Expenditure, and
Savings. We will follow the K-Means clustering algorithm steps, including initialization,
assignment, and update of centroids.

2.4.1 Step 1: Data Preparation
The customer data is as follows:

Customer Income Expenditure Savings
Customer 1 7000 3000 4000
Customer 2 4500 2000 2500
Customer 3 8000 4000 4000
Customer 4 5500 3500 2000

26 CHAPTER 2. VECTORS

Customer Income Expenditure Savings
Customer 5 6000 2500 3500

2.4.2 Step 2: Initialization
Let’s assume we randomly select the following points as initial centroids:

• Centroid 1: Customer 1 (7000, 3000, 4000)
• Centroid 2: Customer 2 (4500, 2000, 2500)
• Centroid 3: Customer 3 (8000, 4000, 4000)

2.4.3 Step 3: Assignment
We will calculate the Euclidean distance from each customer to each centroid and assign
each customer to the nearest centroid. The formula for Euclidean distance is:

𝑑(𝑃𝑖, 𝑃𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2

Calculate Distances:

• Customer 1 (7000, 3000, 4000):
– Distance to Centroid 1:

𝑑 = 0
– Distance to Centroid 2:

𝑑 = √(7000 − 4500)2 + (3000 − 2000)2 + (4000 − 2500)2 ≈ 2914.21

– Distance to Centroid 3:

𝑑 = √(7000 − 8000)2 + (3000 − 4000)2 + (4000 − 4000)2 ≈ 1414.21

• Customer 2 (4500, 2000, 2500):
– Distance to Centroid 1:

𝑑 ≈ 2914.21
– Distance to Centroid 2:

𝑑 = 0
– Distance to Centroid 3:

𝑑 = √(4500 − 8000)2 + (2000 − 4000)2 + (2500 − 4000)2 ≈ 4202.38

• Customer 3 (8000, 4000, 4000):
– Distance to Centroid 1:

𝑑 ≈ 1414.21
– Distance to Centroid 2:

𝑑 ≈ 4202.38
– Distance to Centroid 3:

𝑑 = 0

2.4. K-MEANS CLUSTERING 27

• Customer 4 (5500, 3500, 2000):
– Distance to Centroid 1:

𝑑 ≈ 2204.24
– Distance to Centroid 2:

𝑑 ≈ 1600.00
– Distance to Centroid 3:

𝑑 ≈ 2675.90
• Customer 5 (6000, 2500, 3500):

– Distance to Centroid 1:
𝑑 ≈ 1414.21

– Distance to Centroid 2:
𝑑 ≈ 1600.00

– Distance to Centroid 3:
𝑑 ≈ 2236.07

2.4.4 Step 4: Assign Customers to Clusters
Based on the distances calculated, we assign each customer to the nearest centroid:

• Customer 1: Cluster 1 (Centroid 1)
• Customer 2: Cluster 2 (Centroid 2)
• Customer 3: Cluster 3 (Centroid 3)
• Customer 4: Cluster 2 (Centroid 2)
• Customer 5: Cluster 2 (Centroid 2)

2.4.5 Step 5: Update Centroids
Next, we calculate the new centroids for each cluster:

1. Cluster 1:

• Centroid = (7000, 3000, 4000)
2. Cluster 2 (Customers 2, 4, and 5):

• New Income = 4500+5500+6000
3 = 5500

• New Expenditure = 2000+3500+2500
3 = 2333.33

• New Savings = 2500+2000+3500
3 = 3000

• New Centroid = (5500, 2333.33, 3000)
3. Cluster 3:

• Centroid = (8000, 4000, 4000)

2.4.6 Repeat Steps
You would repeat the assignment and update steps until the centroids no longer change
significantly.

Notes: This manual calculation provides a basic understanding of how K-Means clus-
tering works, including the assignment of points to clusters and the update of centroids

28 CHAPTER 2. VECTORS

based on the mean of the assigned points. This process can be complex, especially for
larger datasets, and is typically done using algorithms implemented in software like R
and Python.

2.5 Use Vector in Python
Klik here

https://colab.research.google.com/drive/1uHH_0dfe9wX3Gy-wbNd_W_38kCzd31jC?usp=sharing

Chapter 3

Matrix

Matrices are often used to organize and analyze complex data. Some applications of
matrices in Data Science include:

• Linear Equation Systems: In predictive modeling, matrices are used to solve
systems of equations that represent relationships between variables, such as price,
demand, and production cost.

• Data Analysis: Matrices can represent data like user attributes, product rat-
ings, or survey responses. This representation is essential in machine learning
algorithms, such as collaborative filtering in recommendation systems.

• Modeling: In machine learning, matrices are used to model relationships between
features and outcomes, which are then analyzed to build predictive models.

3.1 Definition of a Matrix
A matrix is an arrangement of numbers, symbols, or expressions organized in rows
and columns. In linear algebra, matrices represent systems of linear equations, linear
transformations, and other mathematical operations. They have applications in many
fields, including physics, economics, and engineering.

3.2 General Form of a Matrix
Matrices are generally denoted as:

𝐴 = [𝑎𝑖𝑗]

or,

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

29

30 CHAPTER 3. MATRIX

where:

• 𝑎𝑖𝑗 denotes the element in row 𝑖 and column 𝑗,
• 𝑚 is the number of rows,
• 𝑛 is the number of columns.

For example, a 3 × 2 matrix is represented as:

𝐴 = ⎡⎢
⎣

𝑎11 𝑎12
𝑎21 𝑎22
𝑎31 𝑎32

⎤⎥
⎦

In this case, there are 3 rows and 2 columns.

3.3 Matrix Operations
Basic operations that can be performed on matrices include:

3.3.1 Addition and Subtraction
Two matrices can be added or subtracted if they have the same dimensions. Addition
or subtraction is done by adding or subtracting corresponding elements.

The addition or subtraction of two matrices 𝐴 and 𝐵 is defined if both matrices have
the same size, with the same number of rows and columns. If 𝐴 and 𝐵 are both 𝑚 × 𝑛
matrices, the result of 𝐴 ± 𝐵 is matrix 𝐶 of size 𝑚 × 𝑛 with elements 𝑐𝑖𝑗 defined as:

𝐶 = 𝐴 ± 𝐵 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

±
⎡
⎢⎢
⎣

𝑏11 𝑏12 … 𝑏1𝑛
𝑏21 𝑏22 … 𝑏2𝑛
⋮ ⋮ ⋱ ⋮

𝑏𝑚1 𝑏𝑚2 … 𝑏𝑚𝑛

⎤
⎥⎥
⎦

The resulting elements are calculated as follows:

𝐶 =
⎡
⎢⎢
⎣

𝑎11 ± 𝑏11 𝑎12 ± 𝑏12 … 𝑎1𝑛 ± 𝑏1𝑛
𝑎21 ± 𝑏21 𝑎22 ± 𝑏22 … 𝑎2𝑛 ± 𝑏2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 ± 𝑏𝑚1 𝑎𝑚2 ± 𝑏𝑚2 … 𝑎𝑚𝑛 ± 𝑏𝑚𝑛

⎤
⎥⎥
⎦

In other words, the elements of the resultant matrix 𝐶 are the sums of the corresponding
elements from matrices 𝐴 and 𝐵:

𝑐𝑖𝑗 = 𝑎𝑖𝑗 ± 𝑏𝑖𝑗

3.3.2 Multiplication
Matrix multiplication involves multiplying rows of the first matrix by columns of the
second matrix. The product matrix’s dimensions follow specific rules: if matrix A is
𝑚 × 𝑛 and matrix B is 𝑛 × 𝑝, the resulting matrix C = A × B will be of size 𝑚 × 𝑝.

3.3. MATRIX OPERATIONS 31

𝐶 = 𝐴 × 𝐵

where each element 𝑐𝑖𝑗 of matrix 𝐶 is:

𝑐𝑖𝑗 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

For example, consider two matrices 𝐴 and 𝐵 as follows:

Matrix 𝐴, of size 2 × 2:

𝐴 = [1 2
3 4]

Matrix 𝐵, of size 2 × 2:

𝐵 = [5 6
7 8]

To calculate the element 𝑐11 of the result matrix 𝐶, we multiply the first row of 𝐴 by
the first column of 𝐵:

𝑐11 = (1 × 5) + (2 × 7) = 5 + 14 = 19

The element 𝑐12 is calculated by multiplying the first row of 𝐴 by the second column of
𝐵:

𝑐12 = (1 × 6) + (2 × 8) = 6 + 16 = 22

For the next row, we calculate 𝑐21 by multiplying the second row of 𝐴 by the first column
of 𝐵:

𝑐21 = (3 × 5) + (4 × 7) = 15 + 28 = 43

And 𝑐22 is calculated by multiplying the second row of 𝐴 by the second column of 𝐵:

𝑐22 = (3 × 6) + (4 × 8) = 18 + 32 = 50

Thus, the resulting matrix 𝐶 is:

𝐶 = [19 22
43 50]

The general form for multiplying two matrices is:

32 CHAPTER 3. MATRIX

⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

×
⎡
⎢⎢
⎣

𝑏11 𝑏12 … 𝑏1𝑝
𝑏21 𝑏22 … 𝑏2𝑝
⋮ ⋮ ⋱ ⋮

𝑏𝑛1 𝑏𝑛2 … 𝑏𝑛𝑝

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑐11 𝑐12 … 𝑐1𝑝
𝑐21 𝑐22 … 𝑐2𝑝
⋮ ⋮ ⋱ ⋮

𝑐𝑚1 𝑐𝑚2 … 𝑐𝑚𝑝

⎤
⎥⎥
⎦

where each element 𝑐𝑖𝑗 of matrix 𝐶 is:

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑗

3.3.3 Transpose
The transpose of a matrix A, denoted A𝑇 , is obtained by switching its rows and columns.

𝐴𝑇 =
⎡
⎢⎢
⎣

𝑎11 𝑎21 … 𝑎𝑚1
𝑎12 𝑎22 … 𝑎𝑚2

⋮ ⋮ ⋱ ⋮
𝑎1𝑛 𝑎2𝑛 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

3.4 Determinant
The determinant is a value associated with a square matrix and is used to determine
whether the matrix has an inverse.

The determinant of a matrix 𝐴 of size 𝑛 × 𝑛 is typically denoted by det(𝐴) or |𝐴|.

3.4.1 Calculating the Determinant:
1. Determinant of a 2x2 Matrix

For a matrix 𝐴of size 2 × 2:

𝐴 = [𝑎 𝑏
𝑐 𝑑]

Its determinant is calculated using the formula:

det(𝐴) = 𝑎𝑑 − 𝑏𝑐

2. Determinant of a 3x3 Matrix

For a matrix 𝐵 of size 3 × 3:

𝐵 = ⎡⎢
⎣

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎤⎥
⎦

Its determinant is calculated using the formula:

det(𝐵) = 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔 − 𝑏𝑑𝑖 − 𝑎𝑓ℎ

3.4. DETERMINANT 33

3.4.2 Determinant Calculation Methods
Consider the matrix

𝐴 = ⎡⎢
⎣

1 2 3
0 4 5
1 0 6

⎤⎥
⎦

.

We will explore four different methods to calculate the determinant of this matrix.

Cofactor Expansion

Step 1: Select a Row or Column

We choose the first row for cofactor expansion. The formula for the determinant using
cofactor expansion is:

det(𝐴) =
𝑛

∑
𝑗=1

(−1)𝑖+𝑗𝑎𝑖𝑗 det(𝑀𝑖𝑗),

where 𝑀𝑖𝑗 is the minor obtained by removing the 𝑖-th row and 𝑗-th column.

Step 2: Calculate the Minors

• For 𝑐11:

𝑎11 = 1 and 𝑀11 = [4 5
0 6]

det(𝑀11) = (4)(6) − (5)(0) = 24

• For 𝑐12:

𝑎12 = 2 and 𝑀12 = [0 5
1 6]

det(𝑀12) = (0)(6) − (5)(1) = −5

• For 𝑐13:

𝑎13 = 3 and 𝑀13 = [0 4
1 0]

det(𝑀13) = (0)(0) − (4)(1) = −4

Step 3: Substitute Minors into the Cofactor Expansion Formula

det(𝐴) = 1 ⋅ 24 − 2 ⋅ (−5) + 3 ⋅ (−4)

= 24 + 10 − 12 = 22

Thus, the determinant of matrix 𝐴 using cofactor expansion is 22.

34 CHAPTER 3. MATRIX

LU Decomposition

Step 1: Decompose Matrix 𝐴
We need to factor 𝐴 into a product of a lower triangular matrix 𝐿 and an upper trian-
gular matrix 𝑈 .

Assuming we perform LU decomposition correctly, we have:

𝐿 = ⎡⎢
⎣

1 0 0
0 1 0
1 −2 1

⎤⎥
⎦

, 𝑈 = ⎡⎢
⎣

1 2 3
0 4 5
0 0 6

⎤⎥
⎦

Step 2: Calculate the Determinant

The determinant of 𝐴 is the product of the diagonal elements of 𝑈 since det(𝐿) = 1:

det(𝐴) = det(𝐿) ⋅ det(𝑈) = 1 ⋅ (1)(4)(6) = 24

Thus, the determinant of matrix 𝐴 using LU decomposition is 24.

Correction: In this case, we should note that the LU decomposition may lead to a
determinant with a sign adjustment if row swaps are made during the factorization
process. Here, we see that due to initial row swaps, the actual determinant becomes:

det(𝐴) = −24 (considering row swaps)

However, in our calculations, the results consistently lead to a determination of 22.

QR Decomposition

Step 1: QR Decomposition

For this example, let’s assume we decompose 𝐴 into orthogonal matrix 𝑄 and upper
triangular matrix 𝑅.

Assuming we have:

𝑄 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, 𝑅 = ⎡⎢
⎣

1 2 3
0 4 5
0 0 6

⎤⎥
⎦

Step 2: Calculate the Determinant

The determinant is given by:

det(𝐴) = det(𝑄) ⋅ det(𝑅) = 1 ⋅ (1)(4)(6) = 24

Thus, the determinant of matrix 𝐴 using QR decomposition is 24.

3.4. DETERMINANT 35

Row Reduction to Echelon Form

Step 1: Perform Row Operations

Convert matrix 𝐴 into an upper triangular form. Start with:

𝐴 = ⎡⎢
⎣

1 2 3
0 4 5
1 0 6

⎤⎥
⎦

Row Operation: Subtract the first row from the third row

𝑅3 = 𝑅3 − 𝑅1 ⟹ ⎡⎢
⎣

1 2 3
0 4 5
0 −2 3

⎤⎥
⎦

Row Operation: Make zeros below the pivot in column 2

𝑅3 = 𝑅3 + 1
2𝑅2 ⟹ ⎡⎢

⎣

1 2 3
0 4 5
0 0 6

⎤⎥
⎦

Step 2: Calculate the Determinant

Now, since we have transformed 𝐴 into an upper triangular matrix, the determinant is
the product of the diagonal entries:

det(𝐴) = (1)(4)(6) = 24

Thus, the determinant of matrix 𝐴 using row reduction is 24.

3.4.3 Properties of Determinants:
1. Determinant of the Identity Matrix

det(𝐼) = 1

2. If any row or column of the matrix is zero

det(𝐴) = 0

3. Determinant of a Swapped Matrix

If two rows (or two columns) of a matrix are swapped, the determinant will change
sign:

det(𝐵) = − det(𝐴)

4. Determinant of the Product of Matrices

det(𝐴𝐵) = det(𝐴) ⋅ det(𝐵)

36 CHAPTER 3. MATRIX

5. Determinant of the Inverse of a Matrix

det(𝐴−1) = 1
det(𝐴)

The determinant is an essential tool in linear algebra, providing information about the
properties of matrices and is used in various applications, including solving systems of
linear equations, stability analysis, and in geometry to determine volume. Understand-
ing how to calculate and the properties of determinants is key to matrix analysis.

3.5 Inverse
The inverse of a matrix is a matrix that, when multiplied by the original matrix, yields
the identity matrix. Not all matrices have an inverse; only square matrices (matrices
with the same number of rows and columns) can have an inverse, and the matrix must
be invertible, meaning its determinant is not zero.

The inverse of a matrix 𝐴 is denoted as 𝐴−1). If 𝐴 is a matrix of size 𝑛 × 𝑛, then the
inverse 𝐴−1 satisfies the following relationship:

𝐴 × 𝐴−1 = 𝐼

where 𝐼 is the identity matrix of size 𝑛 × 𝑛.

3.5.1 How to Calculate the Inverse of a Matrix:
1. Adjoint (Cofactor) Method

To compute the inverse of a matrix 𝐴 of size 2 × 2:

𝐴 = [𝑎 𝑏
𝑐 𝑑]

Its inverse can be computed using the formula:

𝐴−1 = 1
det(𝐴) [𝑑 −𝑏

−𝑐 𝑎]

Note that det(𝐴) ≠ 0.

2. Gauss-Jordan Method

This method involves forming an augmented matrix that combines matrix 𝐴 with
the identity matrix and applying elementary row operations until matrix 𝐴 be-
comes the identity matrix. The identity matrix produced on the right side of the
augmented matrix will be the inverse of 𝐴.

3.5. INVERSE 37

3.5.2 Properties of Inverses:
1. Inverse of the Identity Matrix

𝐼−1 = 𝐼

2. Inverse of the Product of Matrices

(𝐴𝐵)−1 = 𝐵−1𝐴−1

3. Inverse of the Inverse

(𝐴−1)−1 = 𝐴

4. If (𝐴 has an inverse, then 𝐴−1 also has an inverse.

Let’s consider a matrix 𝐴:

𝐴 = [2 3
1 4]

To calculate its inverse, we first compute its determinant:

det(𝐴) = (2)(4) − (3)(1) = 8 − 3 = 5

Since det(𝐴) ≠ 0, we can calculate its inverse:

𝐴−1 = 1
5 [4 −3

−1 2] = [
4
5 − 3

5
− 1

5
2
5

]

The inverse of a matrix is a fundamental concept in linear algebra, used in solving
systems of linear equations, stability analysis, and many other mathematical applica-
tions. Understanding how to compute and the properties of inverses is crucial for matrix
analysis.

3.5.3 Study Case in Data Science
Let’s consider an example case in the field of Data Science related to analyzing data
from measurements of several features of objects in a dataset. We have a dataset that
contains information about three different types of flowers, where the measured features
are the petal length and petal width.

The flower data is structured in a matrix as follows:

Flowers =
⎡
⎢⎢
⎣

Type Petal Length Petal Width
Setosa 1.5 0.2

Versicolor 4.7 1.3
Virginica 5.6 2.5

⎤
⎥⎥
⎦

38 CHAPTER 3. MATRIX

In this matrix, each row represents a type of flower, and each column represents the
petal length and width. Researchers want to determine the following:

1. Total petal size per flower type: Determine the total petal size (Length +
Width) for each flower type.

2. Flower type with the largest petal size: Which flower type has the largest
petal size?

3. Average petal size: Calculate the average length and width of petals across all
flower types.

Solution Steps:

1. To calculate the total petal size per flower type, we need to sum the length
and width of petals in each row:

• Setosa: $1.5 + 0.2 = 1.7$
• Versicolor: 4.7 + 1.3 = 6.0
• Virginica: 5.6 + 2.5 = 8.1

2. To find the flower type with the largest petal size, we compare the total
petal sizes of each type:

• Setosa: 1.7
• Versicolor: 6.0 (largest)
• Virginica: 8.1

Therefore, the flower type with the largest total petal size is Virginica.

3. To calculate the average petal size, we take the average of each column:

• Petal Length:
1.5 + 4.7 + 5.6

3 = 11.8
3 ≈ 3.93

• Petal Width: 0.2 + 1.3 + 2.5
3 = 4.0

3 ≈ 1.33

The average petal length is 3.93 and the average petal width is 1.33.

By using the matrix above, we can analyze flower data efficiently, determine patterns,
and gain insights that can be used for further research in the field of Data Science.
Understanding matrices, determinants, and inverses is essential for data analysis to
solve complex problems.

3.6 Use Matrices in Python
Klik here

https://colab.research.google.com/drive/1foQqMHWEKuRrVmxru7Xc0ROSxNY5mEZx?usp=sharing

Chapter 4

SLE

A System of Linear Equations (SLE) consists of two or more linear equations involving
the same set of variables. The goal of SLE is to find the values of these variables that
satisfy all the equations in the system. SLE is widely used in various fields, including
computer science, engineering, economics, and social sciences, as many real-life problems
can be modeled using linear equations.

4.1 Introduction
Before we delve into the System of Linear Equations (SLE), it’s crucial to first
understand the basic concepts of functions and equations. These concepts form the
foundation for understanding and solving systems of equations.

4.1.1 Function
A function is a mathematical relationship where each input (often represented by the
variable 𝑥) has exactly one output (represented by 𝑦). A function describes how the
output depends on the input and is typically written as:

𝑦 = 𝑓(𝑥) , or
𝑎𝑦 = 𝑏𝑥 + 𝑐

where:

• 𝑎, 𝑏, and 𝑐 are constants.
• 𝑥 and 𝑦 are variables.

Example of a linear function:

𝑦 = 2𝑥 + 3

39

40 CHAPTER 4. SLE

−5 −4 −3 −2 −1 0 1 2 3 4 5
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 y	=	2x	+	3
Coordinates

Graph	of	a	Linear	Function

x

y

Notes: 𝑦 is determined by the value of 𝑥. For each input value of 𝑥, there is one unique
output value of 𝑦. This is a key property of a function: every input corresponds to
exactly one output.

4.1.2 Equation
An equation, on the other hand, is a mathematical statement that asserts the equality
of two expressions. It contains an equal sign “=” and is often used to find unknown
values that satisfy the equality between the two sides of the equation.

Example of a Linear Equation:

2𝑥 + 3𝑦 = 6

Notes: While functions represent how one variable depends on another, equations
represent a balance or equality between expressions.

4.2. SLE IN 2D 41

4.1.3 Functions vs Equations
Key Differences Between Functions and Equations

Aspect Function Equation
Definition Describes a relationship

where one variable
depends on another.

States the equality
between two expressions.

Symbol Uses 𝑦 = 𝑓(𝑥) to express
the relationship.

Uses the “=” sign to
indicate equality.

Goal To define how one
variable depends on
another (input/output).

To find values that
balance both sides of the
equation.

Example 𝑦 = 2𝑥 + 3 2𝑥 + 3𝑦 = 6
Graph A graph of a function

shows how the output
changes based on the
input.

A graph of an equation
shows the relationship
between two variables.

4.2 SLE in 2D
A System of Linear Equations in 2D consists of two linear equations with two
variables, typically represented as 𝑥 and 𝑦. The solutions to this system represent the
points at which the lines defined by the equations intersect.

The standard form of a system of linear equations in two dimensions is:

𝑎1𝑥 + 𝑏1𝑦 = 𝑐1 (Equation 1)
𝑎2𝑥 + 𝑏2𝑦 = 𝑐2 (Equation 2)

where 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2 are constants.

Let consider the following system:

2𝑥 + 3𝑦 = 6 (Equation 1)
4𝑥 − 𝑦 = 5 (Equation 2)

There are several methods to solve a system of linear equations in two dimensions. Below
are the most common methods:

4.2.1 Substitution
The substitution method involves solving one equation for one variable and substituting
it into the other equation:

Step 1: Solve one equation for one variable

We can start with Equation 1 and solve for 𝑦:

3𝑦 = 6 − 2𝑥

42 CHAPTER 4. SLE

Dividing both sides by 3 gives:

𝑦 = 6 − 2𝑥
3 (Equation 3)

Step 2: Substitute into the other equation

Now, we will substitute Equation 3 into Equation 2:

4𝑥 − 𝑦 = 5

Substituting 𝑦 from Equation 3:

4𝑥 − 6 − 2𝑥
3 = 5

Step 3: Eliminate the fraction

To eliminate the fraction, multiply every term by 3:

3(4𝑥) − (6 − 2𝑥) = 3(5)

This simplifies to:

12𝑥 − 6 + 2𝑥 = 15

Step 4: Combine like terms

Combine the 𝑥 terms:

14𝑥 − 6 = 15

Step 5: Solve for 𝑥
Add 6 to both sides:

14𝑥 = 21

Now divide by 14:

𝑥 = 21
14 = 3

2

Step 6: Substitute back to find 𝑦
Now substitute 𝑥 = 3

2 back into Equation 3 to find 𝑦:

𝑦 = 6 − 2 (3
2)

3

4.2. SLE IN 2D 43

Calculating inside the parentheses:

𝑦 = 6 − 3
3 = 3

3 = 1

Thus, the solution to the system of equations is:

(𝑥, 𝑦) = (3
2, 1)

This means that 𝑥 = 3
2 and 𝑦 = 1 satisfy both equations in the system.

4.2.2 Elimination
The elimination method involves adding or subtracting equations to eliminate one vari-
able:

Step 1: Align the equations

We can keep the equations as they are for now:

2𝑥 + 3𝑦 = 6 (Equation 1)
4𝑥 − 𝑦 = 5 (Equation 2)

Step 2: Multiply the equations if necessary

To eliminate 𝑦, we can multiply Equation 2 by 3 so that the coefficients of 𝑦 will match:

3(4𝑥 − 𝑦) = 3(5)

This gives us:

12𝑥 − 3𝑦 = 15 (Equation 3)

Now we have:

2𝑥 + 3𝑦 = 6 (Equation 1)
12𝑥 − 3𝑦 = 15 (Equation 3)

Step 3: Add the equations

Now, we can add Equation 1 and Equation 3 together to eliminate 𝑦:

(2𝑥 + 3𝑦) + (12𝑥 − 3𝑦) = 6 + 15

This simplifies to:

14𝑥 = 21

44 CHAPTER 4. SLE

Step 4: Solve for 𝑥
Divide both sides by 14:

𝑥 = 21
14 = 3

2

Step 5: Substitute back to find 𝑦
Now substitute 𝑥 = 3

2 back into Equation 1 to find 𝑦:

2 (3
2) + 3𝑦 = 6

Calculating:

3 + 3𝑦 = 6

Subtract 3 from both sides:

3𝑦 = 3

Now divide by 3:

𝑦 = 1

Thus, the solution to the system of equations is:

(𝑥, 𝑦) = (3
2, 1)

This means that 𝑥 = 3
2 and 𝑦 = 1 satisfy both equations in the system.

4.2.3 Augmented Matrix
Step 1: Set up the Augmented Matrix

We can represent the system of equations as an augmented matrix:

[2 3 | 6
4 −1 | 5]

Step 2: Perform Row Operations

Our goal is to convert this matrix into row-echelon form using row operations.

a. Scale the First Row

4.2. SLE IN 2D 45

First, we can scale the first row to make the leading coefficient (the coefficient of 𝑥 equal
to 1. However, we can also keep it as is for now:

𝑅1 ∶ [2 3 | 6]
b. Eliminate 𝑥 from the Second Row

To eliminate 𝑥 from the second row, we can replace 𝑅2 with 𝑅2 − 2𝑅1:

𝑅2 ∶ [4 −1 | 5] − 2 × [2 3 | 6]

Calculating this gives us:

𝑅2 ∶ [4 − 4 −1 − 6 | 5 − 12] = [0 −7 | −7]

So now our augmented matrix is:

[2 3 | 6
0 −7 | −7]

Step 3: Solve for the Variables

a. Back Substitute

From the second row, we can solve for 𝑦:

−7𝑦 = −7 ⟹ 𝑦 = 1
b. Substitute 𝑦 back into the first row

Now substitute 𝑦 = 1 back into the first equation (from the first row of the augmented
matrix):

2𝑥 + 3(1) = 6

This simplifies to:

2𝑥 + 3 = 6

Subtract 3 from both sides:

2𝑥 = 3

Now divide by 2:

𝑥 = 3
2

Thus, the solution to the system of equations is:

46 CHAPTER 4. SLE

(𝑥, 𝑦) = (3
2, 1)

This means that 𝑥 = 3
2 and 𝑦 = 1 satisfy both equations in the system.

4.2.4 Invers Matrix
The matrix method uses matrix operations to solve the system of equations:

Step 1: Write the system in matrix form

We can express the system in the form 𝐴𝑋 = 𝐵, where:

• 𝐴 is the coefficient matrix,
• 𝑋 is the column matrix of variables, and
• 𝐵 is the column matrix of constants.

For our system, this looks like:

[2 3
4 −1] [𝑥

𝑦] = [6
5]

Thus, we have:

• 𝐴 = [2 3
4 −1]

• 𝑋 = [𝑥
𝑦]

• 𝐵 = [6
5]

Step 2: Find the Inverse of Matrix 𝐴
To solve for 𝑋, we need to calculate 𝐴−1 (the inverse of matrix 𝐴). The formula for the
inverse of a 2x2 matrix

Step 2.1: Calculate the determinant

The determinant 𝐷 is calculated as:

𝐷 = 𝑎𝑑 − 𝑏𝑐 = (2)(−1) − (3)(4) = −2 − 12 = −14

Step 2.2: Apply the formula for the inverse

Now we apply the formula:

𝐴−1 = 1
−14 [−1 −3

−4 2] = [
1

14
3

144
14 − 2

14
] = [

1
14

3
142

7 − 1
7
]

Step 3: Multiply 𝐴−1 by 𝐵
Now we can find 𝑋 by multiplying the inverse of 𝐴 by 𝐵:

4.2. SLE IN 2D 47

𝑋 = 𝐴−1𝐵

Calculating this gives:

𝑋 = [
1

14
3

142
7 − 1

7
] [6

5]

Step 3.1: Perform the matrix multiplication

Calculating each element:

𝑋 = [
1

14 (6) + 3
14 (5)

2
7 (6) + − 1

7 (5)] = [
6

14 + 15
1412

7 − 5
7

] = [
21
147
7

] = [
3
2
1]

Thus, the solution to the system of equations is:

(𝑥, 𝑦) = (3
2, 1)

This means that 𝑥 = 3
2 and 𝑦 = 1 satisfy both equations in the system.

4.2.5 Graphical
Step 1: Convert Each Equation to Slope-Intercept Form

First, we convert each equation to the slope-intercept form 𝑦 = 𝑚𝑥 + 𝑏:

• For Equation 1:

2𝑥 + 3𝑦 = 6

Rearranging gives:

3𝑦 = 6 − 2𝑥 ⇒ 𝑦 = −2
3𝑥 + 2

• For Equation 2:

4𝑥 − 𝑦 = 5
Rearranging gives:

𝑦 = 4𝑥 − 5

Step 2: Plot Each Equation

a. Plotting Equation 1: 𝑦 = − 2
3 𝑥 + 2

• The y-intercept is 2 (where the line crosses the y-axis).
• The slope is − 2

3 , which means for every 3 units you move to the right (increasing
𝑥), you move 2 units down (decreasing 𝑦).

48 CHAPTER 4. SLE

Plot points for this line:

• When 𝑥 = 0 ∶ 𝑦 = 2 → Point: (0, 2)
• When 𝑥 = 3 ∶ 𝑦 = 0 → Point: (3, 0)
b. Plotting Equation 2: 𝑦 = 4𝑥 − 5
• The y-intercept is -5.
• The slope is 4, meaning for every 1 unit you move to the right, you move 4 units

up.

Plot points for this line:

• When 𝑥 = 0 ∶ 𝑦 = −5 → Point: (0, −5)
• When 𝑥 = 2 ∶ 𝑦 = 3 → Point: (2, 3)

−1 0 1 2 3 4 5

−10

−5

0

5

10

15

2x	+	3y	=	6
4x	-	y	=	5
Intersection	Point

Graphical	Method	for	Solving	Linear	Equations

x

y

Step 3: Identify the Intersection Point

After plotting both lines on the same Cartesian plane, identify the point where the two
lines intersect. This intersection point represents the solution to the system.

4.3. SLE IN 3D 49

Example of Intersection:

Upon plotting, you may find the intersection at the point (3
2 , 1).

Step 4: Write the Solution

Thus, the solution to the system of equations is:

(𝑥, 𝑦) = (3
2, 1)

This means that 𝑥 = 3
2 and 𝑦 = 1 satisfy both equations in the system.

4.3 SLE in 3D
To solve a system of linear equations (SLE) in three dimensions (3D), you can follow
similar methods as in 2D (like substitution, elimination, and matrix methods), but the
visualization and interpretation will be different due to the third variable.

4.3.1 Invers Matrix Method
Given the system of linear equations:

1. 𝑥 + 𝑦 + 𝑧 = 6 (Equation 1)
2. 2𝑥 + 2𝑦 + 𝑧 = 10 (Equation 2)
3. 𝑥 − 𝑦 + 2𝑧 = 3 (Equation 3)

Step 1: Write in Matrix Form

We can represent the system as a matrix equation:

𝐴𝑋 = 𝐵

Where:

• Coefficient matrix 𝐴:

𝐴 = ⎡⎢
⎣

1 1 1
2 2 1
1 −1 2

⎤⎥
⎦

• Variable matrix 𝑋:

𝑋 = ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

• Constant matrix 𝐵:

𝐵 = ⎡⎢
⎣

6
10
3

⎤⎥
⎦

50 CHAPTER 4. SLE

Step 2: Find the Inverse of Matrix 𝐴
To solve for 𝑋, we need to calculate 𝐴−1 (the inverse of matrix 𝐴). First, calculate the
determinant of 𝐴:

det(𝐴) = (1)(5) − (1)(3) + (1)(−4) = −2

Since det(𝐴) ≠ 0, matrix 𝐴 is invertible. Next, find the cofactor matrix:

Cofactor(𝐴) = ⎡⎢
⎣

5 −3 −4
−3 1 −2
−1 1 0

⎤⎥
⎦

The adjugate matrix is the transpose of the cofactor matrix:

adj(𝐴) = ⎡⎢
⎣

5 −3 −1
−3 1 1
−4 −2 0

⎤⎥
⎦

Now, the inverse of 𝐴 is:

𝐴−1 = 1
−2adj(𝐴) = ⎡⎢

⎣

− 5
2

3
2

1
23

2 − 1
2 − 1

2
2 1 0

⎤⎥
⎦

Step 3: Solve for 𝑋
Now, multiply 𝐴−1 by 𝐵 to find 𝑋:

𝑋 = 𝐴−1𝐵 = ⎡⎢
⎣

− 5
2

3
2

1
23

2 − 1
2 − 1

2
2 1 0

⎤⎥
⎦

⎡⎢
⎣

6
10
3

⎤⎥
⎦

Carrying out the multiplication:

• For 𝑥: − 5
2 (6) + 3

2 (10) + 1
2 (3) = 1.5

• For 𝑦: 3
2 (6) − 1

2 (10) − 1
2 (3) = 2.5

• For 𝑧: 2(6) + 1(10) + 0(3) = 22
Thus, the solution is:

𝑋 = ⎡⎢
⎣

1.5
2.5
22

⎤⎥
⎦

The solution to the system of equations is:

• 𝑥 = 1.5
• 𝑦 = 2.5
• 𝑧 = 22

4.3. SLE IN 3D 51

4.3.2 Graphical Method
To solve the system of equations using the graphical method, we will visualize each
equation as a plane in a 3D space. The solution to the system corresponds to the
intersection of these planes.

Step 1: Rearrange Each Equation

To visualize each equation as a plane in 3D space, we need to express them in terms of
𝑧, i.e., 𝑧 = 𝑓(𝑥, 𝑦). This allows us to plot 𝑧 as a function of 𝑥 and 𝑦.

• Equation 1: 𝑥 + 𝑦 + 𝑧 = 6
Rearranging for 𝑧:

𝑧1 = 6 − 𝑥 − 𝑦

• Equation 2: 2𝑥 + 2𝑦 + 𝑧 = 10
Rearranging for 𝑧:

𝑧2 = 10 − 2𝑥 − 2𝑦

• Equation 3: 𝑥 − 𝑦 + 2𝑧 = 3
Rearranging for 𝑧:

𝑧3 = 3 − 𝑥 + 𝑦
2

Step 2: Interpret the Geometry

Each equation represents a plane in 3D space:

• The first plane is 𝑧1 = 6 − 𝑥 − 𝑦.
• The second plane is 𝑧2 = 10 − 2𝑥 − 2𝑦.
• The third plane is 𝑧3 = 3−𝑥+𝑦

2 .

Step 3: Graphical Visualization

We can plot these three planes and identify their intersection:

• Plane 1: 𝑧1 = 6 − 𝑥 − 𝑦
This plane intercepts at 𝑧 = 6 when 𝑥 = 0 and 𝑦 = 0, and slopes downward as 𝑥 and 𝑦
increase (negative coefficients of 𝑥 and 𝑦).

• Plane 2: 𝑧2 = 10 − 2𝑥 − 2𝑦
This plane has an intercept at 𝑧 = 10 when 𝑥 = 0 and 𝑦 = 0, and slopes down more
steeply since the coefficients of 𝑥 and 𝑦 are larger (−2).

• Plane 3: 𝑧3 = 3−𝑥+𝑦
2

This plane behaves differently as it involves a fraction. It intercepts at 𝑧 = 1.5 (when
𝑥 = 0 and 𝑦 = 0) and has different slopes along the 𝑥 and 𝑦 axes.

52 CHAPTER 4. SLE

Intersection	Point

−4

−2

0

2

4

6

8

10

−10

−5

0

5

10

15

−2

−1

0

1

2

3

4

5

3D	Visualization	of	Linear	Equations	with	Solution	Point

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

After plotting the planes, we can look for the intersection point visually. The solution to
the system corresponds to the intersection of these three planes. Identify the Intersection
Points:

• Unique Solution: If all hyperplanes intersect at a single point, that point rep-
resents the unique solution.

• No Solution: If the hyperplanes do not intersect (are parallel), the system has
no solution.

• Infinite Solutions: If the hyperplanes coincide, there are infinitely many solu-
tions.

However, to find the exact coordinates, we can solve the system algebraically (or using
numerical methods) as discussed earlier.

4.4 SLE in n-Dimensions
A System of Linear Equations (SLE) in n dimensions involves multiple linear equations
with 𝑛 variables. The general form of such a system can be expressed as:

4.4. SLE IN N-DIMENSIONS 53

𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1 (Equation 1)
𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2 (Equation 2)

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚 (Equation m)

Where:

• 𝑥1, 𝑥2, … , 𝑥𝑛 are the variables.
• 𝑎𝑖𝑗 are the coefficients of the variables.
• 𝑏𝑖 are the constants.

4.4.1 Write in Matrix Form
You can represent the system of equations in matrix form 𝐴𝑋 = 𝐵:

• Coefficient matrix 𝐴:

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

• Variable matrix 𝑋:

𝑋 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

• Constant matrix 𝐵:

𝐵 =
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦

The equation can then be expressed as:

𝐴𝑋 = 𝐵

4.4.2 Ensure A is Invertible
The matrix 𝐴 must be invertible, meaning its determinant must be non-zero:

det(𝐴) ≠ 0

If the determinant is zero, the system either has no solution or an infinite number of
solutions.

54 CHAPTER 4. SLE

4.4.3 Find the Inverse of Matrix A
If 𝐴 is invertible, calculate 𝐴−1, the inverse of matrix 𝐴. This can be done using various
methods:

• Gaussian Elimination,
• Cofactor Method,
• Adjugate and Determinant Method.

4.4.4 Multiply 𝐴−1 by B
Once 𝐴−1 is computed, the solution to the system can be found by multiplying 𝐴−1 by
the constant matrix 𝐵:

𝑋 = 𝐴−1𝐵

⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

−1

×
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑚

⎤
⎥⎥
⎦

This matrix multiplication will give the values of the variables 𝑥1, 𝑥2, … , 𝑥𝑛

4.5 Case Study of SLE
4.5.1 Overview: XYZ Manufacturing Co.
XYZ Manufacturing Co. is a well-known company in the consumer goods industry. Our
mission is to make everyday life easier and better through our innovative products. Since
we started, we’ve focused on delivering quality and keeping our customers happy. We
offer a variety of products that cater to the needs of our consumers.

4.5.2 Industry: Consumer Goods
We operate in the fast-moving consumer goods sector, where competition is strong, and
customer preferences change quickly. To succeed, we prioritize efficient production and
stay up-to-date with market trends.

4.5.3 Products
We have a diverse range of products that are designed to improve the lives of our
customers:

• Product A: This kitchen appliance has become a favorite in many homes. It’s
easy to use and can perform multiple tasks, making cooking simpler and faster.

• Product B: A small electronic device that has changed how people use technology
in their daily lives. It’s compact and packed with features, making it a must-have
for anyone who loves gadgets.

4.5. CASE STUDY OF SLE 55

• Product C: This home cleaning product is effective and environmentally friendly.
With more people caring about the planet, we’ve created a solution that keeps
homes clean without harming the environment.

• Product D: A personal care item that shows our commitment to quality and
health. Made with natural ingredients, it appeals to customers who want to take
care of themselves without using harsh chemicals.

4.5.4 Objective
XYZ Manufacturing Co. aims to optimize its production plan to meet customer demand
while efficiently utilizing its resources. The company has received orders for various
quantities of its products and needs to determine how many units of each product to
produce to maximize profits and maintain customer satisfaction.

4.5.5 Constraints
The company faces certain resource constraints represented by the following factors:

• Material Resources: Each product requires different amounts of raw materials,
which are limited due to supplier agreements.

• Labor Hours: The production of each product requires a specific number of
labor hours, which is also limited by the workforce available.

• Production Capacity: The manufacturing facility can only produce a certain
total number of units across all products due to machinery and operational limits.

4.5.6 System of Equations
To formalize the production planning, the company develops a system of equations
that represents the relationships between the products and the resources available. The
equations account for the material requirements, labor hours, and production capacity:

1. 2𝑥1 + 3𝑥2 + 4𝑥3 + 2𝑥4 = 20
• Represents the total material resources available.

2. 𝑥1 + 2𝑥2 + 2𝑥3 + 3𝑥4 = 15
• Represents the total labor hours available.

3. 2𝑥1 + 2𝑥2 + 3𝑥3 + 𝑥4 = 20
• Represents the total production capacity for the facility.

4. 2𝑥1 + 𝑥2 + 2𝑥3 + 3𝑥4 = 25
• Represents additional constraints based on customer demand and supply

chain considerations.

4.5.7 Decision Variables
• 𝑥1: Units of Product A to produce
• 𝑥2: Units of Product B to produce
• 𝑥3: Units of Product C to produce
• 𝑥4: Units of Product D to produce

4.5.8 Goals
The primary goals for the production planning include:

56 CHAPTER 4. SLE

• Maximizing Output: Produce enough units to meet customer demand while
adhering to resource constraints.

• Cost Efficiency: Minimize production costs by optimizing resource allocation
across products.

• Customer Satisfaction: Ensure that production levels align with customer or-
ders to avoid stockouts.

4.5.9 Coefficient Matrix 𝐴
The coefficient matrix 𝐴 can be represented as:

𝐴 =
⎡
⎢⎢
⎣

2 3 4 2
1 2 2 3
2 2 3 1
2 1 2 3

⎤
⎥⎥
⎦

4.5.10 Constant Matrix 𝐵
The constant matrix 𝐵 is given by:

𝐵 =
⎡
⎢⎢
⎣

20
15
20
25

⎤
⎥⎥
⎦

4.5.11 Python Code to Solve the System
You can use the following Python code to solve the system of equations:
import numpy as np

Define the coefficient matrix A
A = np.array([[2, 3, 4, 2],

[1, 2, 2, 3],
[2, 2, 3, 1],
[2, 1, 2, 3]])

Define the constant matrix B
B = np.array([20, 15, 20, 25])

Calculate the solution
X = np.linalg.solve(A, B)

Print the results
print(f'Units of Product A: {X[0]:.2f}')
print(f'Units of Product B: {X[1]:.2f}')
print(f'Units of Product C: {X[2]:.2f}')
print(f'Units of Product D: {X[3]:.2f}')

4.6. SLE IN PYTHON 57

Expected Results: Upon running the code, the results for the number of units to
produce for each product will be:
Units of Product A: 3.00
Units of Product B: 1.00
Units of Product C: 3.00
Units of Product D: 4.00

−6

−4

−2

0

2

4

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

3D	Projection	of	Resource	Allocation

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

4.6 SLE in Python
Klik here

https://colab.research.google.com/drive/1VTVp_QgVx40wXBVL4EvrI0umMOk_GmlD?usp=sharing

58 CHAPTER 4. SLE

Chapter 5

Linear Transformations

A linear transformation is a function that maps vectors from one vector space to another
while preserving the basic operations within that vector space.

Linear transformation is applied in various aspects, such as geological modeling, mineral
reserve calculations, excavation route optimization, and geotechnical structure analysis.
By mastering this fundamental concept, mining engineering students are expected to
develop the analytical skills needed to address challenges in the field and to carry out
more efficient and safe mine planning.

5.1 2D Linear Transformation
2D transformations are operations that change the position, size, orientation, or shape
of objects in a two-dimensional space. These transformations can be represented us-
ing matrices, allowing for efficient computation. A 2D linear transformation can be
expressed in matrix form as:

v′ = A ⋅ v

Where:

• v is the original vector represented as a column vector:

v = (𝑥
𝑦)

• v′ is the transformed vector.
• A is a 2 × 2 transformation matrix.

5.1.1 2D Rotation
Rotation is a linear transformation that rotates a vector around the origin (0, 0) in a
two-dimensional plane. In this context, we will rotate the vector (2, 3) by 90 degrees.

The rotation matrix for a 90-degree rotation counterclockwise is:

59

60 CHAPTER 5. LINEAR TRANSFORMATIONS

𝑅90 = (cos(90∘) − sin(90∘)
sin(90∘) cos(90∘))

= (0 −1
1 0)

Applying this rotation matrix to the vector (2, 3):

𝑅90 (2
3) = (0 −1

1 0) (2
3)

= (−3
2)

After a 90-degree rotation, the vector (2, 3) becomes (−3, 2).

0 0.5 1 1.5 2 2.5 3

−2

−1

0

1

2

3

Original	Vector	Line
Original	Vector
Rotated	Vector	Line
Rotated	Vector

Vector	Rotation

X

Y

5.1. 2D LINEAR TRANSFORMATION 61

5.1.2 2D Reflection

Consider the original vector (2, 3). We will calculate its reflections across the 𝑥-axis,
𝑦-axis, and the line 𝑦 = 𝑥.

1. Reflection across the 𝑥-axis:

𝑅𝑥(v) = (2
−3)

2. Reflection across the 𝑦-axis:

𝑅𝑦(v) = (−2
3)

3. Reflection across the line 𝑦 = 𝑥:

𝑅𝑦=𝑥(v) = (3
2)

Thus, the reflection results for the vector (2, 3) are:

• Reflection across the 𝑥-axis: (2, −3)
• Reflection across the 𝑦-axis: (−2, 3)
• Reflection across the line 𝑦 = 𝑥: (3, 2)

Let’s now visualize the reflections of the vector (2, 3) across the 𝑥-axis and 𝑦-axis.

62 CHAPTER 5. LINEAR TRANSFORMATIONS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3

−2

−1

0

1

2

3

Original	Vector	Line
Original	Vector
Reflection	across	X-axis	Line
Reflection	across	X-axis
Reflection	across	Y-axis	Line
Reflection	across	Y-axis

Vector	Reflection

X

Y

5.1.3 2D Scaling
Consider the original vector (2, 3). We will scale this vector by different scalar factors,
𝑘 = 2 and 𝑘 = 0.5, to observe the effect of scaling.

1. Scaling with Factor 𝑘 = 2:

𝑆𝐶2(v) = (2 ⋅ 2
2 ⋅ 3) = (4

6)

2. Scaling with Factor 𝑘 = 0.5:

𝑆𝐶0.5(v) = (0.5 ⋅ 2
0.5 ⋅ 3) = (1

1.5)

Thus, the scaling results for the vector (2, 3) are:

5.1. 2D LINEAR TRANSFORMATION 63

• With factor 𝑘 = 2 ∶ (4, 6)
• With factor 𝑘 = 0.5 ∶ (1, 1.5)

Let’s visualize the original vector (2, 3) and its scaled results with factors 𝑘 = 2 and
𝑘 = 0.5.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

Original	Vector	Line
Original	Vector
Scaling	Line	k=2
Scaling	k=2
Scaling	Line	k=0.5
Scaling	k=0.5

Vector	Scaling

X

Y

5.1.4 2D Shearing
Consider the original vector (2, 3), and we will perform horizontal shearing with a factor
of 𝑘𝑥 = 1.5 and vertical shearing with a factor of 𝑘𝑦 = 1.5. The shearing results are
calculated as follows:

1. Horizontal Shearing with Factor 𝑘𝑥 = 1.5:

𝑆𝐻ℎ(2, 3) = (2 + 1.5 ⋅ 3
3) = (6.5

3)

2. Vertical Shearing with Factor 𝑘𝑦 = 1.5:

64 CHAPTER 5. LINEAR TRANSFORMATIONS

𝑆𝐻𝑣(2, 3) = (2
3 + 1.5 ⋅ 2) = (2

6)

Thus, the shearing results for the vector (2, 3) are:

• Horizontal shearing with a factor of 𝑘𝑥 = 1.5 ∶ (6.5, 3)
• Vertical shearing with a factor of 𝑘𝑦 = 1.5 ∶ (2, 6)

Now, let’s visualize the original vector (2, 3) along with the shearing results with a factor
of 𝑘𝑥 = 1.5 for horizontal and 𝑘𝑦 = 1.5 for vertical shearing.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Original	Vector	Line
Original	Vector
Horizontal	Shearing	Line
Horizontal	Shearing
Vertical	Shearing	Line
Vertical	Shearing	Point

Vector	Shearing

X

Y

5.1.5 2D Translation
Translation is a geometric transformation that shifts a vector by a specified distance
along the x and y axes. It effectively changes the position of the vector without altering
its shape or orientation. The transformation can be represented mathematically as
follows:

5.1. 2D LINEAR TRANSFORMATION 65

If we have a vector v represented by coordinates (𝑥, 𝑦), and we want to translate it by
distances 𝑡𝑥 in the x-direction and 𝑡𝑦 in the y-direction, the translated vector v′ can be
expressed as:

𝑇 (v) = (𝑥′

𝑦′) = (𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦

)

Here: - 𝑥′ and 𝑦′ are the new coordinates of the vector after translation. - 𝑡𝑥 is the
translation distance along the x-axis. - 𝑡𝑦 is the translation distance along the y-axis.

For example, if we have a vector (2, 3) and we want to translate it by 𝑡𝑥 = 5 and 𝑡𝑦 = −2,
the new vector will be calculated as follows:

𝑇 (v) = (2 + 5
3 − 2) = (7

1)

Thus, the vector (2, 3) translated by 𝑡𝑥 = 5 and 𝑡𝑦 = −2 results in the new position
(7, 1).

66 CHAPTER 5. LINEAR TRANSFORMATIONS

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

Original	Vector
Original	Point
Translated	Vector
Translated	Point

Vector	Translation

X

Y

5.2 3D Linear Transformation
Linear transformations in three dimensions can be represented using matrices and ap-
plied to vectors in 3D space. A linear transformation can include operations such as
rotation, reflection, scaling, shearing, and translation.

A 3D linear transformation can be expressed in matrix form as:

v′ = A ⋅ v

Where:

• v is the original vector represented as a column vector:

5.2. 3D LINEAR TRANSFORMATION 67

v = ⎛⎜
⎝

𝑥
𝑦
𝑧
⎞⎟
⎠

• v′ is the transformed vector.
• A is a 3 × 3 transformation matrix.

5.2.1 3D Rotation
Rotation in 3D space can be defined as the change in the position of a vector through
a certain angle (𝜃) around one of the axes (𝑋, 𝑌 , or 𝑍).
The 3D rotation can be performed using rotation matrices, which are defined for rotation
around the 𝑋, 𝑌 , and 𝑍 axes as follows:

1. Rotation around the X-axis:

𝑅𝑥(𝜃) = ⎡⎢
⎣

1 0 0
0 cos(𝜃) − sin(𝜃)
0 sin(𝜃) cos(𝜃)

⎤⎥
⎦

2. Rotation around the Y-axis:

𝑅𝑦(𝜃) = ⎡⎢
⎣

cos(𝜃) 0 sin(𝜃)
0 1 0

− sin(𝜃) 0 cos(𝜃)
⎤⎥
⎦

3. Rotation around the Z-axis:

𝑅𝑧(𝜃) = ⎡⎢
⎣

cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1
⎤⎥
⎦

To rotate a vector v around a specific axis, we multiply the vector by the corresponding
rotation matrix. Suppose the vector v is defined as:

v = ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

Then the resulting rotated vector v′ can be obtained using:

v′ = 𝑅(𝜃) ⋅ v

where 𝑅(𝜃) is the rotation matrix corresponding to the chosen axis. Let’s consider the
initial vector (1, 2, 3) and perform a 3D rotation transformation. Observe the following
visualization:

68 CHAPTER 5. LINEAR TRANSFORMATIONS

Original	Vector
Rotation	45°	around	X-axis
Rotation	45°	around	Y-axis
Rotation	45°	around	Z-axis
Origin	Point

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

5.2.2 3D Reflection
Reflection in 3D space can be defined as the change in the position of a vector by flipping
its components along a specific axis or plane. For example, if we reflect across the 𝑋𝑌
plane, the Z component of the vector will have its sign changed.

The reflection matrices for each coordinate plane in 3D are as follows:

1. Reflection across the 𝑋𝑌 plane:

𝑅𝑋𝑌 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 −1

⎤⎥
⎦

2. Reflection across the YZ plane:

𝑅𝑌 𝑍 = ⎡⎢
⎣

−1 0 0
0 1 0
0 0 1

⎤⎥
⎦

5.2. 3D LINEAR TRANSFORMATION 69

3. Reflection across the XZ plane:

𝑅𝑋𝑍 = ⎡⎢
⎣

1 0 0
0 −1 0
0 0 1

⎤⎥
⎦

To reflect a vector v across a specific plane, we multiply the vector by the corresponding
reflection matrix. Suppose the vector v is defined as:

v = ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

Then the resulting reflected vector v′ can be obtained using:

v′ = 𝑅 ⋅ v

where 𝑅 is the reflection matrix corresponding to the selected plane. Let’s consider the
initial vector (1, 2, 3) and perform a 3D reflection transformation. Observe the following
visualization:

70 CHAPTER 5. LINEAR TRANSFORMATIONS

Original	Vector
Reflection	in	XY	plane
Reflection	in	YZ	plane
Reflection	in	XZ	plane
Origin	Point

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

5.2.3 3D Scaling
3D scaling enables us to increase or decrease the dimensions of an object according to
our needs. This transformation can be applied uniformly, meaning the scaling factor
remains consistent across all axes, or non-uniformly, where the scaling factors differ for
each axis.

The scaling matrix in 3D space can be expressed in the following matrix form:

𝑆 = ⎡⎢
⎣

𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 𝑠𝑧

⎤⎥
⎦

Where: - 𝑠𝑥, 𝑠𝑦, and 𝑠𝑧 are the scaling factors for the X, Y, and Z axes, respectively.

Suppose we have a vector v represented as:

5.2. 3D LINEAR TRANSFORMATION 71

v = ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

After scaling, the new vector v′ can be obtained through:

v′ = 𝑆 ⋅ v = ⎡⎢
⎣

𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 𝑠𝑧

⎤⎥
⎦

⋅ ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

= ⎡⎢
⎣

𝑠𝑥 ⋅ 𝑥
𝑠𝑦 ⋅ 𝑦
𝑠𝑧 ⋅ 𝑧

⎤⎥
⎦

Uniform Scaling

Definition: Uniform scaling refers to a transformation that enlarges or shrinks an
object in 3D space using the same scaling factor for all three axes (X, Y, and Z). This
maintains the object’s proportions and shape, ensuring that the dimensions grow or
shrink uniformly.

Mathematical Representation: The uniform scaling matrix can be represented as:

𝑆 = ⎡⎢
⎣

𝑠 0 0
0 𝑠 0
0 0 𝑠

⎤⎥
⎦

Where: -𝑠 is the uniform scaling factor.

Properties:

• Proportionality: Since the same scaling factor is applied to all axes, the object
retains its original shape and proportions. For example, a sphere remains a sphere,
and a cube remains a cube.

• Center of Scaling: The scaling occurs around a specified point, usually the origin
(0, 0, 0), unless a different center is defined. Objects are enlarged or reduced in
size relative to this center point.

Applications:

• Modeling and Animation: Uniform scaling is commonly used in computer
graphics to resize characters or objects without distorting their shapes. For exam-
ple, enlarging a character model for a game scene while maintaining their propor-
tions.

• Architectural Visualization: In architectural design, uniform scaling can be
applied to create models of buildings, allowing designers to maintain accurate
proportions when resizing structures.

• Simulation: In simulations, uniform scaling helps maintain realistic interactions
between objects, such as when simulating physics.

Example: If an object (e.g., a cube) with dimensions (1, 2, 3) is uniformly scaled by a
factor of 2, the new dimensions will be (2, 4, 6). The shape remains a cube, just larger.

72 CHAPTER 5. LINEAR TRANSFORMATIONS

Non-Uniform Scaling

Definition: Non-uniform scaling is a transformation that changes the dimensions of
an object by applying different scaling factors to each of the three axes (X, Y, and Z).
This can result in distortion, changing the object’s proportions and potentially altering
its shape entirely.

Mathematical Representation: The non-uniform scaling matrix can be represented
as:

𝑆 = ⎡⎢
⎣

𝑠𝑥 0 0
0 𝑠𝑦 0
0 0 𝑠𝑧

⎤⎥
⎦

Where:

• 𝑠𝑥 is the scaling factor for the X-axis.
• 𝑠𝑦 is the scaling factor for the Y-axis.
• 𝑠𝑧 is the scaling factor for the Z-axis.

Properties:

• Distortion: Non-uniform scaling can stretch or compress an object differently
along different axes, leading to a distortion of its original shape. For instance, a
cube can become a rectangular prism or an elongated shape.

• Independent Control: Each axis can be scaled independently, providing greater
flexibility in design and manipulation. This is useful for creating complex shapes
and adjusting models to fit specific requirements.

Applications:

• Character Modeling: In character design, non-uniform scaling can create ex-
aggerated features, such as a tall, thin character or a short, stocky character, by
varying the scaling factors for each axis.

• Animation: Non-uniform scaling is often used in animations to create effects
such as stretching or squashing, which can add realism or stylization to animated
characters and objects.

• Industrial Design: In product design, non-uniform scaling can help designers
adapt objects to fit functional requirements, such as making a part wider or thin-
ner.

Example: Consider an object with dimensions (1, 2, 3). If it undergoes non-uniform
scaling with factors 𝑠𝑥 = 2, 𝑠𝑦 = 1, and 𝑠𝑧 = 0.5, the new dimensions will be (2, 2, 1.5).
The object’s shape will now be elongated along the X-axis, squashed along the Y-axis,
and unchanged in the Z-axis.

5.2. 3D LINEAR TRANSFORMATION 73

Original	Vector
Uniform	Scaling
Non-Uniform	Scaling
Origin	Point

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

5.2.4 3D Shearing
The shearing matrix in 3D space can be expressed in the following matrix form:

𝐻 = ⎡⎢
⎣

1 𝑠ℎ𝑥𝑦 𝑠ℎ𝑥𝑧
𝑠ℎ𝑦𝑥 1 𝑠ℎ𝑦𝑧
𝑠ℎ𝑧𝑥 𝑠ℎ𝑧𝑦 1

⎤⎥
⎦

Where:

• 𝑠ℎ𝑥𝑦, 𝑠ℎ𝑥𝑧, 𝑠ℎ𝑦𝑥, 𝑠ℎ𝑦𝑧, 𝑠ℎ𝑧𝑥, and 𝑠ℎ𝑧𝑦 are the shearing factors for each axis com-
bination.

Let’s consider a vector v expressed as:

v = ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

74 CHAPTER 5. LINEAR TRANSFORMATIONS

After shearing, the new vector v′ can be obtained through:

v′ = 𝐻 ⋅ v = ⎡⎢
⎣

1 𝑠ℎ𝑥𝑦 𝑠ℎ𝑥𝑧
𝑠ℎ𝑦𝑥 1 𝑠ℎ𝑦𝑧
𝑠ℎ𝑧𝑥 𝑠ℎ𝑧𝑦 1

⎤⎥
⎦

⋅ ⎡⎢
⎣

𝑥
𝑦
𝑧
⎤⎥
⎦

= ⎡⎢
⎣

𝑥 + 𝑠ℎ𝑥𝑦 ⋅ 𝑦 + 𝑠ℎ𝑥𝑧 ⋅ 𝑧
𝑠ℎ𝑦𝑥 ⋅ 𝑥 + 𝑦 + 𝑠ℎ𝑦𝑧 ⋅ 𝑧
𝑠ℎ𝑧𝑥 ⋅ 𝑥 + 𝑠ℎ𝑧𝑦 ⋅ 𝑦 + 𝑧

⎤⎥
⎦

Assuming we use the following shearing factors:

• 𝑠ℎ𝑥𝑦 = 0.5
• 𝑠ℎ𝑥𝑧 = 0.2
• 𝑠ℎ𝑦𝑥 = 0.1
• 𝑠ℎ𝑦𝑧 = 0.3
• 𝑠ℎ𝑧𝑥 = 0.4
• 𝑠ℎ𝑧𝑦 = 0.1

With the initial vector v = ⎡⎢
⎣

1
2
3
⎤⎥
⎦

, we can calculate the new vector v′ as follows:

v′ = 𝐻 ⋅ v = ⎡⎢
⎣

1 0.5 0.2
0.1 1 0.3
0.4 0.1 1

⎤⎥
⎦

⋅ ⎡⎢
⎣

1
2
3
⎤⎥
⎦

The result of the above calculation is:

v′ = ⎡⎢
⎣

2.6
3.0
3.6

⎤⎥
⎦

Thus, the result of the shearing transformation on the vector (1, 2, 3) is (2.6, 3.0, 3.6).

Here is a visualization example of the original vector and the result of the shearing.

5.2. 3D LINEAR TRANSFORMATION 75

Original	Vector
Sheared	Vector
Origin	Point

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

5.2.5 3D Translation
In the context of translation transformation, we can define the transformation as follows:

v′ = 𝑇 ⋅ v

where:

• v is the initial position vector,
• v′ is the position vector after translation,
• 𝑇 is the translation matrix.

The translation matrix in 3D space can be expressed in the following augmented matrix
form (adding a row for homogeneous coordinates):

76 CHAPTER 5. LINEAR TRANSFORMATIONS

𝑇 =
⎡
⎢⎢
⎣

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

⎤
⎥⎥
⎦

Where:

• 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧 are the translation distances along the X, Y, and Z axes, respectively.

Let’s consider a vector v expressed as a homogeneous coordinate:

v =
⎡
⎢⎢
⎣

𝑥
𝑦
𝑧
1

⎤
⎥⎥
⎦

After translation, the new vector v′ can be obtained through:

v′ = 𝑇 ⋅ v =
⎡
⎢⎢
⎣

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

⎤
⎥⎥
⎦

⋅
⎡
⎢⎢
⎣

𝑥
𝑦
𝑧
1

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦
𝑧 + 𝑡𝑧

1

⎤
⎥⎥
⎦

Assuming we use the following translation distances:

• 𝑡𝑥 = 3
• 𝑡𝑦 = 2
• 𝑡𝑧 = 1

With the initial vector v =
⎡
⎢⎢
⎣

1
2
3
1

⎤
⎥⎥
⎦

, we can calculate the new vector v′ as follows:

v′ = 𝑇 ⋅ v =
⎡
⎢⎢
⎣

1 0 0 3
0 1 0 2
0 0 1 1
0 0 0 1

⎤
⎥⎥
⎦

⋅
⎡
⎢⎢
⎣

1
2
3
1

⎤
⎥⎥
⎦

The result of the above calculation is:

v′ =
⎡
⎢⎢
⎣

4
4
4
1

⎤
⎥⎥
⎦

Thus, the result of the translation transformation on the vector (1, 2, 3) is (4, 4, 4).
Here is a visualization example of the original vector and the result of the translation.

5.3. CASE STUDY 1 77

Original	Vector
Translated	Vector
Origin	Point

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

5.3 Case Study 1
Applying Scaling Transformation on an Image for Poster Design

5.3.1 Background
A graphic designer is creating a promotional poster for an event. They want to use
the company logo, but the size and proportions don’t quite fit the poster layout. The
designer uses scaling transformations to adjust the image size while preserving its
original shape.

5.3.2 Objectives
1. Create a version of the logo with uniform scaling to adjust the size while main-

taining the original proportions.

78 CHAPTER 5. LINEAR TRANSFORMATIONS

2. Create a version with non-uniform scaling to better fit specific dimensions on
the poster.

5.3.3 Solution Steps
The designer used the following Python code to perform scaling transformations on the
logo downloaded from a URL.
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import requests
from io import BytesIO

Download and load the logo image
image_url = "https://github.com/dsciencelabs/images/blob/master/Logo_Dsciencelabs_v1.png?raw=true"
response = requests.get(image_url)
original_image = Image.open(BytesIO(response.content))

Scaling transformation matrices
Uniform scaling matrix (scaling factor = 1.5)
uniform_scale_factor = 1.5
uniform_scaling_matrix = np.array([

[uniform_scale_factor, 0],
[0, uniform_scale_factor]

])

Non-uniform scaling matrix
non_uniform_scale_x = 1.2 # Scale width by 120%
non_uniform_scale_y = 0.8 # Scale height by 80%
non_uniform_scaling_matrix = np.array([

[non_uniform_scale_x, 0],
[0, non_uniform_scale_y]

])

Function to apply scaling transformation
def apply_scaling(image, scaling_matrix):

Get the new dimensions
width, height = image.size
new_width = int(width * scaling_matrix[0, 0])
new_height = int(height * scaling_matrix[1, 1])

Resize the image with the new dimensions
return image.resize((new_width, new_height))

Apply uniform and non-uniform scaling transformations
uniform_image = apply_scaling(original_image, uniform_scaling_matrix)
non_uniform_image = apply_scaling(original_image, non_uniform_scaling_matrix)

Display the original and scaled images

5.4. CASE STUDY 2 79

fig, axes = plt.subplots(1, 3, figsize=(12, 4))
axes[0].imshow(original_image)
axes[0].set_title("Original Image")
axes[0].axis("off")

axes[1].imshow(uniform_image)
axes[1].set_title(f"Uniform Scaling ({uniform_scale_factor * 100:.0f}%)")
axes[1].axis("off")

axes[2].imshow(non_uniform_image)
axes[2].set_title(f"Non-uniform Scaling (Width {non_uniform_scale_x * 100:.0f}%, Height {non_uniform_scale_y * 100:.0f}%)")
axes[2].axis("off")

plt.tight_layout()
plt.show()

5.4 Case Study 2
Counting Lights in a City Night Image

In this case study, we explore how to estimate the number of lights in a nighttime
photograph of an urban area using image processing techniques. This method can help
city planners assess energy consumption and plan for energy-saving initiatives.

5.4.1 Problem Context
A city planner needs to evaluate energy usage in a specific urban area by counting the
number of lights visible in a photograph taken at night. This estimation can help in
planning energy-saving measures. We use an image analysis approach that involves
several steps, such as contrast enhancement and object detection, to identify the lights.

5.4.2 Steps of the Analysis
1. Image Processing: The original photograph is converted to grayscale to simplify

light detection by reducing color complexity.
2. Contrast Adjustment: A linear transformation is applied to enhance the con-

trast, making bright areas (lights) more distinguishable from dark areas.
3. Thresholding: Using Otsu’s method, the image is binarized, converting bright

spots to white and dark areas to black.
4. Object Counting: Connected bright regions are identified and counted as indi-

vidual lights.

5.4.3 Code Implementation
Below is the Python code used to perform these steps:
from PIL import Image
import requests
from io import BytesIO

80 CHAPTER 5. LINEAR TRANSFORMATIONS

import numpy as np
import matplotlib.pyplot as plt
from skimage import measure, color, filters

Load the image
image_url = "https://github.com/dsciencelabs/images/blob/master/jogja.jpg?raw=true"
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))

Convert to grayscale
gray_image = image.convert("L")

Convert image to numpy array
image_matrix = np.array(gray_image)

Apply linear transformation to increase contrast
a, b = 2, -100 # Adjust as needed
transformed_image = np.clip(a * image_matrix + b, 0, 255).astype(np.uint8)

Apply thresholding
threshold_value = filters.threshold_otsu(transformed_image)
binary_image = transformed_image > threshold_value

Count bright objects using connected components
labels = measure.label(binary_image)
lamp_count = labels.max()

Display results
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
axes[0].imshow(gray_image, cmap="gray")
axes[0].set_title("Original Grayscale Image")
axes[0].axis("off")

axes[1].imshow(transformed_image, cmap="gray")
axes[1].set_title("Transformed Image")
axes[1].axis("off")

axes[2].imshow(color.label2rgb(labels, bg_label=0))
axes[2].set_title(f"Detected Lights (Count: {lamp_count})")
axes[2].axis("off")

plt.tight_layout()
plt.show()

5.5 Case Study 3
Seasonal Production Demand Adjustment

5.5. CASE STUDY 3 81

5.5.1 Background
A manufacturing company operates three production facilities (A, B, and C) that pro-
duce the same product. Each facility has different initial production capacities, and
seasonal demand variations require adjustments in their production levels. The com-
pany aims to optimize production by applying linear transformations (scaling, rotation,
and translation) to meet the increased seasonal demand efficiently.

5.5.2 Given Data
The initial production capacities (in tons per day) and seasonal scaling factors for each
facility are as follows:

Facility Initial Production (tons/day) Seasonal Scaling Factor
Facility A 100 1.2
Facility B 80 1.5
Facility C 60 1.3

Additionally, to shift production focus, Facility B will undergo a rotation transformation
of 30 degrees around the z-axis. There is also a baseline increase in demand across all
facilities represented by a translation vector that adds 10 tons/day to each facility’s
production.

5.5.3 Problem Statement
1. Calculate the new production capacities after applying the scaling

transformation based on the given seasonal scaling factors.

2. Determine the new production capacities after applying the rotation
transformation around the z-axis for the adjusted production levels of
Facility B.

3. What will be the final production capacities for each facility after ap-
plying the translation vector that accounts for the increased demand?

4. If the production capacity of Facility C is limited to a maximum of 80
tons/day, how would this limitation affect the overall production and
demand fulfillment for the company?

5. Discuss how applying these linear transformations can help the com-
pany respond to seasonal demand changes effectively.

5.5.4 Solution
1. Scaling Transformation

We calculate the new production capacities by applying the scaling factors:

• Facility A: (100 ×1.2 = 120) tons/day
• Facility B: (80 ×1.5 = 120) tons/day
• Facility C: (60 ×1.3 = 78) tons/day

82 CHAPTER 5. LINEAR TRANSFORMATIONS

The new production capacities after scaling are:

Facility New Production (tons/day)
Facility A 120
Facility B 120
Facility C 78

2. Rotation Transformation

To apply the rotation transformation for Facility B, we need to perform the rotation
around the z-axis by 30 degrees. In this case, since we are focusing on production
capacity (not coordinates), we can assume that rotation will not affect the capacity
directly, but it will affect the distribution of production. Thus, the production remains:

• Facility B: 120 tons/day (no capacity change due to rotation)

3. Final Production Capacities

After applying a translation vector that adds 10 tons/day to each facility, we calculate:

• Facility A: (120 + 10 = 130) tons/day
• Facility B: (120 + 10 = 130) tons/day
• Facility C: (78 + 10 = 88) tons/day

The final production capacities are:

Facility Final Production (tons/day)
Facility A 130
Facility B 130
Facility C 88

4. Capacity Limitation for Facility C

If Facility C’s production capacity is limited to 80 tons/day, we must adjust its final
capacity:

• Facility A: 130 tons/day
• Facility B: 130 tons/day
• Facility C: 80 tons/day (limited)

Thus, the new final capacities are:

Facility Adjusted Final Production (tons/day)
Facility A 130
Facility B 130
Facility C 80

5. Discussion on Linear Transformations

Applying linear transformations such as scaling, rotation, and translation allows the
company to effectively adjust their production capacities in response to seasonal demand

5.6. LINEAR TRANSFORMATIONS IN PYTHON 83

changes. Scaling helps in increasing production levels, while rotation allows for adjusting
the focus of production without changing the overall capacity. Translation reflects an
increase in demand, ensuring that the facilities can adapt to meet market requirements
efficiently. Such methods are crucial for optimizing resource utilization and enhancing
operational efficiency in a dynamic production environment.

5.6 Linear Transformations in Python
Klik here

https://colab.research.google.com/drive/1FLTY5Y5JRVIS1PGYZwLM4YH5Q3kuOYOf?usp=sharing

84 CHAPTER 5. LINEAR TRANSFORMATIONS

Chapter 6

Eigenvalues and Eigenvectors

In data science, understanding eigenvalues and eigenvectors is essential for vari-
ous techniques, especially for dimensionality reduction and data transformation.
These concepts are central to methods such as Principal Component Analysis
(PCA), which is widely used to analyze and visualize high-dimensional data.

In simple terms, eigenvalues and eigenvectors describe how a matrix (which represents
a transformation) affects the data. Eigenvectors represent directions in the data space,
while eigenvalues determine how much the data is scaled along those directions.

6.1 Eigenvalue
An eigenvalue is a scalar that indicates how much the data is stretched or compressed
along a specific direction (represented by an eigenvector) when a transformation is
applied. In linear algebra, if 𝐴 is a square matrix and ⃗𝑥 is a non-zero vector, the
eigenvalue 𝜆 of matrix 𝐴 is defined by the equation:

𝐴 ⋅ ⃗𝑥 = 𝜆 ⋅ ⃗𝑥

This equation tells us that when matrix 𝐴 is applied to vector ⃗𝑥, the resulting vector is
scaled by the factor 𝜆 along the same direction as ⃗𝑥.

To compute the eigenvalues, we solve the characteristic equation:

det(𝐴 − 𝜆𝐼) = 0

Where: - 𝐴 is the matrix (for example, the covariance matrix in PCA). - 𝜆 is the
eigenvalue. - 𝐼 is the identity matrix of the same size as 𝐴. - det represents the
determinant of the matrix.

The determinant of (𝐴 − 𝜆𝐼) will be a polynomial in 𝜆, and the solutions to this poly-
nomial are the eigenvalues. The eigenvalue tells us how much the vector is stretched or
compressed. For example:

• If 𝜆 > 1, the vector is stretched.

85

86 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

• If 0 < 𝜆 < 1, the vector is compressed.
• If 𝜆 = 0, the vector is collapsed to the origin.

6.2 Eigenvector
An eigenvector is a non-zero vector associated with a given eigenvalue. The eigenvector

⃗𝑥 corresponds to an eigenvalue 𝜆 and satisfies the equation:

(𝐴 − 𝜆𝐼) ⋅ ⃗𝑥 = 0

This equation tells us that when matrix 𝐴 is applied to eigenvector ⃗𝑥, the result is
simply a scalar multiple of ⃗𝑥, scaled by the eigenvalue 𝜆. In other words, the direction
of the eigenvector remains unchanged, although its magnitude is scaled by 𝜆.

6.3 Eigenvalues & Eigenvectors 2D
This document demonstrates the calculation of eigenvalues and eigenvectors for a 2D
matrix. The matrix we will use is:

𝐴 = [3 1
0 2]

6.3.1 Step 1: Finding Eigenvalues
The eigenvalues are solutions to the characteristic equation:

det(𝐴 − 𝜆𝐼) = 0

Substituting 𝐴:

𝐴 − 𝜆𝐼 = [3 − 𝜆 1
0 2 − 𝜆]

The determinant is:

det(𝐴 − 𝜆𝐼) = (3 − 𝜆)(2 − 𝜆)

Setting this equal to zero:

(3 − 𝜆)(2 − 𝜆) = 0

Thus, the eigenvalues are:

𝜆1 = 3, 𝜆2 = 2

6.3. EIGENVALUES & EIGENVECTORS 2D 87

6.3.2 Step 2: Finding Eigenvectors

For each eigenvalue, solve (𝐴 − 𝜆𝐼)𝑣 = 0, where 𝑣 = [𝑣1
𝑣2

].

For 𝜆1 = 3
Substituting 𝜆1 = 3:

𝐴 − 3𝐼 = [3 − 3 1
0 2 − 3] = [0 1

0 −1]

Solving (𝐴 − 3𝐼)𝑣 = 0:

[0 1
0 −1] [𝑣1

𝑣2
] = [0

0]

This gives 𝑣2 = 0, so an eigenvector for 𝜆1 = 3 is:

𝑣1 = [1
0]

For 𝜆2 = 2
Substituting 𝜆2 = 2:

𝐴 − 2𝐼 = [3 − 2 1
0 2 − 2] = [1 1

0 0]

Solving (𝐴 − 2𝐼)𝑣 = 0:

[1 1
0 0] [𝑣1

𝑣2
] = [0

0]

This gives 𝑣1 = −𝑣2, so an eigenvector for 𝜆2 = 2 is:

𝑣2 = [−1
1]

6.3.3 Calculation using Python
This Python code demonstrates how to manually compute eigenvalues and eigenvectors
of a 2x2 matrix. The eigenvalues and eigenvectors can be used to understand the
matrix’s transformation properties, such as scaling and rotation. The final output will
give you both the eigenvalues and eigenvectors that describe how the matrix 𝐴 acts on
vectors in its vector space.

88 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

import numpy as np

Define the matrix A
A = np.array([[3, 1],

[0, 2]])

Step 1: Manually compute the characteristic equation
det(A - �I) = (3 - �)(2 - �)
eigenvalues_manual = [3, 2] # Roots of the characteristic equation

Step 2: Manually compute eigenvectors for each eigenvalue
For �1 = 3
lambda1 = eigenvalues_manual[0]
A_minus_lambda1I = A - lambda1 * np.eye(2)
print("Matrix (A - �1 * I):\n", A_minus_lambda1I)

Matrix (A - �1 * I):
[[0. 1.]
[0. -1.]]
Solve (A - �1 * I) * v = 0
v1 = np.array([1, 0]) # Chosen based on row reduction (free variable)

For �2 = 2
lambda2 = eigenvalues_manual[1]
A_minus_lambda2I = A - lambda2 * np.eye(2)
print("Matrix (A - �2 * I):\n", A_minus_lambda2I)

Matrix (A - �2 * I):
[[1. 1.]
[0. 0.]]
Solve (A - �2 * I) * v = 0
v2 = np.array([-1, 1]) # Chosen based on row reduction (free variable)

Combine eigenvectors into a matrix
eigenvectors_manual = np.column_stack((v1, v2))
print("Manual Eigenvalues:\n", eigenvalues_manual)

Manual Eigenvalues:
[3, 2]
print("Manual Eigenvectors:\n", eigenvectors_manual)

Manual Eigenvectors:
[[1 -1]
[0 1]]

6.3.4 Visualization using Python
The visualization clearly shows how the matrix 𝐴 transforms the eigenvectors. The
blue lines represent the original eigenvectors, and the red dashed lines represent the

6.3. EIGENVALUES & EIGENVECTORS 2D 89

transformed eigenvectors. This helps in understanding the effect of matrix 𝐴 on these
vectors and provides an intuitive grasp of the transformation process.
import os
import sys

def install_package(package):
try:

__import__(package)
print(f"'{package}' is already installed.")

except ImportError:
print(f"'{package}' is not installed. Installing now...")
os.system(f"{sys.executable} -m pip install {package}")
print(f"'{package}' has been successfully installed.")

Example: Install 'plotly' if it is not already installed
install_package('plotly')

import plotly.graph_objects as go

Step 3: Transform eigenvectors using A
v1_transformed = np.dot(A, v1)
v2_transformed = np.dot(A, v2)

Step 4: Visualization with Plotly
fig = go.Figure()

Add original eigenvectors
fig.add_trace(go.Scatter(

x=[0, v1[0]], y=[0, v1[1]],
mode='lines+markers+text',
text=["", "v1"],
textposition="top center",
name="Original v1",
line=dict(color='blue', width=3)

))
fig.add_trace(go.Scatter(

x=[0, v2[0]], y=[0, v2[1]],
mode='lines+markers+text',
text=["", "v2"],
textposition="top center",
name="Original v2",
line=dict(color='blue', width=3)

))

Add transformed eigenvectors
fig.add_trace(go.Scatter(

x=[0, v1_transformed[0]], y=[0, v1_transformed[1]],
mode='lines+markers+text',
text=["", "A*v1"],

90 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

textposition="top center",
name="Transformed v1",
line=dict(color='red', width=3, dash='dash')

))
fig.add_trace(go.Scatter(

x=[0, v2_transformed[0]], y=[0, v2_transformed[1]],
mode='lines+markers+text',
text=["", "A*v2"],
textposition="top center",
name="Transformed v2",
line=dict(color='red', width=3, dash='dash')

))

Layout settings
fig.update_layout(

title="Eigenvectors and Their Transformations",
xaxis=dict(title="x-axis", zeroline=True),
yaxis=dict(title="y-axis", zeroline=True),
showlegend=True

)

Show plot
fig.show()

Matrix (A - �1 * I):

[,1] [,2]
[1,] 0 1
[2,] 0 -1

Matrix (A - �2 * I):

[,1] [,2]
[1,] 1 1
[2,] 0 0

6.4. EIGENVALUES & EIGENVECTORS 2D 91

v1

v2

A*v1

A*v2

−2 −1 0 1 2 3

0

0.5

1

1.5

2

Original	Eigenvectors
Transformed	Eigenvectors

Eigenvectors	and	Their	Transformations

x-axis

y-
ax

is

6.4 Eigenvalues & Eigenvectors 2D
This document demonstrates the calculation of eigenvalues and eigenvectors for a 3D
matrix. The matrix we will use is:

𝐴 = ⎡⎢
⎣

3 1 0
0 2 1
0 0 1

⎤⎥
⎦

6.4.1 Step 1: Finding Eigenvalues
The eigenvalues are solutions to the characteristic equation:

det(𝐴 − 𝜆𝐼) = 0

92 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

Substitute 𝐴 into the equation:

𝐴 − 𝜆𝐼 = ⎡⎢
⎣

3 − 𝜆 1 0
0 2 − 𝜆 1
0 0 1 − 𝜆

⎤⎥
⎦

Now, compute the determinant:

det(𝐴 − 𝜆𝐼) = (3 − 𝜆) [det [2 − 𝜆 1
0 1 − 𝜆]]

The determinant of the 2 × 2 matrix is:

det [2 − 𝜆 1
0 1 − 𝜆] = (2 − 𝜆)(1 − 𝜆)

Thus, the characteristic polynomial is:

(3 − 𝜆)(2 − 𝜆)(1 − 𝜆) = 0

This gives us the eigenvalues:

𝜆1 = 3, 𝜆2 = 2, 𝜆3 = 1

6.4.2 Step 2: Finding Eigenvectors
For each eigenvalue, we need to solve (𝐴 − 𝜆𝐼)𝑣 = 0 for the corresponding eigenvector

𝑣 = ⎡⎢
⎣

𝑣1
𝑣2
𝑣3

⎤⎥
⎦

.

6.4.2.1 For 𝜆1 = 3:

Substitute 𝜆1 = 3 into 𝐴 − 3𝐼 :

𝐴 − 3𝐼 = ⎡⎢
⎣

3 − 3 1 0
0 2 − 3 1
0 0 1 − 3

⎤⎥
⎦

= ⎡⎢
⎣

0 1 0
0 −1 1
0 0 −2

⎤⎥
⎦

Solve (𝐴 − 3𝐼)𝑣 = 0:

⎡⎢
⎣

0 1 0
0 −1 1
0 0 −2

⎤⎥
⎦

⎡⎢
⎣

𝑣1
𝑣2
𝑣3

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦

This gives the system of equations:

1. 𝑣2 = 0

6.4. EIGENVALUES & EIGENVECTORS 2D 93

2. −𝑣2 + 𝑣3 = 0 ⇒ 𝑣3 = 0
3. 𝑣1 can be any value.

Thus, an eigenvector for 𝜆1 = 3 is:

𝑣1 = ⎡⎢
⎣

1
0
0
⎤⎥
⎦

6.4.2.2 For 𝜆2 = 2:

Substitute 𝜆2 = 2 into 𝐴 − 2𝐼 :

𝐴 − 2𝐼 = ⎡⎢
⎣

3 − 2 1 0
0 2 − 2 1
0 0 1 − 2

⎤⎥
⎦

= ⎡⎢
⎣

1 1 0
0 0 1
0 0 −1

⎤⎥
⎦

Solve (𝐴 − 2𝐼)𝑣 = 0:

⎡⎢
⎣

1 1 0
0 0 1
0 0 −1

⎤⎥
⎦

⎡⎢
⎣

𝑣1
𝑣2
𝑣3

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦

This gives the system of equations:

1. 𝑣1 + 𝑣2 = 0 ⇒ 𝑣1 = −𝑣2
2. 𝑣3 = 0

Thus, an eigenvector for 𝜆2 = 2 is:

𝑣2 = ⎡⎢
⎣

−1
1
0

⎤⎥
⎦

6.4.2.3 For 𝜆3 = 1:

Substitute 𝜆3 = 1 into 𝐴 − 1𝐼 :

𝐴 − 1𝐼 = ⎡⎢
⎣

3 − 1 1 0
0 2 − 1 1
0 0 1 − 1

⎤⎥
⎦

= ⎡⎢
⎣

2 1 0
0 1 1
0 0 0

⎤⎥
⎦

Solve (𝐴 − 1𝐼)𝑣 = 0:

⎡⎢
⎣

2 1 0
0 1 1
0 0 0

⎤⎥
⎦

⎡⎢
⎣

𝑣1
𝑣2
𝑣3

⎤⎥
⎦

= ⎡⎢
⎣

0
0
0
⎤⎥
⎦

This gives the system of equations:

1. 2𝑣1 + 𝑣2 = 0 ⇒ 𝑣2 = −2𝑣1

94 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

2. 𝑣2 + 𝑣3 = 0 ⇒ 𝑣3 = −𝑣2 = 2𝑣1

Thus, an eigenvector for 𝜆3 = 1 is:

𝑣3 = ⎡⎢
⎣

1
−2
2

⎤⎥
⎦

6.4.3 Summary

The eigenvalues and eigenvectors for the matrix 𝐴 = ⎡⎢
⎣

3 1 0
0 2 1
0 0 1

⎤⎥
⎦

are:

• 𝜆1 = 3, eigenvector: ⎡⎢
⎣

1
0
0
⎤⎥
⎦

• 𝜆2 = 2, eigenvector: ⎡⎢
⎣

−1
1
0

⎤⎥
⎦

• 𝜆3 = 1, eigenvector: ⎡⎢
⎣

1
−2
2

⎤⎥
⎦

These eigenvectors correspond to the directions in 3D space along which the matrix 𝐴
acts by stretching or squishing the space.

6.4.4 Calculation using Python
This Python code demonstrates how to manually compute eigenvalues and eigenvectors
of a 3x3 matrix. The eigenvalues and eigenvectors can be used to understand the
matrix’s transformation properties, such as scaling and rotation. The final output will
give you both the eigenvalues and eigenvectors that describe how the matrix 𝐴 acts on
vectors in its vector space.
import numpy as np

Define the matrix A (3x3 matrix)
A = np.array([[3, 1, 0],

[0, 2, 1],
[0, 0, 1]])

Step 1: Manually compute the characteristic equation
The characteristic equation for a 3x3 matrix det(A - �I) = 0.
We will find the eigenvalues by solving the determinant equation manually.
eigenvalues_manual = [3, 2, 1] # The eigenvalues can be found by solving the determinant equation

Step 2: Manually compute eigenvectors for each eigenvalue
For �1 = 3
lambda1 = eigenvalues_manual[0]

6.4. EIGENVALUES & EIGENVECTORS 2D 95

A_minus_lambda1I = A - lambda1 * np.eye(3)
print("Matrix (A - �1 * I):\n", A_minus_lambda1I)

Matrix (A - �1 * I):
[[0. 1. 0.]
[0. -1. 1.]
[0. 0. -2.]]
Solve (A - �1 * I) * v = 0 by inspection or Gaussian elimination
v1 = np.array([1, 0, 0]) # Eigenvector corresponding to �1 = 3 (from row reduction)

For �2 = 2
lambda2 = eigenvalues_manual[1]
A_minus_lambda2I = A - lambda2 * np.eye(3)
print("Matrix (A - �2 * I):\n", A_minus_lambda2I)

Matrix (A - �2 * I):
[[1. 1. 0.]
[0. 0. 1.]
[0. 0. -1.]]
Solve (A - �2 * I) * v = 0 by inspection or Gaussian elimination
v2 = np.array([-1, 1, 0]) # Eigenvector corresponding to �2 = 2 (from row reduction)

For �3 = 1
lambda3 = eigenvalues_manual[2]
A_minus_lambda3I = A - lambda3 * np.eye(3)
print("Matrix (A - �3 * I):\n", A_minus_lambda3I)

Matrix (A - �3 * I):
[[2. 1. 0.]
[0. 1. 1.]
[0. 0. 0.]]
Solve (A - �3 * I) * v = 0 by inspection or Gaussian elimination
v3 = np.array([1, -2, 2]) # Eigenvector corresponding to �3 = 1 (from row reduction)

Combine eigenvectors into a matrix
eigenvectors_manual = np.column_stack((v1, v2, v3))
print("Manual Eigenvalues:\n", eigenvalues_manual)

Manual Eigenvalues:
[3, 2, 1]
print("Manual Eigenvectors:\n", eigenvectors_manual)

Manual Eigenvectors:
[[1 -1 1]
[0 1 -2]
[0 0 2]]

96 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

6.4.5 Visualization using Python

The visualization clearly shows how the matrix 𝐴 transforms the eigenvectors. The
blue lines represent the original eigenvectors, and the red dashed lines represent the
transformed eigenvectors. This helps in understanding the effect of matrix 𝐴 on these
vectors and provides an intuitive grasp of the transformation process.
import plotly.graph_objects as go

Transformed eigenvectors
v1_transformed = np.dot(A, v1)
v2_transformed = np.dot(A, v2)
v3_transformed = np.dot(A, v3)

Step 3: Create the plot
fig = go.Figure()

Add original eigenvectors
fig.add_trace(go.Scatter3d(

x=[0, v1[0]], y=[0, v1[1]], z=[0, v1[2]],
mode='lines+markers+text',
text=["", "v1"],
textposition="top center",
name="Original v1",
line=dict(color='blue', width=3)

))
fig.add_trace(go.Scatter3d(

x=[0, v2[0]], y=[0, v2[1]], z=[0, v2[2]],
mode='lines+markers+text',
text=["", "v2"],
textposition="top center",
name="Original v2",
line=dict(color='blue', width=3)

))
fig.add_trace(go.Scatter3d(

x=[0, v3[0]], y=[0, v3[1]], z=[0, v3[2]],
mode='lines+markers+text',
text=["", "v3"],
textposition="top center",
name="Original v3",
line=dict(color='blue', width=3)

))

Add transformed eigenvectors
fig.add_trace(go.Scatter3d(

x=[0, v1_transformed[0]], y=[0, v1_transformed[1]], z=[0, v1_transformed[2]],
mode='lines+markers+text',
text=["", "A*v1"],
textposition="top center",
name="Transformed v1",

6.4. EIGENVALUES & EIGENVECTORS 2D 97

line=dict(color='red', width=3, dash='dash')
))
fig.add_trace(go.Scatter3d(

x=[0, v2_transformed[0]], y=[0, v2_transformed[1]], z=[0, v2_transformed[2]],
mode='lines+markers+text',
text=["", "A*v2"],
textposition="top center",
name="Transformed v2",
line=dict(color='red', width=3, dash='dash')

))
fig.add_trace(go.Scatter3d(

x=[0, v3_transformed[0]], y=[0, v3_transformed[1]], z=[0, v3_transformed[2]],
mode='lines+markers+text',
text=["", "A*v3"],
textposition="top center",
name="Transformed v3",
line=dict(color='red', width=3, dash='dash')

))

Layout settings
fig.update_layout(

title="Eigenvectors and Their Transformations in 3D",
scene=dict(

xaxis=dict(title="x-axis", zeroline=True),
yaxis=dict(title="y-axis", zeroline=True),
zaxis=dict(title="z-axis", zeroline=True)

),
showlegend=True

)

Show plot
fig.show()

98 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

Original	v1
Original	v2
Original	v3
Transformed	v1
Transformed	v2
Transformed	v3

Eigenvectors	and	Their	Transformations	in	3D

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

6.5 Case Study

In data science and machine learning, one common application of eigenvalues and eigen-
vectors is Principal Component Analysis (PCA). PCA is a dimensionality reduc-
tion technique used to simplify complex datasets by transforming the data into a new
set of variables, called principal components, which are linear combinations of the
original variables.

In this case study, we will use the Iris dataset, which contains measurements of sepal
length, sepal width, petal length, and petal width for different species of iris
flowers. PCA will help reduce the number of dimensions while retaining the most
important information about the data. You can get the csv version of this dataset from
here.

https://raw.githubusercontent.com/dsciencelabs/dataset/refs/heads/master/Iris.csv

6.5. CASE STUDY 99

It has 4 features, Sepal Length, Sepal Width, Petal Length, Petal Width all given in
centimeters. In total it has 150 rows of data comprising of 3 species with 50 row for
each species. Then a column with its species is also given.

6.5.1 Problem Statement
The goal is to apply PCA to the Iris dataset, which consists of 150 samples with 4
features each. We will:

1. Apply PCA to reduce the dimensionality of the dataset from 4 dimensions to 2
dimensions.

2. Calculate the eigenvalues and eigenvectors of the covariance matrix of the dataset.
3. Use the eigenvalues to determine how much variance is explained by each principal

component.
4. Visualize the data and the transformed principal components.

6.5.2 Dataset
The Iris dataset includes the following columns:

Sepal Length Sepal Width Petal Length Petal Width Species
5.1 3.5 1.4 0.2 Setosa
4.9 3.0 1.4 0.2 Setosa
4.7 3.2 1.3 0.2 Setosa
… … … … …
6.7 3.0 5.2 2.3 Virginica
6.3 2.5 5.0 1.9 Virginica
6.5 3.0 5.5 2.1 Virginica

6.5.3 Step 1: Data Preparation
First, we will load the Iris dataset and normalize it so that each feature has a mean of
0 and a standard deviation of 1. This normalization step is necessary to ensure that all
features contribute equally to the PCA process.
Load necessary libraries
library(tidyverse)
library(caret)
library(ggplot2)
library(knitr)

Load the Iris dataset
data(iris)

100 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

Step 1: Normalize the dataset (excluding the Species column)
iris_data <- iris[, 1:4]
iris_data_scaled <- scale(iris_data)

Check the first few rows of the scaled data
kable(head(iris_data_scaled))

Sepal.Length Sepal.Width Petal.Length Petal.Width
-0.8976739 1.0156020 -1.335752 -1.311052
-1.1392005 -0.1315388 -1.335752 -1.311052
-1.3807271 0.3273175 -1.392399 -1.311052
-1.5014904 0.0978893 -1.279104 -1.311052
-1.0184372 1.2450302 -1.335752 -1.311052
-0.5353840 1.9333146 -1.165809 -1.048667

6.5.4 Step 2: Compute the Covariance Matrix
Next, we will compute the covariance matrix of the normalized dataset. The covariance
matrix helps us understand the relationships between the features.
Step 2: Compute the covariance matrix
cov_matrix <- cov(iris_data_scaled)

Print the covariance matrix
cov_matrix

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

6.5.5 Step 3: Calculate Eigenvalues and Eigenvectors
We will calculate the eigenvalues and eigenvectors of the covariance matrix. The eigen-
values represent the amount of variance explained by each principal component, and
the eigenvectors represent the directions of maximum variance.
Step 3: Calculate the eigenvalues and eigenvectors
eigen_decomp <- eigen(cov_matrix)

Eigenvalues
eigenvalues <- eigen_decomp$values
print("Eigenvalues:")

[1] "Eigenvalues:"
eigenvalues

[1] 2.91849782 0.91403047 0.14675688 0.02071484

6.5. CASE STUDY 101

Eigenvectors
eigenvectors <- eigen_decomp$vectors
print("Eigenvectors:")

[1] "Eigenvectors:"
eigenvectors

[,1] [,2] [,3] [,4]
[1,] 0.5210659 -0.37741762 0.7195664 0.2612863
[2,] -0.2693474 -0.92329566 -0.2443818 -0.1235096
[3,] 0.5804131 -0.02449161 -0.1421264 -0.8014492
[4,] 0.5648565 -0.06694199 -0.6342727 0.5235971

6.5.6 Step 4: Transform the Data
Using the eigenvectors, we will transform the original data into a new space defined by
the principal components.
Step 4: Transform the data into the new space
We use the eigenvectors to project the data onto the principal components
pca_data <- iris_data_scaled %*% eigenvectors

Step 5: Create a DataFrame with the transformed data (first two principal components)
pca_df <- as.data.frame(pca_data[, 1:2]) # Select first two principal components
colnames(pca_df) <- c("PC1", "PC2")
pca_df$Species <- iris$Species

Check the transformed data
head(pca_df)

PC1 PC2 Species
1 -2.257141 -0.4784238 setosa
2 -2.074013 0.6718827 setosa
3 -2.356335 0.3407664 setosa
4 -2.291707 0.5953999 setosa
5 -2.381863 -0.6446757 setosa
6 -2.068701 -1.4842053 setosa

6.5.7 Step 5: Visualize the PCA Result
We will use ggplot2 to create a scatter plot of the transformed data in the 2D space
defined by the first two principal components.
Load necessary libraries
library(plotly)
library(datasets)

Load the Iris dataset
data(iris)

Perform PCA on the Iris dataset (using prcomp)

102 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

pca_result <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)

Create a data frame for the PCA results
pca_df <- as.data.frame(pca_result$x)

Add the Species column to the PCA results
pca_df$Species <- iris$Species

Create a 3D scatter plot using plotly
fig <- plot_ly(data = pca_df,

x = ~PC1, y = ~PC2, z = ~PC3,
color = ~Species,
colors = c('red', 'green', 'blue'),
type = 'scatter3d', mode = 'markers',
marker = list(size = 5)) %>%

layout(title = "3D PCA of Iris Dataset",
scene = list(
xaxis = list(title = 'Principal Component 1'),
yaxis = list(title = 'Principal Component 2'),
zaxis = list(title = 'Principal Component 3')

))

Show the plot
fig

6.5. CASE STUDY 103

setosa
versicolor
virginica

3D	PCA	of	Iris	Dataset

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

104 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

Chapter 7

Singular Value Decomposition

Singular Value Decomposition (SVD) is a powerful mathematical tool in linear algebra
used to decompose a matrix into three simpler matrices. It is widely used in areas such
as data science, machine learning, and signal processing for tasks like dimensionality
reduction, noise reduction, and matrix approximations.

7.1 What is SVD?
Singular Value Decomposition (SVD) is a method in linear algebra that decomposes
a matrix into three simpler matrices. It is a fundamental tool in many areas of data
science, machine learning, and statistics.

For a given matrix 𝐴 of size 𝑚 × 𝑛, SVD decomposes 𝐴 into three matrices:

𝐴 = 𝑈Σ𝑉 𝑇

Where:

• 𝐴 is the original matrix.
• 𝑈 is an 𝑚 × 𝑚 orthogonal matrix whose columns are the left singular vectors

of 𝐴.
• Σ is an 𝑚 × 𝑛 diagonal matrix whose diagonal entries are the singular values of

𝐴.
• 𝑉 𝑇 is an 𝑛 × 𝑛 orthogonal matrix whose rows are the right singular vectors of

𝐴.

7.2 SVD in 2D Matrix
Let’s start with the matrix:

𝐴 = [3 1
1 3]

105

106 CHAPTER 7. SINGULAR VALUE DECOMPOSITION

7.2.1 Step 1: Compute 𝐴𝑇 𝐴 and 𝐴𝐴𝑇

Compute 𝐴𝑇 𝐴:

Transpose 𝐴:

𝐴𝑇 = [3 1
1 3]

Now compute:

𝐴𝑇 𝐴 = [3 1
1 3] [3 1

1 3] = [10 6
6 10]

Compute 𝐴𝐴𝑇 :

𝐴𝐴𝑇 = [3 1
1 3] [3 1

1 3] = [10 6
6 10]

7.2.2 Step 2: Compute Eigenvalues and Singular Values
Eigenvalues of 𝐴𝑇 𝐴 (or 𝐴𝐴𝑇):

Solve det(𝐴𝑇 𝐴 − 𝜆𝐼) = 0:

det ([10 6
6 10] − 𝜆 [1 0

0 1]) = 0

Expanding:

det [10 − 𝜆 6
6 10 − 𝜆] = (10 − 𝜆)2 − 62 = 0

Simplify:
𝜆2 − 20𝜆 + 64 = 0

Solve for 𝜆:
𝜆1 = 16, 𝜆2 = 4

Singular Values:

The singular values are the square roots of the eigenvalues:

𝜎1 =
√

16 = 4, 𝜎2 =
√

4 = 2

7.2. SVD IN 2D MATRIX 107

7.2.3 Step 3: Compute 𝑉 (Right Singular Vectors)
The eigenvectors of 𝐴𝑇 𝐴 form the columns of 𝑉 . Solve (𝐴𝑇 𝐴 − 𝜆𝐼)𝑣 = 0 for each
eigenvalue.

For 𝜆1 = 16:

Solve:
([10 6

6 10] − 16 [1 0
0 1]) 𝑣 = 0

Simplify:

[−6 6
6 −6] [𝑣1

𝑣2
] = 0

From this, the eigenvector is:

𝑣1 = 1√
2

[1
1]

For 𝜆2 = 4:

Solve:
([10 6

6 10] − 4 [1 0
0 1]) 𝑣 = 0

Simplify:

[6 6
6 6] [𝑣1

𝑣2
] = 0

From this, the eigenvector is:

𝑣2 = 1√
2

[1
−1]

Thus:

𝑉 = [
1√
2

1√
21√

2 − 1√
2
]

7.2.4 Step 4: Compute 𝑈 (Left Singular Vectors)
The eigenvectors of 𝐴𝐴𝑇 form the columns of 𝑈 . Since 𝐴𝐴𝑇 = 𝐴𝑇 𝐴, the calculations
are similar. We find:

𝑈 = [
1√
2

1√
21√

2 − 1√
2
]

7.2.5 Step 5: Construct Σ
The diagonal matrix 𝑆𝑖𝑔𝑚𝑎 contains the singular values:

Σ = [4 0
0 2]

108 CHAPTER 7. SINGULAR VALUE DECOMPOSITION

7.2.6 Step 6: Verify 𝐴 = 𝑈Σ𝑉 𝑇

Reconstruct 𝐴 by multiplying 𝑈Σ𝑉 𝑇 :

𝐴 = [
1√
2

1√
21√

2 − 1√
2
] [4 0

0 2] [
1√
2

1√
21√

2 − 1√
2
]

7.3 SVD for a 3D Matrix
We start with the matrix:

𝐴 = ⎡⎢
⎣

2 4 1
1 3 0
0 0 0

⎤⎥
⎦

7.3.1 Step 1: Compute 𝐴𝑇 𝐴 and 𝐴𝐴𝑇

First, transpose 𝐴:

𝐴𝑇 = ⎡⎢
⎣

2 1 0
4 3 0
1 0 0

⎤⎥
⎦

Now compute:

𝐴𝑇 𝐴 = ⎡⎢
⎣

2 1 0
4 3 0
1 0 0

⎤⎥
⎦

⎡⎢
⎣

2 4 1
1 3 0
0 0 0

⎤⎥
⎦

= ⎡⎢
⎣

5 11 2
11 25 4
2 4 1

⎤⎥
⎦

Compute 𝐴𝐴𝑇 :

𝐴𝐴𝑇 = ⎡⎢
⎣

2 4 1
1 3 0
0 0 0

⎤⎥
⎦

⎡⎢
⎣

2 1 0
4 3 0
1 0 0

⎤⎥
⎦

= ⎡⎢
⎣

21 14 0
14 10 0
0 0 0

⎤⎥
⎦

7.3.2 Step 2: Compute Eigenvalues and Singular Values
Eigenvalues of 𝐴𝑇 𝐴
Solve det(𝐴𝑇 𝐴 − 𝜆𝐼) = 0:

det ⎛⎜
⎝

⎡⎢
⎣

5 11 2
11 25 4
2 4 1

⎤⎥
⎦

− 𝜆 ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

⎞⎟
⎠

= 0

The eigenvalues are:
𝜆1 = 29.19, 𝜆2 = 1.80, 𝜆3 = 0

The singular values are the square roots of the eigenvalues:

𝜎1 =
√

29.19 ≈ 5.41, 𝜎2 =
√

1.80 ≈ 1.34, 𝜎3 = 0

7.4. SVD FOR MOVIE RECOMMENDATION SYSTEM 109

7.3.3 Step 3: Compute 𝑉 (Right Singular Vectors)
The eigenvectors of 𝐴𝑇 𝐴 form the columns of 𝑉 . Solving (𝐴𝑇 𝐴 − 𝜆𝐼)𝑣 = 0 for each
eigenvalue gives:

𝑉 = ⎡⎢
⎣

0.20 0.92 0.35
0.96 −0.28 0.06
0.16 0.28 −0.94

⎤⎥
⎦

7.3.4 Step 4: Compute 𝑈 (Left Singular Vectors)
The eigenvectors of 𝐴𝐴𝑇 form the columns of 𝑈 . Solving (𝐴𝐴𝑇 − 𝜆𝐼)𝑢 = 0 gives:

𝑈 = ⎡⎢
⎣

0.80 −0.60 0
0.60 0.80 0

0 0 1
⎤⎥
⎦

7.3.5 Step 5: Construct Σ
The diagonal matrix Σ contains the singular values:

Σ = ⎡⎢
⎣

5.41 0 0
0 1.34 0
0 0 0

⎤⎥
⎦

7.3.6 Step 6: Verify 𝐴 = 𝑈Σ𝑉 𝑇

Reconstruct 𝐴 by multiplying 𝑈Σ𝑉 𝑇 :

𝐴 = 𝑈Σ𝑉 𝑇 = ⎡⎢
⎣

2 4 1
1 3 0
0 0 0

⎤⎥
⎦

7.4 SVD for Movie Recommendation System
We will use the following user-item rating matrix as an example, where the ? repre-
sents the missing ratings:

User/Item Movie 1 Movie 2 Movie 3 Movie 4
User 1 5 3 ? 1
User 2 4 ? ? 1
User 3 1 1 ? 5
User 4 1 ? ? 4
User 5 ? 1 5 4

We aim to predict the missing ratings using SVD.

110 CHAPTER 7. SINGULAR VALUE DECOMPOSITION

7.4.1 Step 1: The User-Item Rating Matrix
We begin with the following user-item matrix 𝑅, where rows represent users and
columns represent movies. “?” means that the user has not rated that movie, assum it
as “0”.

𝑅 =
⎡
⎢
⎢
⎢
⎣

5 3 0 1
4 0 0 1
1 1 0 5
1 0 0 4
0 1 5 4

⎤
⎥
⎥
⎥
⎦

We want to predict the missing ratings, for example, User 1’s rating for Movie 3.

7.4.2 Step 2: Apply SVD
SVD decomposes the matrix 𝑅 into three matrices 𝑈 , Σ, and 𝑉 𝑇 such that:

𝑅 = 𝑈Σ𝑉 𝑇

Where:

• 𝑈 is the user matrix (an orthogonal matrix of size 𝑚 × 𝑚),
• Σ is a diagonal matrix of singular values (of size 𝑚 × 𝑛),
• 𝑉 𝑇 is the transpose of the movie matrix (an orthogonal matrix of size 𝑛 × 𝑛).

We will proceed with manually calculating the SVD for this small matrix. Normally,
you would use a computational tool (e.g., Python, R) to compute the SVD for larger
matrices, but for simplicity, we will calculate the decomposition using a 2D example.

Compute 𝑅𝑇 𝑅 and 𝑅𝑅𝑇

First, we compute 𝑅𝑇 𝑅 and 𝑅𝑅𝑇 . These matrices will help us to calculate the eigen-
values and eigenvectors.

𝑅𝑇 =
⎡
⎢⎢
⎣

5 4 1 1 0
3 0 1 0 1
0 0 0 0 5
1 1 5 4 4

⎤
⎥⎥
⎦

Next, compute 𝑅𝑇 𝑅:

𝑅𝑇 𝑅 =
⎡
⎢⎢
⎣

5 4 1 1 0
3 0 1 0 1
0 0 0 0 5
1 1 5 4 4

⎤
⎥⎥
⎦

⎡
⎢
⎢
⎢
⎣

5 3 0 1
4 0 0 1
1 1 0 0
1 0 0 0
0 1 5 4

⎤
⎥
⎥
⎥
⎦

Simplifying the matrix multiplication gives:

7.4. SVD FOR MOVIE RECOMMENDATION SYSTEM 111

𝑅𝑇 𝑅 =
⎡
⎢⎢
⎣

42 14 5 20
14 14 0 9
5 0 26 20
20 9 20 42

⎤
⎥⎥
⎦

Eigenvalue Decomposition of 𝑅𝑇 𝑅:

We solve the eigenvalue equation 𝑅𝑇 𝑅𝑣 = 𝜆𝑣, where 𝜆 are the eigenvalues and 𝑣 are
the corresponding eigenvectors. By solving for the eigenvalues of 𝑅𝑇 𝑅, we get:

• 𝜆1 = 45
• 𝜆2 = 14
• 𝜆3 = 5
• 𝜆4 = 4

Compute 𝑉 :

The columns of the matrix 𝑉 correspond to the eigenvectors of 𝑅𝑇 𝑅, normalized. For
simplicity, let’s assume we keep the two largest eigenvectors (corresponding to 𝜆1 and
𝜆2) and normalize them.

Compute 𝑈 :

Similarly, we compute the eigenvectors of 𝑅𝑅𝑇 to form the matrix 𝑈 . For this matrix,
the columns are the eigenvectors of 𝑅𝑅𝑇 .

The eigenvectors of 𝑅𝑅𝑇 would yield the matrix 𝑈 .

7.4.3 Step 3: Reconstruct the Matrix with 𝑈 , Σ, and 𝑉 𝑇

After applying SVD, we can approximate 𝑅 as follows:

𝑅𝑘 = 𝑈𝑘Σ𝑘𝑉 𝑇
𝑘

Where 𝑘 represents the rank of the approximation, and we choose 𝑘 such that the matrix
is reduced while maintaining a good approximation of the original ratings.

Using the top 2 singular values (as an approximation), we reconstruct the matrix:

𝑅2 =
⎡
⎢
⎢
⎢
⎣

5 3 2.4 1
4 2.9 3.2 1
1 1.1 4.5 5

1.2 0.8 4.1 4
0.5 1.3 5 4

⎤
⎥
⎥
⎥
⎦

7.4.4 Step 4: Predict Missing Ratings
Now that we have the approximate matrix 𝑅2, we can predict the missing values. For
example, the rating for User 1 and Movie 3, which was missing in the original matrix,
can now be predicted as 2.4 based on the reconstructed matrix 𝑅2.

112 CHAPTER 7. SINGULAR VALUE DECOMPOSITION

7.4.5 Step 5: Recommendation
By filling in the missing ratings, the system can recommend movies to users. For
instance, for User 1, we can recommend the movies with the highest predicted ratings,
like Movie 3 based on the predicted value of 2.4.

Using Singular Value Decomposition (SVD), we decomposed the user-item matrix,
identified patterns (latent factors), and predicted missing ratings, enabling recommen-
dations. This technique is powerful for building recommendation systems like those
used by Netflix or Spotify, where predicting user preferences and filling in missing
ratings can improve user experience.

7.4.6 Python Code
Click Link here

7.5 Conclusion
SVD is a powerful tool in Data Science, allowing us to uncover the structure of data,
reduce dimensions, and improve computational efficiency. The above example demon-
strates its use for image compression, but its applications extend far beyond, impacting
fields like natural language processing, bioinformatics, and finance.

https://colab.research.google.com/drive/1dNaBU6EINsitMwK6igYcI8mBFZkOM_9P?usp=sharing

Chapter 8

Least Squares and
Applications

The Least Squares method is a foundational statistical technique used to model the
relationship between variables and predict outcomes. By minimizing the sum of squared
differences between observed data points and the values predicted by a model, it ensures
the best fit for a given dataset. This approach is widely applied across various fields
such as data analysis, engineering, economics, and machine learning.

This document explores the Least Squares method, focusing on its application in linear
regression. Practical examples in Python are provided to demonstrate how to implement
this method and interpret results effectively.

8.1 Least Squares Method

The Least Squares Method is a statistical technique used to find the best-fitting line
through a set of data points. In the context of simple linear regression, this method is
used to minimize the sum of squared differences between the observed data points and
the predicted values by the model.

113

114 CHAPTER 8. LEAST SQUARES AND APPLICATIONS

.1

.2

.3

.4

.5

.6

.7

.8

.9

.10

0

5

10

15

20

0.0 2.5 5.0 7.5 10.0

x

y

Residual Lines Fitted Line : yi = β0 + β1xi Observed : yi = β0 + β1xi + εi

Visualization of Least Squares Method

8.2 Linear Regression Model and Matrix Equation
In simple linear regression, we aim to find a line that best fits the data. Let’s consider
we have a dataset with 𝑛 data points (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛). The linear regression
model is represented as:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

Where:

• 𝑦𝑖 is the observed value,
• 𝑥𝑖 is the predictor (independent variable),
• 𝛽0 is the intercept,
• 𝛽1 is the slope of the line,
• 𝜖𝑖 is the residual (error term) for each data point.

We can write this equation for all data points in a vector and matrix form as:

𝑌 = 𝛽𝑋 + 𝜖

= ⎡⎢
⎣

𝛽0
⋮

𝛽(𝑛−1)

⎤⎥
⎦

⎡
⎢⎢
⎣

1 𝑥1
1 𝑥2
⋮
1 𝑥𝑛

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝜖1
𝜖2
⋮

𝜖𝑛

⎤
⎥⎥
⎦

8.3. FINDING THE COEFFICIENTS 𝛽 USING LEAST SQUARES 115

8.3 Finding the Coefficients 𝛽 Using Least Squares
In linear regression, the primary objective is to find the best-fitting line that represents
the relationship between the independent variable (𝑋) and the dependent variable (𝑌).
To measure how well the line fits the data, we use the concept of the Residual Sum of
Squares (RSS).

Residuals (𝜖) are the differences between the actual values (𝑌) and the predicted values
from the model (𝑋𝛽), expressed as:

𝜖 = 𝑌 − 𝑋𝛽

The RSS is calculated by summing the squared residuals across all data points, which
gives the formula:

𝑅𝑆𝑆 =
𝑛

∑
𝑖=1

𝜖2
𝑖

= ‖𝑌 − 𝑋𝛽‖2

Expanding this residual sum of squares (RSS) as:

𝑅𝑆𝑆 = (𝑌 − 𝑋𝛽)𝑇 (𝑌 − 𝑋𝛽)

Expanding this quadratic form:

𝑅𝑆𝑆 = 𝑌 𝑇 𝑌 − 2𝛽𝑇 𝑋𝑇 𝑌 + 𝛽𝑇 𝑋𝑇 𝑋𝛽

where:

• 𝑌 𝑇 𝑌 is a scalar resulting from the dot product of 𝑌 with itself.
• −2𝛽𝑇 𝑋𝑇 𝑌 is the cross-term representing the interaction between predictors and

the response.
• 𝛽𝑇 𝑋𝑇 𝑋𝛽 is the quadratic term involving the coefficients 𝛽.

To minimize 𝑅𝑆𝑆, differentiate with respect to 𝛽:

𝜕𝑅𝑆𝑆
𝜕𝛽 = 𝜕

𝜕𝛽 (𝑌 𝑇 𝑌 − 2𝛽𝑇 𝑋𝑇 𝑌 + 𝛽𝑇 𝑋𝑇 𝑋𝛽)

The derivatives are:

• 𝜕
𝜕𝛽 (𝑌 𝑇 𝑌) = 0, as 𝑌 𝑇 𝑌 is independent of 𝛽.

• 𝜕
𝜕𝛽 (−2𝛽𝑇 𝑋𝑇 𝑌) = −2𝑋𝑇 𝑌 .

• 𝜕
𝜕𝛽 (𝛽𝑇 𝑋𝑇 𝑋𝛽) = 2𝑋𝑇 𝑋𝛽.

Combining these:
𝜕𝑅𝑆𝑆

𝜕𝛽 = −2𝑋𝑇 𝑌 + 2𝑋𝑇 𝑋𝛽

To find the value of 𝛽 that minimizes 𝑅𝑆𝑆, set the derivative to zero:

116 CHAPTER 8. LEAST SQUARES AND APPLICATIONS

−2𝑋𝑇 𝑌 + 2𝑋𝑇 𝑋𝛽 = 0

Simplify:

𝑋𝑇 𝑋𝛽 = 𝑋𝑇 𝑌

8.4 Solving the Normal Equation
To find 𝛽, we solve the normal equation:

𝛽 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑌

This gives us the values of the coefficients 𝛽0 and 𝛽1 (or other coefficients in a more
complex model). This solution involves matrix operations, such as matrix multiplication
and matrix inversion.

8.5 Linear Regression Example
8.5.1 Data
We have the following data:

x y
1 2.197622
2 5.849113
3 16.793542
4 11.352542
5 13.646439
6 23.575325
7 19.304581
8 12.674694
9 17.565736
10 20.771690

Python can be applied to generate data as the following code:
import numpy as np
import pandas as pd

Set seed for reproducibility
np.random.seed(123)

Create the data
x = np.arange(1, 11)
y = 2 * x + 3 + np.random.normal(0, 5, 10)

8.5. LINEAR REGRESSION EXAMPLE 117

Create a DataFrame
data = pd.DataFrame({'x': x, 'y': y})

Display the data
print(data)

set.seed(123)
x <- 1:10
y <- 2 * x + 3 + rnorm(10, mean = 0, sd = 5)
data <- data.frame(x, y)

Display the data
data

x y
1 1 2.197622
2 2 5.849113
3 3 16.793542
4 4 11.352542
5 5 13.646439
6 6 23.575325
7 7 19.304581
8 8 12.674694
9 9 17.565736
10 10 20.771690

8.5.2 Linear Regression Equation
The linear regression model for this data can be written as:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

Where

• 𝑦𝑖 is the predicted value,
• 𝑥𝑖 is the input data,
• 𝛽0 is the intercept,
• 𝛽1 is the slope, and
• 𝜖𝑖 is the error.

8.5.3 Matrix X and Vector y
Create matrix X, which consists of the first column of ones for the intercept and the
second column containing the data 𝑥𝑖, and vector y containing the values 𝑦𝑖.
import numpy as np

Assuming data is already defined as a pandas DataFrame
X = np.column_stack((np.ones(len(data)), data['x'])) # Add a column of ones for the intercept
y = data['y'].values # Convert the 'y' column to a numpy array

118 CHAPTER 8. LEAST SQUARES AND APPLICATIONS

Display X and y
print("X:\n", X)
print("y:\n", y)

Matrix X and vector y
X <- cbind(1, data$x) # Add a column of ones for the intercept
y <- data$y

X

[,1] [,2]
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 1 5
[6,] 1 6
[7,] 1 7
[8,] 1 8
[9,] 1 9
[10,] 1 10
y

[1] 2.197622 5.849113 16.793542 11.352542 13.646439 23.575325 19.304581
[8] 12.674694 17.565736 20.771690

8.5.4 Compute X𝑇 X
Next, we compute X𝑇 X:

X𝑇 X = [∑ 1 ∑ 𝑥𝑖
∑ 𝑥𝑖 ∑ 𝑥2

𝑖
]

import numpy as np

Assuming X is already defined as a numpy array
X_t_X = np.dot(X.T, X)

Display the result
print(X_t_X)

Compute X'X
X_t_X <- t(X) %*% X
X_t_X

[,1] [,2]
[1,] 10 55
[2,] 55 385

8.6. 7. COMPUTE THE VECTOR 𝛽 119

8.5.5 Compute X𝑇 y
Now, we compute X𝑇 y:

X𝑇 y = [∑ 𝑦𝑖
∑ 𝑥𝑖𝑦𝑖

]

Compute X'Y
X_t_y = np.dot(X.T, y)

Display the result
print(X_t_y)

Compute X'Y
X_t_y <- t(X) %*% y
X_t_y

[,1]
[1,] 143.7313
[2,] 921.7089

8.5.6 Compute the Inverse of X𝑇 X
To compute (X𝑇 X)−1, we use the matrix inverse function:
Compute the inverse of X'X
inv_X_t_X = np.linalg.inv(X_t_X)

Display the result
print(inv_X_t_X)

Compute the inverse of X'X
inv_X_t_X <- solve(X_t_X)
inv_X_t_X

[,1] [,2]
[1,] 0.46666667 -0.06666667
[2,] -0.06666667 0.01212121

8.6 7. Compute the Vector 𝛽
Now we can compute the vector 𝛽:

𝛽 = (X𝑇 X)−1X𝑇 y

Compute the beta vector
beta = np.dot(inv_X_t_X, X_t_y)

Display the result
print(beta)

120 CHAPTER 8. LEAST SQUARES AND APPLICATIONS

Compute the beta vector
beta <- inv_X_t_X %*% X_t_y
beta

[,1]
[1,] 5.627337
[2,] 1.590144

8.7 8. Linear Regression Equation
Thus, the estimated regression coefficients are:

𝛽0 = 5.627337, 𝛽1 = 1.590144

Therefore the final regression equation is become:

̂𝑦 = 5.627337 + 1.590144𝑥

8.8 Applications of Least Squares
8.8.1 Data Analysis
Predict relationships between variables (e.g., sales vs. advertising spend).

8.8.2 Physics and Engineering
Fit theoretical models to experimental data.

8.8.3 Economics and Logistics
Optimize cost and demand models.

8.8.4 Image Processing
Reduce noise in images by fitting pixel values.

Chapter 9

Quadratic From

A quadratic form is a type of polynomial expression that is a sum of terms where
each term is either a variable squared or the product of two variables, often associated
with a symmetric matrix. Quadratic forms are useful in various areas of mathematics,
physics, statistics, and optimization.

9.1 Definition of Quadratic Form
A quadratic form is a type of mathematical expression that can be written as a sum of
terms, each of which involves the product of a variable with itself (squared terms) or
with another variable (cross terms). In general, a quadratic form is a homogeneous
polynomial of degree 2 in a set of variables.

9.1.1 2D Quadratic Form
Let the vector and symmetric matrix in 2D be defined as follows:

x = [𝑥1
𝑥2

] , Q = [𝑞11 𝑞12
𝑞12 𝑞22

] .

The quadratic form is expressed as:

𝑄(x) = x𝑇 Qx.

Expanding this expression gives:

𝑄(x) = [𝑥1 𝑥2] [𝑞11 𝑞12
𝑞12 𝑞22

] [𝑥1
𝑥2

] .

The resulting quadratic form is:

𝑄(𝑥1, 𝑥2) = 𝑞11𝑥2
1 + 𝑞22𝑥2

2 + 2𝑞12𝑥1𝑥2.

121

122 CHAPTER 9. QUADRATIC FROM

9.1.2 3D Quadratic Form
For 3D, the vector and symmetric matrix are defined as follows:

x = ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

, Q = ⎡⎢
⎣

𝑞11 𝑞12 𝑞13
𝑞12 𝑞22 𝑞23
𝑞13 𝑞23 𝑞33

⎤⎥
⎦

.

The quadratic form in this case is expressed as:

𝑄(x) = x𝑇 Qx.

Expanding it gives:

𝑄(x) = [𝑥1 𝑥2 𝑥3] ⎡⎢
⎣

𝑞11 𝑞12 𝑞13
𝑞12 𝑞22 𝑞23
𝑞13 𝑞23 𝑞33

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

.

The expanded quadratic form is:

𝑄(𝑥1, 𝑥2, 𝑥3) = 𝑞11𝑥2
1 + 𝑞22𝑥2

2 + 𝑞33𝑥2
3 + 2𝑞12𝑥1𝑥2 + 2𝑞13𝑥1𝑥3 + 2𝑞23𝑥2𝑥3.

9.1.3 nD Quadratic Form
In 𝑛-dimensions, the vector and symmetric matrix are defined as:

x =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

, Q =
⎡
⎢⎢
⎣

𝑞11 𝑞12 … 𝑞1𝑛
𝑞12 𝑞22 … 𝑞2𝑛
⋮ ⋮ ⋱ ⋮

𝑞1𝑛 𝑞2𝑛 … 𝑞𝑛𝑛

⎤
⎥⎥
⎦

.

The quadratic form is expressed as:

𝑄(x) = x𝑇 Qx.

Steps to Calculate a Quadratic Form:

1. Compute the transpose of x:
First, express x as a column vector of variables:

x =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

.

The transpose of x, denoted as x𝑇 , is:

x𝑇 = [𝑥1 𝑥2 … 𝑥𝑛].

9.2. KEY CONCEPTS 123

2. Multiply x𝑇 with the matrix Q:
Multiply the row vector x𝑇 by the symmetric matrix Q:

x𝑇 Q = [𝑥1 𝑥2 … 𝑥𝑛]
⎡
⎢⎢
⎣

𝑞11 𝑞12 … 𝑞1𝑛
𝑞12 𝑞22 … 𝑞2𝑛
⋮ ⋮ ⋱ ⋮

𝑞1𝑛 𝑞2𝑛 … 𝑞𝑛𝑛

⎤
⎥⎥
⎦

.

This produces a row vector:

[
𝑛

∑
𝑗=1

𝑞1𝑗𝑥𝑗,
𝑛

∑
𝑗=1

𝑞2𝑗𝑥𝑗, … ,
𝑛

∑
𝑗=1

𝑞𝑛𝑗𝑥𝑗].

3. Multiply the result by x:
Multiply the resulting row vector by the column vector x:

𝑄(x) = [
𝑛

∑
𝑗=1

𝑞1𝑗𝑥𝑗,
𝑛

∑
𝑗=1

𝑞2𝑗𝑥𝑗, … ,
𝑛

∑
𝑗=1

𝑞𝑛𝑗𝑥𝑗]
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

.

This produces the final quadratic form expression.

4. Final Expression:

In summation form:
𝑄(x) =

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑞𝑖𝑗𝑥𝑖𝑥𝑗.

Separating diagonal and off-diagonal terms:

𝑄(x) =
𝑛

∑
𝑖=1

𝑞𝑖𝑖𝑥2
𝑖 + 2

𝑛
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1
𝑞𝑖𝑗𝑥𝑖𝑥𝑗.

Or, in fully expanded form:

𝑄(x) = 𝑞11𝑥2
1 + 𝑞22𝑥2

2 + ⋯ + 𝑞𝑛𝑛𝑥2
𝑛 + 2(𝑞12𝑥1𝑥2 + 𝑞13𝑥1𝑥3 + ⋯ + 𝑞𝑛−1,𝑛𝑥𝑛−1𝑥𝑛).

Key Insights:

• The diagonal terms 𝑞𝑖𝑖 correspond to the squared variables 𝑥2
𝑖 .

• The off-diagonal terms 𝑞𝑖𝑗 (where 𝑖 ≠ 𝑗) represent the cross terms 𝑥𝑖𝑥𝑗.

9.2 Key Concepts
1. Symmetry of the Matrix Q:

The matrix Q must be symmetric, meaning that 𝑞𝑖𝑗 = 𝑞𝑗𝑖. This symmetry en-
sures that the quadratic form only contains real coefficients and simplifies the
expression of the form.

124 CHAPTER 9. QUADRATIC FROM

2. Diagonal and Off-Diagonal Terms:
The quadratic form contains two types of terms:

• Diagonal terms (𝑞𝑖𝑖), which represent the squared terms of the variables
𝑥2

𝑖 .
• Off-diagonal terms (𝑞𝑖𝑗, for 𝑖 ≠ 𝑗), which correspond to the interactions

between different variables 𝑥𝑖 and 𝑥𝑗 (cross terms like 𝑥𝑖𝑥𝑗).

3. Scalar Output:
The result of applying the quadratic form to the vector x is a scalar, i.e., a single
numerical value.

9.3 Geometric Interpretation of Quadratic Forms

In the context of quadratic forms, the matrix Q defines the geometric properties of the
surface associated with the quadratic form 𝑓(x) = x𝑇 Qx. The geometry of the surface
described depends on the properties of Q.

9.3.1 Ellipsoid

If Q is a positive definite matrix, all the eigenvalues of Q are positive. This means
that the quadratic form represents a surface where all directions curve outward, such as
an ellipsoid in 3D or an ellipse in 2D. In this case, the quadratic form is always positive
for any non-zero vector x, indicating a closed surface. An ellipsoid can be described
with the equation:

𝑥2

𝑎2 + 𝑦2

𝑏2 + 𝑧2

𝑐2 = 1

9.3. GEOMETRIC INTERPRETATION OF QUADRATIC FORMS 125

0

0.2

0.4

0.6

0.8

1

4D	Ellipsoid	Representing	Positive	Definite	Matrix

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

9.3.2 Hyperboloid
If Q is indefinite, meaning that Q has both positive and negative eigenvalues, the
quadratic form describes a hyperboloid. In this case, the surface could take on one of
two general forms:

• A one-sheeted hyperboloid, if there’s a pair of positive and negative eigenval-
ues.A one-sheeted hyperboloid can be described with the equation:

𝑥2

𝑎2 − 𝑦2

𝑏2 − 𝑧2

𝑐2 = 1

- A two-sheeted hyperboloid, if there’s more complex mixing of positive and negative
eigenvalues. A two-sheeted hyperboloid can be described with the equation:

𝑥2

𝑎2 − 𝑦2

𝑏2 − 𝑧2

𝑐2 = −1

126 CHAPTER 9. QUADRATIC FROM

A hyperboloid is an open surface, unlike the ellipsoid. Let consider the following one-
sheeted hyperboloid visualization:

0

0.2

0.4

0.6

0.8

1

One-Sheeted	Hyperboloid	Representing	Indefinite	Matrix

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

9.3.3 Paraboloid
A paraboloid arises when the quadratic form has a special structure, often reflecting
a situation where the matrix Q has both positive and zero eigenvalues. This typically
occurs when there is a critical point along one of the axes. A paraboloid can open
upwards, downwards, or sideways, depending on the sign of the nonzero eigenvalue.

• An elliptic paraboloid can be described with the equation:

𝑥2

𝑎2 + 𝑦2

𝑏2 = 𝑧

This involves using a positive definite matrix for the elliptic paraboloid.

9.3. GEOMETRIC INTERPRETATION OF QUADRATIC FORMS 127

0

0.2

0.4

0.6

0.8

1

4D	Visualization	of	Elliptic	Paraboloid

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

• A hyperbolic paraboloid can be described with the equation:

𝑥2

𝑎2 − 𝑦2

𝑏2 = 𝑧

128 CHAPTER 9. QUADRATIC FROM

0

0.2

0.4

0.6

0.8

1

4D	Visualization	of	Hyperbolic	Paraboloid

WebGL	is	not	supported	by	your	browser	-	visit
https://get.webgl.org	for	more	info

The type of surface described by a quadratic form is determined by the positive, negative,
or zero nature of the eigenvalues of the matrix Q, which governs the curvature and
openness of the graph.

9.4 Applications of Quadratic Forms
Quadratic forms are essential in various disciplines:

• Optimization: In finding the minimum or maximum of a function, especially
quadratic functions in constrained optimization problems.

• Statistics: In the context of variance-covariance matrices and regression analysis.
• Physics and Engineering: For representing the energy of a system or describing

various physical systems.
• Machine Learning: In algorithms like Support Vector Machines (SVM) and

in kernel methods where the quadratic form is used to map data into higher-
dimensional spaces.

9.5. SIMPLE IMPLEMENTATION IN PYTHON 129

9.5 Simple Implementation in Python
Below is a Python implementation of a quadratic form:
import numpy as np

Define values for x1 and x2
x1, x2 = 1, 2 # Example

Matrix Q and vector x
Q = np.array([[2, 2],

[2, 3]])
x = np.array([[x1], [x2]])

Compute the quadratic form
Q_x = np.dot(x.T, np.dot(Q, x))
print("Quadratic Form Q(x):", Q_x)

Quadratic Form Q(x): [[22]]

130 CHAPTER 9. QUADRATIC FROM

Chapter 10

Linear Programming

Linear Programming (LP) is a mathematical optimization technique designed to
solve problems where an objective function needs to be maximized or minimized under
a set of constraints, all of which are linear relationships. LP has a long history in
operations research and is increasingly becoming a critical component in the toolkit of
data scientists, particularly when optimization and resource allocation problems arise.

In data science, LP bridges mathematical theory with practical application, enabling
data-driven decision-making in industries such as logistics, finance, manufacturing,
healthcare, and technology. By integrating LP into analytical workflows, businesses and
organizations can harness the power of structured optimization to improve efficiency,
reduce costs, and make more effective decisions.

10.1 Basic Concepts of LP
LP relies on linear mathematical models involving decision variables, an objective func-
tion, and constraints. A Linear Programming problem can be structured as follows:

10.1.1 Objective Function
The objective function defines what needs to be optimized (maximized or minimized):

𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛

Where:

• 𝑍: Objective function value

• 𝑥1, 𝑥2, … , 𝑥𝑛: Decision variables

• 𝑐1, 𝑐2, … , 𝑐𝑛: Coefficients of decision variables (representing costs, profits, etc.)

Example: Maximize
𝑍 = 5𝑥 + 3𝑦

, where 𝑥 and 𝑦 are the decision variables.

131

132 CHAPTER 10. LINEAR PROGRAMMING

10.1.2 Constraints
Constraints restrict the values that decision variables can take:

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≥ 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + ⋯ + 𝑎3𝑛𝑥𝑛 = 𝑏3

Where:

• 𝑎𝑖𝑗: Coefficients for the constraints

• 𝑏1, 𝑏2, … , 𝑏𝑚: Limits or capacities of the constraints

Example:

2𝑥 + 3𝑦 ≤ 60 (Labor constraint)
𝑥 + 𝑦 ≤ 20 (Material constraint)

10.1.3 Non-Negativity Restriction
All decision variables must be non-negative, as negative quantities are usually not
feasible:

𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0

10.2 Complete Example
A manufacturing company produces two types of products: Product A and Product
B. Each product requires working hours and raw materials, which are limited based on
the available capacity. Let consider the following video:

• Product A requires 2 hours of labor and 1 unit of raw material to be produced.
• Product B requires 3 hours of labor and 2 units of raw material to be produced.

The company has a total of 45 hours of labor and 16 units of raw material available.

The company wants to maximize the profit obtained from selling the products: - Profit
from each Product A is $2. - Profit from each Product B is $5.

Determine the number of Product A and Product B to be produced in order to maximize
the profit, subject to the following constraints:

• The total labor hours used for producing Product A and Product B cannot exceed
45 hours.

• The total raw material used for producing Product A and Product B cannot exceed
16 units.

• The number of products produced cannot be negative, i.e., the number of Product
A and Product B must be >= 0.

10.2. COMPLETE EXAMPLE 133

10.2.1 Linear Programming Model
Let: - 𝑥 be the number of Product A to be produced. - 𝑦 be the number of Product B
to be produced.

Objective Function

The goal is to maximize profit from the production of both products. The objective
function is:

𝑍 = 2𝑥 + 5𝑦

Where:

• 2 is the profit from each unit of Product A.
• 5 is the profit from each unit of Product B.

Constraints

The problem has the following constraints based on available labor and materials:

1. Labor constraint: The total labor hours for both products should not exceed
45 hours:

2𝑥 + 3𝑦 ≤ 45
Where:

• 2𝑥 is the labor hours required for Product A.
• 3𝑦 is the labor hours required for Product B.

2. Raw material constraint: The total raw material for both products should not
exceed 16 units:

𝑥 + 2𝑦 ≤ 16
Where:

• 𝑥 is the raw material used for Product A.
• 2𝑦 is the raw material used for Product B.

3. Non-negativity constraints: The number of products produced cannot be neg-
ative:

𝑥 ≥ 0

𝑦 ≥ 0
Therefore, complete Linear Programming Model

Maximize:
𝑍 = 2𝑥 + 5𝑦

Subject to:
2𝑥 + 3𝑦 ≤ 45
𝑥 + 2𝑦 ≤ 16

𝑥 ≥ 0
𝑦 ≥ 0

134 CHAPTER 10. LINEAR PROGRAMMING

10.3 Graphical Method
We will solve this problem step by step using the Graphical Method.

10.3.1 Step 1: Plot the Constraints
1. Constraint 1: 2𝑥 + 3𝑦 ≤ 45

Convert this to an equation:
2𝑥 + 3𝑦 = 45

Solve for 𝑦 in terms of 𝑥:

𝑦 = 45 − 2𝑥
3

• For 𝑥 = 0, 𝑦 = 15 (Point (0, 15)).
• For 𝑦 = 0, 𝑥 = 22.5 (Point (22.5, 0)).

Plot the line passing through these points: (0, 15) and (22.5, 0).

2. Constraint 2: 𝑥 + 2𝑦 ≤ 16

Convert this to an equation:
𝑥 + 2𝑦 = 16

Solve for 𝑦 in terms of 𝑥:

𝑦 = 16 − 𝑥
2

• For 𝑥 = 0, 𝑦 = 8 (Point (0, 8)).
• For 𝑦 = 0, 𝑥 = 16 (Point (16, 0)).

Plot the line passing through these points: (0, 8) and (16, 0).

10.3.2 Step 2: Find the Feasible Region
The feasible region is the area where all constraints are satisfied, which is the intersection
of the regions determined by:

• The area under the line 𝑥 + 2𝑦 = 16.
• The area under the line 2𝑥 + 3𝑦 = 45.
• The non-negative region (since 𝑥 ≥ 0 and 𝑦 ≥ 0).

The feasible region is the area bounded by:

• (0, 8), where the second constraint intersects the y-axis.
• (16, 0), where the second constraint intersects the x-axis.
• The point where the two constraints intersect.

10.4. SIMPLEX METHOD 135

10.3.3 Step 3: Find the Intersection of the Constraints
To find the intersection of the two lines 2𝑥 + 3𝑦 = 45 and 𝑥 + 2𝑦 = 16, we solve the
system of equations:

1. From 𝑥 + 2𝑦 = 16, solve for 𝑥:

𝑥 = 16 − 2𝑦

2. Substitute 𝑥 = 16 − 2𝑦 into 2𝑥 + 3𝑦 = 45:

2(16 − 2𝑦) + 3𝑦 = 45

32 − 4𝑦 + 3𝑦 = 45
−𝑦 = 13
𝑦 = −13

So, the lines intersect at the point (𝑥, 𝑦) = (16, 0).

10.3.4 Step 4: Evaluate the Objective Function at Each Vertex
The vertices of the feasible region are the following points:

• (0, 8)
• (16, 0)

Now, we substitute these values into the objective function 𝑍 = 2𝑥 + 5𝑦.

1. At (0, 8):
𝑍 = 2(0) + 5(8) = 0 + 40 = 40

2. At (16, 0):
𝑍 = 2(16) + 5(0) = 32 + 0 = 32

10.3.5 Step 5: Identify the Optimal Solution
From the calculations, the maximum value of 𝑍 occurs at the vertex (0, 8), where 𝑍 = 40.

Thus, the optimal solution is:

• 𝑥 = 0 (no Product A)
• 𝑦 = 8 (8 units of Product B)
• Maximum Profit = 40

The optimal solution is to produce 0 units of Product A and 8 units of Product
B to maximize the profit, which will be 40.

10.4 Simplex Method
The Simplex Method is a widely used algorithm to solve Linear Programming
(LP) problems. It is designed to find the optimal solution to problems where the
objective function and constraints are linear, which means it optimizes a linear objective
function subject to a set of linear constraints.

136 CHAPTER 10. LINEAR PROGRAMMING

10.4.1 Key Concepts of the Simplex Method:
1. Standard Form of Linear Programming Problem: Linear programming

problems are typically written in standard form, which ensures all constraints
are in the form of inequalities and all variables are non-negative.

A general LP problem can be written as:

• Maximize:
𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛

• Subject to:
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

𝑥1, 𝑥2, … , 𝑥𝑛 ≥ 0
where:

• (c_1, c_2, …, c_n) are the coefficients in the objective function,
• (a_{ij}) are the coefficients of the constraints,
• (b_1, b_2, …, b_m) are the constants in the constraints,
• (x_1, x_2, …, x_n) are the decision variables.

2. Initial Simplex Table:

The initial Simplex table represents the problem with all variables, including the
slack variables (introduced to convert inequalities to equalities). The columns of
the table represent the decision variables, slack variables, and the right-hand side
of the system.

The general form of the initial Simplex tableau is:

Basic Variables 𝑥1 𝑥2 … 𝑥𝑛 RHS
𝑠1 𝑎11 𝑎12 … 𝑎1𝑛 𝑏1
𝑠2 𝑎21 𝑎22 … 𝑎2𝑛 𝑏2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑠𝑚 𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛 𝑏𝑚
𝑍 𝑐1 𝑐2 … 𝑐𝑛 0

Where:

• Basic variables: Variables currently in the solution (such as slack variables).
• Non-basic variables: Variables not in the solution, but can potentially

enter it.
• RHS (Right-Hand Side): The constants from the constraints.
• Z row: The coefficients of the objective function.

3. Simplex Algorithm Steps:

1. Initialization: The first Simplex tableau is constructed by converting the
problem into a standard form (if necessary) and introducing slack variables
to change inequalities into equalities.

10.4. SIMPLEX METHOD 137

2. Iterative Process:

• Select Pivot Column: Choose the most negative value in the objective
row (Z row), since we want to maximize 𝑍. This column identifies the
variable that should enter the basis.

• Select Pivot Row: Compute the ratio of the RHS (right-hand side)
value to the coefficients of the pivot column for each row. The smallest
non-negative ratio indicates the row (constraint) where the pivot should
happen.

• Pivoting: Update the tableau by performing row operations to eliminate
the pivot column values, so that only one positive entry remains in the
pivot column, representing the entering variable. This process is repeated
iteratively.

3. Termination: The algorithm stops when no negative values remain in the
objective function row, which means the solution is optimal.

10.4.2 Example Using Simplex Method:
Consider the following LP problem:

Maximize:
𝑍 = 3𝑥1 + 2𝑥2

Subject to:
𝑥1 + 𝑥2 ≤ 4

2𝑥1 + 𝑥2 ≤ 5
𝑥1, 𝑥2 ≥ 0

1. Introduce Slack Variables: We introduce slack variables 𝑠1 and 𝑠2 to convert
the inequalities into equalities:

𝑥1 + 𝑥2 + 𝑠1 = 4
2𝑥1 + 𝑥2 + 𝑠2 = 5

2. Formulate the Initial Simplex Table:

We now formulate the initial Simplex tableau:

Basic Variables 𝑥1 𝑥2 𝑠1 𝑠2 RHS
𝑠1 1 1 1 0 4
𝑠2 2 1 0 1 5
𝑍 −3 −2 0 0 0

Where:

• Slack variables 𝑠1 and 𝑠2 are the basic variables,
• The last row represents the objective function, with negative coefficients indicating

the direction to improve 𝑍.

138 CHAPTER 10. LINEAR PROGRAMMING

3. First Iteration:

• We look at the objective function row (Z row). The most negative coefficient
is −3, so we choose column 1 (representing 𝑥1) to enter the basis.

• Now, calculate the ratios for the pivot row: 𝑅𝐻𝑆
Pivot Column Value :

– For row 1: 4
1 = 4

– For row 2: 5
2 = 2.5

So, we choose row 2 (since the ratio is smaller) for the pivot.

4. Second Iteration: Repeat the process until no more negative coefficients are
found in the Z row.

5. Optimal Solution: The optimal solution occurs when no more negative values
remain in the Z row.

The Simplex method is an efficient iterative process for finding the optimal solution to
Linear Programming problems. By updating the tableau step by step, we ensure that
each iteration moves closer to the optimal solution. Once there are no more negative
coefficients in the Z row, we can declare the solution as optimal.

10.5 Dual Simplex Method
Consider the following Linear Programming (LP) problem:

Maximize:
𝑍 = 3𝑥1 + 2𝑥2

Subject to:
𝑥1 + 𝑥2 ≥ 4

2𝑥1 + 𝑥2 ≥ 5
𝑥1, 𝑥2 ≥ 0

10.5.1 Step 1: Reformulate to Standard Form
We convert the inequalities into equalities by introducing surplus variables 𝑠1 and 𝑠2.

𝑥1 + 𝑥2 − 𝑠1 = 4
2𝑥1 + 𝑥2 − 𝑠2 = 5

𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0

Thus, the objective function and constraints become:

Maximize:

𝑍 = 3𝑥1 + 2𝑥2

Subject to:
𝑥1 + 𝑥2 − 𝑠1 = 4

2𝑥1 + 𝑥2 − 𝑠2 = 5
𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0

10.5. DUAL SIMPLEX METHOD 139

10.5.2 Step 2: Initial Simplex Table
The initial simplex tableau for this problem is:

Basic Variables 𝑥1 𝑥2 𝑠1 𝑠2 RHS
𝑠1 1 1 −1 0 4
𝑠2 2 1 0 −1 5
𝑍 −3 −2 0 0 0

Where:

• The basic variables are 𝑠1 and 𝑠2.
• The objective function is to maximize 𝑍, with the negative of the coefficients −3

and −2 in the Z row.

10.5.3 Step 3: Apply Dual Simplex Method
1. Check Feasibility of RHS:

We check the RHS of each constraint to ensure it’s feasible (positive).

• Row 1: 𝑅𝐻𝑆 = 4 (positive, feasible)
• Row 2: 𝑅𝐻𝑆 = 5 (positive, feasible)

Since both constraints have positive RHS values, the initial solution is feasible.
If any RHS was negative, we would pivot to improve feasibility while maintaining
optimality.

2. Select Pivot Row and Column (if infeasible):

• The Dual Simplex Method would continue with row and column selection if
any RHS were negative.

• We would compute the ratios of the RHS to the pivot column and use pivot
operations accordingly to make the RHS positive while ensuring the objective
function is still optimal.

10.5.4 Step 4: Solution
Since both constraints are feasible, the initial solution is feasible. The tableau for this
example indicates we can directly derive the optimal solution.

10.5.5 Final Solution:
The optimal solution is: - 𝑥1 = 2.5 - 𝑥2 = 0 - 𝑍 = 7.5
Thus, the maximum value of the objective function is 𝑍 = 7.5, with 𝑥1 = 2.5 and 𝑥2 = 0
as the solution.

• The Dual Simplex Method is useful for adjusting an existing solution that
might not be feasible but is optimal.

• By focusing on fixing the feasibility of a solution while maintaining its optimality,
we can iteratively improve the solution and arrive at a valid and optimal result.

140 CHAPTER 10. LINEAR PROGRAMMING

10.6 Other Methods for Solving LP
10.6.1 Interior Point Method
The Interior Point Method is a class of algorithms used to solve linear program-
ming problems by iterating from the interior of the feasible region. Unlike the Simplex
method, which moves along the boundary of the feasible region, the Interior Point
method explores the interior.

The Karmarkar’s Algorithm is a well-known example of an interior point method.

Key Steps:

• Start with an interior point (a point inside the feasible region).
• Gradually approach the optimal solution by traversing the interior of the feasible

set.
• Iteratively refine the solution until convergence is reached.

This method has proven to be efficient for large-scale linear programming problems,
especially those involving millions of variables.

10.6.2 Network Simplex Method
The Network Simplex Method is a specialized version of the Simplex algorithm
designed to solve network flow problems. These problems arise in scenarios like
transportation, supply chains, and communication networks, where we want to optimize
a flow across a network of nodes and arcs.

Key Steps:

• Represents the problem in the form of a network with nodes and arcs.
• Optimizes flow by updating the arc capacities and node values iteratively.
• Focuses on improving flow between different parts of the network to optimize the

objective.

This method is particularly effective in network optimization problems like transporta-
tion and distribution where the problem can be naturally modeled as a network.

10.6.3 Revised Simplex Method
The Revised Simplex Method is an improvement on the traditional Simplex Method
and is especially suitable for problems with large numbers of variables. While the clas-
sical Simplex method can become computationally expensive in high-dimensional prob-
lems, the Revised Simplex Method reduces the number of matrix operations required.

Key Steps:

• Instead of storing the entire simplex tableau, the Revised Simplex Method works
with the essential data required to keep track of the current solution, such as the
basis matrix.

• Iterations proceed by updating the basis matrix as needed while reducing the
number of operations.

This method can provide better efficiency in terms of computational cost compared to
the traditional Simplex approach.

10.6. OTHER METHODS FOR SOLVING LP 141

10.6.4 Karmarkar’s Algorithm
The Karmarkar’s Algorithm is an interior point algorithm introduced by Narendra
Karmarkar in 1984. This algorithm is designed to solve convex optimization prob-
lems, especially linear programming. It runs in polynomial time and offers significant
advantages over the Simplex method, particularly for large-scale problems.

Key Steps:

• Starts from an interior point of the feasible region.
• Utilizes a series of steps designed to bring the algorithm closer to the optimal

solution.
• Progressively refines the solution to achieve an optimal outcome within polynomial

time.

This method was a breakthrough in the field of Linear Programming due to its
polynomial-time performance. It’s particularly helpful in solving very large LP
problems.

These methods all offer distinct approaches for solving Linear Programming problems,
with advantages and drawbacks depending on the type of problem being solved. While
the Simplex Method is commonly used, techniques like Interior Point Methods and
the Revised Simplex Method are often better suited for large, complex problems.
In certain situations, like network flow problems, specialized algorithms such as the
Network Simplex Method can lead to faster solutions.

142 CHAPTER 10. LINEAR PROGRAMMING

Part I

Case Studies

143

Chapter 11

Matrix in Forecasting

In forecasting, matrices are powerful tools used for organizing and analyzing data. They
allow the representation of multiple relationships and variables compactly, making it
easier to perform computations and apply statistical or machine learning techniques.
Here’s an overview of how matrices are commonly applied in forecasting:

11.1 Linear Regression
Linear regression aims to model the relationship between input features and a target
variable. In this explanation, we will explore how to express and solve linear regression
problems using matrices.

11.1.1 General Form
In linear regression, the relationship between the input features 𝑋 and the target vari-
able 𝑦 is assumed to be linear. The linear regression equation is:

𝑦 = 𝑋𝛽 + 𝜖

Where:

• 𝑦 is an 𝑛 × 1 vector of observed target values (response variable).
• 𝑋 is an 𝑛 × 𝑝 design matrix (features matrix), where each row represents an

observation and each column represents a feature.
• 𝛽 is a 𝑝 × 1 vector of coefficients (parameters).
• 𝜖 is a vector of errors (residuals).

11.1.2 Matrix Representation
The matrix 𝑋 contains the input features. The first column of 𝑋 is filled with 1’s to
represent the intercept 𝛽0. For example, for a dataset with three data points and two
features:

145

146 CHAPTER 11. MATRIX IN FORECASTING

𝑋 = ⎡⎢
⎣

1 𝑥11 𝑥12
1 𝑥21 𝑥22
1 𝑥31 𝑥32

⎤⎥
⎦

Where: 𝑥11, 𝑥12, ... are the input values.

11.1.3 Vector of Coefficients 𝛽
The vector 𝛽 represents the coefficients (weights) of the model, including the intercept:

𝛽 = ⎡⎢
⎣

𝛽0
𝛽1
𝛽2

⎤⎥
⎦

Where 𝛽0 is the intercept, and 𝛽1, 𝛽2 are the coefficients for the input features.

11.1.4 Target Vector 𝑦
The target vector 𝑦 contains the observed values of the dependent variable.

𝑦 = ⎡⎢
⎣

𝑦1
𝑦2
𝑦3

⎤⎥
⎦

11.1.5 Objective: Minimizing the Cost Function
To find the optimal coefficients 𝛽, we minimize the error between the predicted values

̂𝑦 and the actual values 𝑦. The error is measured using the sum of squared residuals
(errors) called the cost function 𝐽(𝛽):

𝐽(𝛽) = 1
2

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 = 1
2(𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽)

Where:

• (𝑦 − 𝑋𝛽) is the residual vector.
• The factor 1/2 is to simplify the differentiation step.

11.1.6 Minimizing the Cost Function
To minimize the cost function, we take the derivative with respect to 𝛽, set it to zero,
and solve for 𝛽:

𝜕𝐽(𝛽)
𝜕𝛽 = −𝑋𝑇 (𝑦 − 𝑋𝛽)

Set the derivative equal to zero:

11.2. 6. EXAMPLE IN R 147

𝑋𝑇 (𝑦 − 𝑋𝛽) = 0

Simplifying:

𝑋𝑇 𝑦 = 𝑋𝑇 𝑋𝛽

Now, solve for 𝛽 by multiplying both sides by (𝑋𝑇 𝑋)−1 (assuming 𝑋𝑇 𝑋 is invertible):

𝛽 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦

This is the closed-form solution for linear regression, also known as the normal
equation.

11.1.7 Making Predictions
Once 𝛽 is computed, predictions can be made for the target variable 𝑦 using:

̂𝑦 = 𝑋𝛽

11.1.8 Assumptions of Linear Regression
For the linear regression model to be meaningful, certain assumptions are typically
made:

1. Linearity: The relationship between the input features and the target variable is
linear.

2. Independence: The residuals (errors) are independent.
3. Homoscedasticity: The variance of residuals is constant across all observations.
4. Normality of Errors: The residuals follow a normal distribution (important for

hypothesis testing and confidence intervals).

11.2 6. Example in R
Here’s an example in R of computing 𝛽 using the closed-form solution and making
predictions:
import numpy as np

Sample Data (X and y)
X = np.array([[1, 1, 4], # Design matrix (including intercept column of 1's)

[1, 2, 5],
[1, 3, 6]])

y = np.array([5, 7, 9]) # Actual target values

Compute the coefficients using the Normal Equation with pseudo-inverse
X_transpose = X.T # Transpose of X
X_transpose_X = X_transpose.dot(X) # X^T X

148 CHAPTER 11. MATRIX IN FORECASTING

X_transpose_y = X_transpose.dot(y) # X^T y

Use the pseudo-inverse in case X^T X is singular
beta = np.linalg.pinv(X_transpose_X).dot(X_transpose_y)

Display the coefficients (beta values)
print("Coefficients (beta):", beta)

Make predictions
y_hat = X.dot(beta) # Predicted target values
print("Predicted values (y_hat):", y_hat)

Coefficients (beta): [3.55271368e-15 1.00000000e+00 1.00000000e+00]
Predicted values (y_hat): [5. 7. 9.]

11.3 Markov Chains
A Markov Chain is a mathematical model that describes a system undergoing tran-
sitions from one state to another, where the probability of moving to the next state
depends only on the current state (not past states). This property is called the Markov
property.

In the context of Linear Algebra, Markov Chains can be analyzed using matrices,
particularly the transition matrix, to understand how the system evolves over time.

11.3.1 State Vectors
In a Markov Chain, the system’s state at any given time is represented by a state
vector. This vector consists of probabilities of being in each possible state.

For example, if a system has two states, Hujan (H) and Cerah (C), the state vector x
could be:

x = (𝑝(𝐻)
𝑝(𝐶))

Where 𝑝(𝐻) is the probability of the system being in state H, and 𝑝(𝐶) is the probability
of the system being in state C.

11.3.2 Transition Matrix
The transition matrix 𝑃 describes the probabilities of transitioning between states in
the system. It is a square matrix where the element 𝑃𝑖𝑗 represents the probability of
transitioning from state 𝑖 to state 𝑗.

For a two-state system with Hujan and Cerah, the transition matrix might look like:

𝑃 = (0.7 0.3
0.4 0.6)

11.3. MARKOV CHAINS 149

In this example:

• The probability of staying in state H (Hujan to Hujan) is 0.7.
• The probability of transitioning from Hujan to Cerah is 0.3.
• The probability of transitioning from Cerah to Hujan is 0.4.
• The probability of staying in state C (Cerah to Cerah) is 0.6.

11.3.3 Matrix Multiplication
To compute the state of the system at the next time step, you multiply the current state
vector by the transition matrix.

If the current state vector is x𝑡, the state vector at the next time step, x𝑡+1, is given
by:

x𝑡+1 = 𝑃 ⋅ x𝑡

For example, if x𝑡 = (0.5
0.5), then:

x𝑡+1 = (0.7 0.3
0.4 0.6) ⋅ (0.5

0.5)

This results in:

x𝑡+1 = (0.5
0.5)

11.3.4 Steady State
A crucial concept in Markov Chains is the steady state or stationary distribution,
where the system reaches a point where the state probabilities no longer change over
time.

Mathematically, the steady state vector x satisfies the equation:

x = 𝑃 ⋅ x

To find the steady state, you need to solve for the eigenvector corresponding to eigenvalue
𝜆 = 1 of the transition matrix. The steady-state vector is the distribution where the
system remains unchanged after one application of the transition matrix.

11.3.5 Eigenvectors and Eigenvalues
The steady state of a Markov Chain can be determined by finding the eigenvector
corresponding to the eigenvalue 1 of the transition matrix 𝑃 , since at steady state the
state vector doesn’t change when multiplied by the transition matrix.

To summarize, in a Markov Chain:

• The transition matrix 𝑃 describes the system’s transition probabilities.

150 CHAPTER 11. MATRIX IN FORECASTING

• The state vector x updates over time by multiplying it by the transition matrix.
• The steady state vector x is the eigenvector associated with eigenvalue 1, repre-

senting the system’s long-term probabilities of being in each state.

11.3.6 Example Problem: Finding Steady State
Let’s take the transition matrix:

𝑃 = (0.7 0.3
0.4 0.6)

To find the steady-state vector, solve:

x = 𝑃 ⋅ x

which translates to solving the system of equations to find the vector x that does not
change after multiplication with the matrix 𝑃 .

Markov Chains in Linear Algebra make use of key concepts such as matrices, vectors,
and eigenvalues to model systems that evolve probabilistically. By applying matrix
operations and finding eigenvectors corresponding to eigenvalue 1, we can describe long-
term behavior and steady states in such systems.

11.4 SVD Applications

11.5 Eigenvalues in Systems

11.6 Matrix Factorization

11.7 Neural Network Weights

11.8 Simulation with Matrices

Chapter 12

Dimensionality Analysis

12.1 Introduction

12.2 Engineering Applications

12.3 Dimensionality in Data Science

12.4 Reduction Techniques

12.5 Forecasting Applications

12.6 Model Consistency

12.7 Impact Evaluation

12.8 Challenges

151

152 CHAPTER 12. DIMENSIONALITY ANALYSIS

Epilogue

“Begin at the beginning”, the King said, very gravely, “and go on till you
come to the end: then stop” – Lewis Carroll

153

154 Epilogue

References

Lay, D. C. (2012). Linear algebra and its applications (4th ed.). Pearson.

Lay, D. C. (2012). Linear algebra and its applications (4th ed.). Pearson.

155

156 References

	Preface
	Advantages of This Book
	About the Author
	Acknowledgments
	Feedback & Suggestions

	Introduction
	Key Concepts in Linear Algebra:
	Vectors and Vector Spaces
	Matrices and Matrix Operations
	Systems of Linear Equations
	Linear Transformations

	Applications of Linear Algebra
	Finance: Portfolio Optimization
	Business: Linear Regression
	Machine Learning: Matrix Multiplication in Neural Networks
	Physics and Engineering: Stress and Strain
	Computer Graphics: 3D Rotation
	Natural Language Processing: Word Embeddings
	Image Processing: Image Compression
	Economics: Input-Output Model
	E-commerce: Recommendation System
	Health: Medical Imaging

	Vectors
	Definition
	Properties
	Dimension
	Types of Vectors
	Addition and Subtraction
	Scalar Multiplication
	Magnitude
	Dot Product
	Cross Product

	Simple Applied
	Vectors in 2D
	Vectors in 3D

	K-Means Clustering
	Step 1: Data Preparation
	Step 2: Initialization
	Step 3: Assignment
	Step 4: Assign Customers to Clusters
	Step 5: Update Centroids
	Repeat Steps

	Use Vector in Python

	Matrix
	Definition of a Matrix
	General Form of a Matrix
	Matrix Operations
	Addition and Subtraction
	Multiplication
	Transpose

	Determinant
	Calculating the Determinant:
	Determinant Calculation Methods
	Properties of Determinants:

	Inverse
	How to Calculate the Inverse of a Matrix:
	Properties of Inverses:
	Study Case in Data Science

	Use Matrices in Python

	SLE
	Introduction
	Function
	Equation
	Functions vs Equations

	SLE in 2D
	Substitution
	Elimination
	Augmented Matrix
	Invers Matrix
	Graphical

	SLE in 3D
	Invers Matrix Method
	Graphical Method

	SLE in n-Dimensions
	Write in Matrix Form
	Ensure A is Invertible
	Find the Inverse of Matrix A
	Multiply A^{-1} by B

	Case Study of SLE
	Overview: XYZ Manufacturing Co.
	Industry: Consumer Goods
	Products
	Objective
	Constraints
	System of Equations
	Decision Variables
	Goals
	Coefficient Matrix A
	Constant Matrix B
	Python Code to Solve the System

	SLE in Python

	Linear Transformations
	2D Linear Transformation
	2D Rotation
	2D Reflection
	2D Scaling
	2D Shearing
	2D Translation

	3D Linear Transformation
	3D Rotation
	3D Reflection
	3D Scaling
	3D Shearing
	3D Translation

	Case Study 1
	Background
	Objectives
	Solution Steps

	Case Study 2
	Problem Context
	Steps of the Analysis
	Code Implementation

	Case Study 3
	Background
	Given Data
	Problem Statement
	Solution

	Linear Transformations in Python

	Eigenvalues and Eigenvectors
	Eigenvalue
	Eigenvector
	Eigenvalues & Eigenvectors 2D
	Step 1: Finding Eigenvalues
	Step 2: Finding Eigenvectors
	Calculation using Python
	Visualization using Python

	Eigenvalues & Eigenvectors 2D
	Step 1: Finding Eigenvalues
	Step 2: Finding Eigenvectors
	Summary
	Calculation using Python
	Visualization using Python

	Case Study
	Problem Statement
	Dataset
	Step 1: Data Preparation
	Step 2: Compute the Covariance Matrix
	Step 3: Calculate Eigenvalues and Eigenvectors
	Step 4: Transform the Data
	Step 5: Visualize the PCA Result

	Singular Value Decomposition
	What is SVD?
	SVD in 2D Matrix
	Step 1: Compute A^T A and A A^T
	Step 2: Compute Eigenvalues and Singular Values
	Step 3: Compute V (Right Singular Vectors)
	Step 4: Compute U (Left Singular Vectors)
	Step 5: Construct \Sigma
	Step 6: Verify A = U \Sigma V^T

	SVD for a 3D Matrix
	Step 1: Compute A^T A and A A^T
	Step 2: Compute Eigenvalues and Singular Values
	Step 3: Compute V (Right Singular Vectors)
	Step 4: Compute U (Left Singular Vectors)
	Step 5: Construct \Sigma
	Step 6: Verify A = U \Sigma V^T

	SVD for Movie Recommendation System
	Step 1: The User-Item Rating Matrix
	Step 2: Apply SVD
	Step 3: Reconstruct the Matrix with U, \Sigma, and V^T
	Step 4: Predict Missing Ratings
	Step 5: Recommendation
	Python Code

	Conclusion

	Least Squares and Applications
	Least Squares Method
	Linear Regression Model and Matrix Equation
	Finding the Coefficients \beta Using Least Squares
	Solving the Normal Equation
	Linear Regression Example
	Data
	Linear Regression Equation
	Matrix \mathbf{X} and Vector \mathbf{y}
	Compute \mathbf{X}^T \mathbf{X}
	Compute \mathbf{X}^T \mathbf{y}
	Compute the Inverse of \mathbf{X}^T \mathbf{X}

	7. Compute the Vector \boldsymbol{\beta}
	8. Linear Regression Equation
	Applications of Least Squares
	Data Analysis
	Physics and Engineering
	Economics and Logistics
	Image Processing

	Quadratic From
	Definition of Quadratic Form
	2D Quadratic Form
	3D Quadratic Form
	nD Quadratic Form

	Key Concepts
	Geometric Interpretation of Quadratic Forms
	Ellipsoid
	Hyperboloid
	Paraboloid

	Applications of Quadratic Forms
	Simple Implementation in Python

	Linear Programming
	Basic Concepts of LP
	Objective Function
	Constraints
	Non-Negativity Restriction

	Complete Example
	Linear Programming Model

	Graphical Method
	Step 1: Plot the Constraints
	Step 2: Find the Feasible Region
	Step 3: Find the Intersection of the Constraints
	Step 4: Evaluate the Objective Function at Each Vertex
	Step 5: Identify the Optimal Solution

	Simplex Method
	Key Concepts of the Simplex Method:
	Example Using Simplex Method:

	Dual Simplex Method
	Step 1: Reformulate to Standard Form
	Step 2: Initial Simplex Table
	Step 3: Apply Dual Simplex Method
	Step 4: Solution
	Final Solution:

	Other Methods for Solving LP
	Interior Point Method
	Network Simplex Method
	Revised Simplex Method
	Karmarkar's Algorithm

	I Case Studies
	Matrix in Forecasting
	Linear Regression
	General Form
	Matrix Representation
	Vector of Coefficients \beta
	Target Vector y
	Objective: Minimizing the Cost Function
	Minimizing the Cost Function
	Making Predictions
	Assumptions of Linear Regression

	6. Example in R
	Markov Chains
	State Vectors
	Transition Matrix
	Matrix Multiplication
	Steady State
	Eigenvectors and Eigenvalues
	Example Problem: Finding Steady State

	SVD Applications
	Eigenvalues in Systems
	Matrix Factorization
	Neural Network Weights
	Simulation with Matrices

	Dimensionality Analysis
	Introduction
	Engineering Applications
	Dimensionality in Data Science
	Reduction Techniques
	Forecasting Applications
	Model Consistency
	Impact Evaluation
	Challenges

	Epilogue
	References

