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We live in a world overflowing with data. From science and business to policy and everyday
life, the ability to interpret data through statistics has become a core skill for critical thinking
and decision-making. Statistics doesn’t just organize numbers; it uncovers patterns, quantifies
uncertainty, and transforms raw information into knowledge we can act on.

This module takes learners on a journey from the basics to the essentials of statistical reasoning.
We start with data types and collection methods, then move to how data can be organized and
presented through clear tables, visuals, and descriptive summaries. We dive into measures of
central tendency and dispersion to understand what data is really telling us, before laying the
groundwork of probability and distributions as the language of uncertainty.

From there, learners will explore statistical inference, confidence intervals and hypothesis test-
ing to make evidence-based generalizations from samples to populations. By the end, partici-
pants won’t just know statistical methods; they’ll be able to apply them confidently, communi-
cate insights clearly, and make better decisions in real-world contexts.
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Feedback & Suggestions Preface

the fundamental principles and methods of statistics, equipping them with the skills to explore,
summarize, and interpret data effectively. This Book covers:

• Introduction to statistics and its role in decision-making
• Data types and collection methods for accurate and reliable analysis
• Data presentation using clear tables, charts, and visual summaries
• Measures of central tendency and dispersion to describe datasets
• Probability concepts and probability distributions to quantify uncertainty
• Confidence intervals and statistical inference for drawing robust conclusions
• Nonparametric methods for analyzing data without strict distribution assumptions

By completing this module, learners will gain the analytical capabilities to manage real-world
data, extract actionable insights, and communicate findings with clarity and rigor, establishing
a strong foundation for advanced study or professional practice in data science, research, and
industry.

Feedback & Suggestions

Your feedback is essential for improving the clarity, relevance, and usefulness of this module.
Readers are invited to share their thoughts on the content, structure, and practical applications,
as well as suggestions for new topics, examples, or tools.

This input helpsmake the E-book amore practical and comprehensive resource for Introduction
to Statistics, bridging academic learning and real-world application. Thank you for contributing
to the evolution of this material!

For feedback and suggestions, feel free to contact:

• dsciencelabs@outlook.com

• siregarbakti@gmail.com

• siregarbakti@itsb.ac.id
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About R and RStudio

R and RStudio are essential tools for data analysis, statistical computing, and visualization. R
provides a powerful, open-source environment for performing complex analyses, while RStudio
offers a user-friendly interface, supporting multiple languages and features for coding, docu-
mentation, and reproducible research. Mastery of R and RStudio enables users to explore data
efficiently, implement statistical methods, and communicate insights effectively in scientific,
engineering, business, and research contexts [1], [2].

The Figure 1 presents a visual overview of this introductory material, highlighting the main
topics—R, RStudio, Installation, Usage, and Popularity—and their subtopics. It serves as a
roadmap for readers, showing how foundational knowledge of R and RStudio connects to practi-
cal applications, package management, data analysis workflows, and understanding the broader
statistical and computational ecosystem [3], [4].

INTRODUCTION TO
R & RSTUDIO

R

RStudio

Installation

Using R

R Popularity

Open Source

Brief History

CRAN & Packages

IDE for R

Supported Languages:
R, Python, SQL, Julia, Stan, HTML/CSS/JS,etc.

Analysis & Documentation Features

Download & Install R

Download & Install RStudio

Verify Installation

Video Tutorial

Console & Script

Installing & Loading Packages

Accessing Documentation

Statistical Analysis & Big Data

Flexibility & Compatibility

Active Community

Open Source

Data Visualization

Big Data & Machine Learning

Figure 1: Mind Map of Introduction to R & RStudio

The mind map above (Figure Figure 1) provides a structured overview of the core topics in
this chapter: R, RStudio, Installation, Usage, and Popularity. Each branch and sub-branch
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Introduction to R & RStudio About R and RStudio

highlights essential concepts and practical steps, showing how they interconnect to form a com-
plete understanding of statistical computing and data analysis workflows. By following this
visual roadmap, readers can see how mastering the fundamentals of R and RStudio—from in-
stalling software and running basic scripts to exploring packages and advanced features—lays
the groundwork for effective data analysis, reproducible research, and real-world problem solv-
ing. This chapter will guide you step by step through each component, linking theory to hands-on
applications and best practices.

Introduction to R & RStudio

R and RStudio are open-source applications widely used in big data and data science. The
combination of both allows users to perform complex data analysis and visualization efficiently
and easily.

These applications are examples of open-source software, meaning they can be freely used,
modified, and distributed. More information about open-source software can be found here:
What is Open Source Software?

Brief History of R

The R programming language (Figure 2) was developed in the early 1990s by Ross Ihaka and
Robert Gentleman at the University of Auckland, New Zealand. The goal was to create a better
data analysis tool than other statistical languages such as S. R was released in 1995 and quickly
gained attention from the statistical community.

Figure 2: Logo R

As an open-source language, R grew rapidly with global contributions. CRAN (Comprehensive
R Archive Network), founded in 1997, provides thousands of community packages extend-
ing R’s functionality. R’s popularity increased in the early 2000s, expanding into industry and
academia.

6

https://www.r-project.org/
https://rstudio.com/
https://exsight.id/blog/2021/02/15/apa-sih-aplikasi-open-source-itu/


About R and RStudio Introduction to R & RStudio

About RStudio

Launched on February 21, 2011, Figure 3 was founded by J.J. Allaire, also known for his role in
early web technologies such as ColdFusion. RStudio has become one of the most popular IDEs
for R, offering many features to facilitate data analysis, coding, and dynamic documentation
using R Markdown.

Figure 3: Logo RStudio

RStudio supports multiple programming languages:

• R: Primary language for data analysis.
• Python: Via reticulate for data analysis.
• SQL: With DBI package for database queries.
• Stan: Via rstan for Bayesian modeling.
• Julia: With JuliaCall for high-performance computing.
• Shell (Bash): For system commands in the terminal.
• HTML/CSS/JavaScript: In R Markdown for web documents.
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Installing R and RStudio

Step 1: Download and Install R

Download R:

• Visit CRAN R
• Select “Download R for Windows” (or your OS)
• Click “base” to get the latest version
• Download the installer according to your system (32-bit or 64-bit)

Install R:

• Run the downloaded installer
• Follow on-screen instructions
• Choose installation directory if needed
• Click “Finish” when done

Note: Ensure R is correctly installed before proceeding to RStudio.

Step 2: Download and Install RStudio

Download RStudio:

• Visit RStudio
• Select “RStudio Desktop”
• Download the free version (“RStudio Desktop Open Source License”) or paid version as
needed

Install RStudio:

• Run the installer
• Follow on-screen instructions
• Choose installation directory if needed
• Click “Finish” when done

Step 3: Verify Installation

For R:

• Open R from Start menu or desktop
• Type version in console and press Enter
• Ensure the version displayed is up to date

For RStudio:

• Open RStudio
• Check that it connects to the installed R
• Run basic commands like 2 + 2 to ensure functionality
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About R and RStudio Installation Video

Installation Video

\newline \href{https://youtu.be/Lv0xcdeXaGU}{Click here to watch the video}

Popularity of R

R is widely recognized among data scientists and researchers. Key reasons for its popularity
include:

Statistical Analysis and Big Data

R is efficient for statistical and big data analysis (Figure 4) thanks to many supporting packages
and libraries.

Flexibility and Compatibility

R is flexible and compatible (Figure 5) with multiple platforms, making integration with other
software easy.

Active Community

R has a large, active user community providing resources for learning and sharing knowledge.

• R Project: Official site
• Mailing Lists: Subscribe for updates about R releases here
• Twitter #rstats: Active users share insights on Twitter link
• Tidy Tuesday: Weekly online project for data visualization with open-source datasets
link

• R-Ladies: Global group promoting gender equality in R community link
• R-Podcast: Podcast with R tips and updates link
• R-Bloggers: Blog site for sharing R code, analysis, and visualization link

Open Source

As open-source software, R can be freely used and developed, making it ideal for researchers
with limited budgets (See Figure 6).

Data Visualization

R excels in data visualization (Figure 7), presenting complex data clearly and attractively.
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Figure 4: Dashboard Example
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Figure 5: Flexibility and Compatibility

Suitable for Big Data & ML

As the world of data grows larger and more complex, R keeps pace by offering tools designed
for big data and Machine Learning (ML). This Figure 8 highlights R’s strength in combining
its statistical roots with modern capabilities, enabling analysts, researchers, and businesses to
explore data, build models, and generate insights with confidence.

How to Use R/Studio

To start using R effectively, follow these steps:

• R: Open the R application from Start menu or desktop to access the console.
• RStudio: Open RStudio for a graphical interface that simplifies coding and analysis.

Writing and Running Code

• Klik Console Tab: Enter commands directly in “Console”, Example:

print("Hello, World!")

• Script Tab: Save and run multiple commands, Example:

11
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Figure 6: Open Source

Figure 7: Data Visualization
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Figure 8: Big Data & Machine Learning

# Simple R script
x <- 10
y <- 5
result <- x + y
print(result)

Installing and Loading Packages

• Install Packages:

install.packages("ggplot2")

• Load Packages:

library(ggplot2)

Accessing Documentation

• Function Help:

help(plot)
?plot

• Vignettes:

13
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vignette("ggplot2")
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About the Book

Statistics is the science of collecting, organizing, analyzing, and interpreting data to make in-
formed decisions. It provides essential tools for understanding variability, modeling uncertainty,
and drawing conclusions from real-world phenomena across science, engineering, business, and
social studies. Mastery of statistics enables us to extract insights, test hypotheses, and predict
outcomes effectively [5], [6].

Overview of the Course

The Figure 9 presents a visual overview of the course, highlighting the structure of key topics
and their interconnections. It offers readers a clear guide to navigate the material and understand
how concepts link to practical applications and decision-making processes [7].

MINDMAP
OF

BASICS STATISTICS

Introduction

Data Exploration

Visualizations

Central Tendency

Dispersion

Probability

Distributions

Confidence Interval

Statistical Inference

Nonparametric Methods

What is Statistics

Types: Descriptive & Inferential

Data Analysis Process

Example Applications

Numeric: Discrete & Continuous

Categorical: Nominal & Ordinal

Data Sources

Dataset, Variables, Observations

Bar Chart

Histogram

Pie Chart

Boxplot

Scatter Plot

Mean

Median

Mode

Choosing Measure

Range

Variance

Std Deviation

IQR

Coeff of Variation

Basic Concepts

Rules: Addition, Multiplication, Complement

Conditional Probability

Bayes Theorem

Discrete: Binomial, Poisson

Continuous: Normal, Exponential, Uniform

Interval Concept

Confidence Level

Interval for Mean & Proportion

Result Interpretation

Hypotheses: H0 & H1

t-test / z-test

Chi-Square

P-Value

Mann-Whitney

Wilcoxon

Kruskal-Wallis

Usage

Figure 9: Mind Map of Statistics Course
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Brief Descriptions About the Book

Table 1: Key Concepts in Statistics

KeyConcept Description ExampleApplication

Introduction What statistics is, types (descriptive &
inferential), and the data analysis process

Business decision-making using data insights

Data Exploration Types of data (numerical, categorical), data
sources, datasets, variables, and observations

Collecting employee health records for
analysis

Visualizations Visualization techniques: bar chart, histogram,
pie chart, boxplot, scatter plot

Visualizing sales data with bar chart or boxplot

Central Tendency Measures of location: mean, median, mode Comparing average income across groups
Dispersion Measures of variability: range, variance,

standard deviation, IQR, coefficient of
variation

Analyzing spread of exam scores in a class

Probability Basic concepts, rules (addition,
multiplication), conditional probability, Bayes’
theorem

Estimating probability of machine failure

Distributions Discrete (binomial, Poisson) and continuous
(normal, exponential, uniform) distributions

Modeling customer arrivals (Poisson) or
product lifespan (exponential)

Confidence Interval Intervals, confidence levels, estimation for
mean & proportion, interpretation of results

Calculating CI for average mining output

Statistical Inference Hypothesis testing (H0 & H1), t-test, z-test,
chi-square, p-values

Testing if two mining methods yield different
results

Nonparametric Methods Mann-Whitney, Wilcoxon, Kruskal-Wallis
tests, and when to use them

Analyzing survey responses when assumptions
of parametric tests are not met

This book introduces the fundamental building blocks of statistics, from understanding data
structures and basic visualizations to exploring probability, distributions, confidence intervals,
and nonparametric methods. Each topic is linked to real-world examples, allowing readers to see
how statistical techniques support analysis, interpretation, and problem-solving across diverse
domains.

Brief Descriptions

This mind map (Figure 9) illustrates the overall structure of a Basic Statistics course, covering
topics from introductory concepts to more advanced methods (see Table 1).

References
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Chapter 1

Introduction to Statistics

Statistics appears in almost every aspect of daily life. When reading news reports about surveys,
public health updates, or economic analysis, we are already looking at applications of statistics.
It helps us transform raw data intomeaningful information that supports better understanding and
decision-making. This chapter introduces the meaning of statistics, its main types, the process
of data analysis, and practical applications across different fields.

Statistics is the science of collecting, organizing, analyzing, and interpreting data to make in-
formed decisions. It provides essential tools for understanding variability, modeling uncertainty,
and drawing conclusions from real-world phenomena across science, engineering, business, and
social studies. Mastery of statistics enables us to extract insights, test hypotheses, and predict
outcomes effectively [5], [6].

The Figure 1.1 presents a visual overview of the course, highlighting the structure of key topics
and their interconnections. It offers readers a clear guide to navigate the material and understand
how concepts link to practical applications and decision-making processes [7].

Statistics is a fundamental discipline in data science, serving as a foundation for understand-
ing, analyzing, and interpreting information. By applying the 5W+1H framework (What, Why,
When,Where,Who, How), we can systematically explore the essence of statistics: its definition,
purpose, history, areas of application, contributors, and methodology.

Table Table 1.1 provides an overview of these guiding questions, linking each with practical ex-
amples and interpretations that reflect both everyday understanding and scientific perspectives.

1.1 Definition of Statistics

1.1.1 The Meaning of Statistics

Everyday explanation: Statistics is a way of making data easier to understand. Imagine a
teacher who wants to know how well the class performed on an exam. Instead of looking at
every student’s score one by one, the teacher can simply calculate the average score to get an
overall picture.
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Table 1.1: 5W+1H Questions for Statistics

Description Example_Stat Example_Output

What?

What? What is statistics? Science of collecting, organizing,
analyzing, and interpreting data

Tool to make sense of uncertainty

What? What are the main branches of
statistics?

Descriptive and Inferential statistics Descriptive: summarize data;
Inferential: draw conclusions

What? What is the role of data in statistics? Data as the raw material for statistical
inference

Without data, no statistical inference
is possible

Why?

Why? Why is statistics important for
decision-making?

Helps reduce uncertainty and guide
policies

Example: public health decisions
during a pandemic

Why? Why do we use statistics in research
and business?

To validate research findings,
optimize business strategies

Example: forecasting sales, testing
medical treatments

When?

When? When did statistics begin to be
formalized?

18th–19th century (Gauss, Laplace,
Fisher, Pearson)

Roots in census-taking, formalized
with probability theory

When? When is statistical analysis applied in
practice?

Market research, medical studies,
social surveys

Example: analyzing customer
satisfaction survey

Where?

Where? Where is statistics applied in
real-world problems?

Business, economics, health,
engineering, social sciences

Example: clinical trials, risk
assessment, AI systems

Where? Where can statistical thinking be
observed in daily life?

Everyday: opinion polls, product
reviews, budgeting

Example: choosing insurance plans,
election predictions

Who?

Who? Who developed the foundations of
modern statistics?

Key figures: Ronald Fisher, Karl
Pearson, Florence Nightingale

Pioneers advanced probability &
statistical theory

Who? Who uses statistics in professional
fields?

Researchers, policy makers,
engineers, doctors, data scientists

Used across all scientific and
professional domains

How?

How? How is data collected in statistics? Surveys, experiments, sensors, digital
footprints

Quantitative and qualitative data
sources

How? How is data analyzed and modeled? Using EDA, hypothesis testing,
regression, machine learning

Models patterns, tests hypotheses,
builds predictions

How? How are results interpreted and
communicated?

Through reports, dashboards,
visualizations, publications

Translate numbers into meaningful
insights
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STATISTICS

What?

Why?

When?

Where?

Who?

How?

Definition

Descriptive

Inferential

Data Analysis Process

Decision Making

Prediction & Forecasting

History of Statistics

Applications

Researchers,
Analysts, Engineers

Methods & Tools

Find Problems

Collect Data

Organize Data

EDA

Modeling

Evaluation

Interpretation

Business & Economics

Health & Medicine

Engineering & Science

Social Research

Surveys & Experiments

Charts & Graphs

Statistical Software
(R, Python, SPSS, etc)

Figure 1.1: Detailed 5W+1H for Statistics

Scientific explanation: Statistics is a branch of mathematics concerned with the methods of
collecting, organizing, analyzing, interpreting, and presenting data. Its main purpose is to
turn raw observations into reliable information for reasoning and decision-making.

Example:
Raw scores: [65, 70, 75, 80, 90]
Descriptive result: mean = 76, median = 75
Conclusion: The class average is fairly good.

1.1.2 Statistics in Decision-Making

Statistics is especially valuable when decisions must be made under uncertainty. A shop owner
might record daily sales to decide which day is best for restocking. A doctor may evaluate the
effectiveness of a new treatment by analyzing patient data.

In academic terms, statistics supports:

• summarizing large datasets,

• identifying relationships among variables,

• predicting future outcomes,

• and enabling evidence-based decisions.
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1.2 Types of Statistics

1.2.1 Descriptive Statistics

Descriptive statistics focuses on summarizing and presenting data in a meaningful way. It
includes measures of central tendency (mean, median, mode), measures of variability (variance,
standard deviation, range), and visualization tools like tables, histograms, and boxplots.

Example: From 100 students, the average exam score is 72, the highest is 95, and
the lowest is 40. A histogram shows how scores are distributed across the group.

1.2.2 Inferential Statistics

Inferential statistics goes beyond description. It aims to make generalizations about a popu-
lation based on data from a smaller sample.

Example: A sample of 100 students has an average score of 72. Using inferen-
tial techniques, we estimate that the average score of the entire university (10,000
students) lies between 71 and 73 with 95% confidence.

Common methods include hypothesis testing, confidence intervals, regression analysis, and
ANOVA.

1.3 Data Analysis Process

Before we go further, let’s take a moment to watch a short video about statistics. This vidoe
bellow will help you see how statistics is used in everyday life and why it is so important in
many fields. By watching it, you will get a clearer picture of how numbers and data can guide
decisions, solve problems, and make our world easier to understand.

\newline \href{https://youtu.be/Lv0xcdeXaGU}{Click here to watch the video}

Analyzing data involves several stages, each building upon the previous one. This process en-
sures that the final conclusion is accurate and meaningful.

1. Defining the Problem
The process begins with a clear question. For example: Does online advertising increase
sales?

2. Collecting Data
Data can be obtained through surveys, experiments, observations, or secondary sources
such as databases and official reports.

3. Organizing Data
Rawdata is oftenmessy. This step includes cleaning errors, removing duplicates, handling
missing values, and structuring the data in tables.
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Table 1.2: Applications of Statistics in Different Fields

Explanation Illustrative Example

Business and Economics Companies use statistics to analyze sales trends,
forecast demand, set prices, and manage
investment risks.

Example: Predicting next quarter
sales or assessing portfolio risk.

Health and Medicine Statistical methods guide clinical trials, monitor
disease spread, and evaluate the effectiveness of
treatments.

Example: Testing a new vaccine for
safety and efficacy.

Engineering and Science Engineers and scientists apply statistics to
quality control, material testing, experimental
design, and environmental modeling.

Example: Evaluating durability of
construction materials.

Social Research Governments and researchers rely on statistics
for population surveys, educational assessments,
and policy evaluation.

Example: Using census data to design
social welfare programs.

4. Exploratory Data Analysis (EDA)
Before modeling, data is explored to identify distributions, trends, or outliers. Visual tools
like scatter plots or boxplots are particularly useful here.

5. Modeling
Statistical or machine learning models are applied to draw deeper insights. Linear regres-
sion predicts outcomes, classification assigns groups, and time series analysis forecasts
future values.

6. Evaluating the Model
Models are tested for accuracy. Regression models use R² or RMSE, while classification
models rely on accuracy, precision, recall, and F1-score.

7. Interpreting Results
Numbers are translated into real-world meaning. For example: Every additional $1,000
spent on advertising is associated with an increase of 50 sales units.

1.4 Applied of Statistics

Statistics is not only a theoretical field but also a discipline with wide-ranging applications across
real-world domains. Its methods enable decision-making, provide evidence-based insights, and
support the development of new knowledge in many sectors. Whether in the corporate world,
medical research, engineering innovations, or social sciences, statistics acts as a bridge between
raw data and meaningful conclusions.

Table Table 1.2 highlights several key areas where statistics is applied, explaining the role it
plays and offering concrete examples that demonstrate its importance in practice.

References
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Chapter 2

Data Exploration

After understanding the important role of statistics in turning raw data into meaningful insights
as mentioned in chapter Intro to Statistics, the next step is to explore the nature of data and
how it can be classified. Data forms the foundation of any analysis, and without a clear under-
standing of its types and structure, organizing, interpreting, and making accurate decisions can
be challenging [8].

This section provides aData Exploration Figure 2.1, covering the classification of data into nu-
meric (quantitative) and categorical (qualitative) types, including subtypes such as discrete,
continuous, nominal, and ordinal [9]. It also discusses data sources and the basic structure of
a dataset, including variables and observations [10]. By mastering these concepts, readers will
gain a solid foundation for subsequent analytical steps and will be better equipped to recognize
and handle different forms of data in context [11]–[15].

2.1 Types of Data

In statistics, understanding the types of data is a crucial starting point. Data can be broadly
divided into twomain groups: numerical and categorical. Numerical data represent numbers that
can be either discrete (countable, such as the number of students) or continuous (measurable,
such as height or temperature) [16]. Categorical data, on the other hand, represent labels or
groups. They can be nominal (without order, such as gender or colors) or ordinal (with order,
such as satisfaction levels: low, medium, high) [17].

Knowing the correct type of data is essential because it guides us in choosing the right statistical
methods, the most suitable visualizations, and ensures that our interpretations are accurate [18].
The following videowill help you clearly understand these concepts through simple explanations
and real-world examples.

Watch here: Types of Data — Categorical vs Numerical
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DATA
EXPLORATION
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How?
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Figure 2.1: Data Exploration 5W+1H

24



CHAPTER 2. DATA EXPLORATION 2.2. NUMERIC (QUANTITATIV)

2.2 Numeric (Quantitativ)

Numeric or quantitative data are data expressed in numbers that represent counts or measure-
ments[9]. They provide information about how much or how many of something, allowing for
mathematical operations such as addition, subtraction, averaging, and statistical analysis [10].

Quantitative data are divided into two main types:

• Discrete data: consist of countable whole numbers (e.g., number of students, number of
cars) [8].

• Continuous data: consist of measurable values that can take on decimals (e.g., height,
weight, temperature) [9].

2.2.1 Discrete

Discrete data are numerical values that can be counted and usually take whole numbers [8], [9].
These data cannot contain fractions or decimals, since each value represents a complete count.
Examples include the number of children in a family, the number of cars owned, or the number
of accidents in a month [8].

children <- c(2, 3, 1, 4, 2, 3, 2, 5, 0, 2) # Discrete Data Example
children # Print result (way 1)
print(children) # Print result (way 2)
table(children) # frequency distribution
mean(children) # average

# Basic Visual
barplot(table(children),

main="Number of Children",
col="lightblue")
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2.2.2 Continuous

Continuous data are numerical values obtained through measurement and can include fractions
or decimals [9], [10]. These values are not limited and can take on any value within a given
range. Examples include height, weight, temperature, and rainfall [9].

# Continuous Data Example
height <- c(165.2, 170.5, 172.3, 168.8, 174.1,

169.4, 171.7, 173.6, 175.2, 166.8)
summary(height)

hist(height,
col="skyblue",
main="Height Distribution",
xlab="Height (cm)")
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2.3 Categorical (Qualitative)

Categorical or qualitative data are data expressed in labels, names, or categories rather than
numbers [9]. They describe qualities, attributes, or classifications that cannot bemeaningfully
measured with arithmetic operations like addition or subtraction.

Categorical data are divided into two main types:

• Nominal data: categories without any natural order or ranking (e.g., gender, blood type,
car brand) [8].

• Ordinal data: categories with a meaningful order or ranking, but without fixed differ-
ences between ranks (e.g., education level, satisfaction rating, socioeconomic status) [10].

2.3.1 Nominal

Nominal data are categorical values that act only as labels or identifiers, with no inherent order or
ranking [8], [9]. They are used to classify objects into different groups, but there is no meaning
of greater or lesser among the categories. Examples include gender, blood type, and product
brands.
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# Nominal Data Example
gender <- c("Male", "Female", "Male", "Male", "Female", "Female",

"Male", "Female", "Male", "Female")
table(gender)

barplot(table(gender),
col=c("pink","lightblue"),
main="Gender Distribution",
ylab="Count")
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2.3.2 Ordinal

Ordinal data are categorical values that have a clear order or ranking, but the distance between
categories is not precisely measurable [9]. These data show levels or rankings but do not indicate
the magnitude of differences between them. Examples include satisfaction levels (low, medium,
high), education levels, or competition rankings [9].

# Ordinal Data Example
satisfaction <- factor(c("Low","Medium","High","Medium","High","Low",

"Medium","High","Medium","Low"),
levels = c("Low","Medium","High"), ordered = TRUE)

table(satisfaction)
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barplot(table(satisfaction),
col=c("red","orange","green"),
main="Satisfaction Level",
ylab="Count")
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2.4 Data Sources

Data Sources are the origins of data used for analysis. Knowing the source is important because
it affects data quality, validity, and relevance [19].

Watch here: Handling your Data Sources

Types of Data Sources:

1. Internal Sources – Data coming from within the organization, e.g., sales transactions,
inventory records, financial reports, or employee data [20].

2. External Sources – Data obtained from outside the organization, e.g., government statis-
tics, industry reports, public datasets, social media, or third-party providers [20].

3. Structured vs Unstructured Data

• Structured Data: Organized in tables or databases, easy to analyze [19].
• Unstructured Data: Text, images, videos, or log files that require preprocessing
[19].
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Consider the the following Video to know more about Structured and Unstructured Data!.

Watch here: Structured vs Unstructured Data

2.5 Data Structure

Data Structure refers to the way data is organized to make analysis easier and more efficient. A
well-structured dataset helps with cleaning, processing, analyzing, and visualizing data [19];
[20]. The main components of data structure are:

• Dataset: A collection of data arranged in a structured format, usually as a table.
• Columns: Each column represents a variable or attribute describing the observations.
• Rows: Each row represents a single observation or case.

2.5.1 Dataset (Data Frame)

Example: An online store wants to analyze its sales performance over the first week of October
2025. They collect the following information for each transaction:

Column Type Description

Date Date The date of the transaction
Qty Discrete The quantity sold (countable

numbers)
Price Continuous The price per unit (decimal

values allowed)
Product Nominal The product sold

(categorical, no order)
CustomerTier Ordinal Customer tier: Low,

Medium, High (ordered)

# Create the example dataset
sales_data <- data.frame(
Date = as.Date(c('2025-10-01', '2025-10-01', '2025-10-02', '2025-10-02')),
Qty = c(2, 5, 1, 3), # Discrete
Price = c(1000, 20, 1000, 30), # Continuous
Product = c('Laptop', 'Mouse', 'Laptop', 'Keyboard'), # Nominal
CustomerTier = factor(c('High', 'Medium', 'Low', 'Medium'), # Ordinal

levels = c('Low', 'Medium', 'High'),
ordered = TRUE))

print(sales_data) # View the dataset / str(sales_data).
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2.5.2 Variables (Columns)

Variables are the columns or attributes in a dataset that store specific pieces of information
about each observation. They define what kind of data is collected and determine the types of
analysis that can be performed [19].

2.5.3 Observations (Rows)

Observations are the rows in a dataset, with each row representing a single case, event, or unit of
analysis [19]. Together, variables and observations form the core structure of a dataset, allowing
us to organize, explore, and analyze data effectively [19].

References
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Chapter 3

Basic Data Visualizations

Data visualization is a crucial process in transforming raw data into clear, meaningful, and ac-
tionable insights. Before creating effective charts or graphs, it is essential to develop a com-
prehensive understanding of the data’s characteristics, including its type, structure, and key at-
tributes. This foundational understanding ensures that visualizations accurately represent the
data and effectively communicate the intended message, thereby minimizing the risk of misin-
terpretation [21].

Watch here: Data Visualization and Misrepresentation

This section focuses on Basic Data Visualizations (Figure 3.1), explaining how data can be
categorized into numeric (quantitative) and categorical (qualitative) forms, along with subtypes
like discrete, continuous, nominal, and ordinal. It also discusses common data sources and the
fundamental elements of a dataset, such as variables and observations, which are essential for
selecting appropriate visualization methods.

As discussed in the section of Data Exploration, understanding data types and structure is essen-
tial before creating visualizations. By considering the structure of datasets including variables,
observations, and data sources readers can select appropriate visual representations, such as
histograms for continuous data, bar charts for categorical data, or scatter plots for examining
relationships. This thoughtful selection of visualization methods helps reveal patterns, trends,
and actionable insights within the dataset [22]; [23].

According to the mindmap, the following section will explore several fundamental data visu-
alizations by emphasizing their types, purposes, applications, users, and tools. Starting with
these essential visualizations is crucial before progressing to more advanced analytical tech-
niques. These visuals not only help us understand distributions, comparisons, and relationships
between variables in a simple yet informative way but also provide the foundation for deeper
analysis. By mastering these basics, we can communicate insights more effectively, spot hid-
den patterns, and make data-driven decisions with greater confidence [24]–[26]. Before moving
forward to next sections, please consider to watching this video.

Watch here: Science of Data Visualization
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Figure 3.1: Basic Data Visualizations 5W+1H
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3.1 Dataset

This dataset represents 200 simulated sales transactions from various cities across Indonesia
during the year 2024. It is designed to illustrate different types of data commonly found in busi-
ness and analytics contexts — including nominal, ordinal, discrete, and continuous variables.

Each row in the dataset corresponds to a single customer transaction, recording essential details
such as date, product type, city, customer tier, quantity sold, price, and payment method.
The dataset is intentionally structured to be used for teaching and practicing data exploration,
visualization, and analysis in tools like R, Python, Excel, or Power BI.

3.1.1 Purpose of the Dataset

The dataset can be used to:

• Demonstrate how to identify and classify different data types (nominal, ordinal, discrete,
continuous).

• Practice generating and interpreting common visualizations such as line chart, bar
charts, histograms, pie charts, boxplots, and scatter plots.

• Perform exploratory data analysis (EDA) on sales trends, customer segments, and pricing
patterns.

• Explore relationships between variables, such as how quantity and price affect total sales
or how customer tiers differ across payment methods.

3.1.2 Dataset Overview

Column Example Data Type Description

TransactionID T0045 Nominal Unique identifier for each
transaction

TransactionDate2024-05-14 Date Date of transaction
ProductCategoryElectronics Nominal Category of the purchased

product
City Jakarta Nominal City where the transaction

occurred
CustomerTier Gold Ordinal Customer level (Bronze <

Silver < Gold < Platinum)
Quantity 3 Discrete Number of items sold
UnitPrice 1,200,000 Continuous Price per unit of the

product
TotalPrice 3,600,000 Continuous Total transaction value
Advertising 500,000 Continuous Advertising spend

associated with the
transaction
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Column Example Data Type Description

PaymentMethod Credit Card Nominal Payment method used by
the customer

library(DT)
# Generate Sales Transaction Dataset in R
# ==============================

set.seed(123) # reproducible

# --- 1. Define base variables ---
TransactionID <- sprintf("T%04d", 1:200)

TransactionDate <- sample(seq(as.Date("2025-01-01"), as.Date("2025-12-31"),
by = "day"), 200, replace = TRUE)

ProductCategory <- sample(c("Electronics", "Groceries", "Fashion",
"Furniture", "Beauty"), 200, replace = TRUE)

City <- sample(c(
"Jakarta", "Surabaya", "Bandung", "Medan", "Semarang", "Palembang",
"Makassar", "Bekasi", "Tangerang", "Depok", "Batam", "Pekanbaru",
"Bandar Lampung", "Denpasar", "Padang", "Malang", "Banjarmasin",
"Pontianak", "Manado", "Balikpapan"

), 200, replace = TRUE)

CustomerTier <- sample(c("Bronze", "Silver", "Gold", "Platinum"), 200,
replace = TRUE, prob = c(0.3, 0.4, 0.2, 0.1))

Quantity <- sample(1:10, 200, replace = TRUE)

UnitPrice <- round(runif(200, 20000, 3000000), 0)

# --- Advertising spend (continuous) ---
Advertising <- round(runif(200, 50000, 1000000), 0)

# --- TotalPrice: positive linear relationship with Advertising ---
# Formula: TotalPrice = base + slope * Advertising + random noise
TotalPrice <- round(50000 + 2 * Advertising +

rnorm(200, mean = 0, sd = 50000), 0)

PaymentMethod <- sample(c("Cash", "Credit Card", "Debit Card", "E-Wallet"),
200, replace = TRUE)

# --- Combine into a data frame ---
sales_data <- data.frame(
TransactionID,
TransactionDate,
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ProductCategory,
City,
CustomerTier,
Quantity,
UnitPrice,
TotalPrice,
Advertising,
PaymentMethod

)

# Display the data frame
library(DT)
datatable(sales_data,

caption = "Dataset with Positive Linear TotalPrice vs Advertising",
rownames = FALSE)

Show 10  entries Search:

Showing 1 to 10 of 200 entries Previous 1 2 3 4 5 … 20 Next

Dataset with Positive Linear TotalPrice vs Advertising

T0001 2025-06-28 Furniture Padang Bronze 2 2172749 1177626 579427 Credit Card

T0002 2025-01-14 Groceries Balikpapan Gold 2 2767574 1579042 743873 E-Wallet

T0003 2025-07-14 Electronics Banjarmasin Gold 2 1849246 1040304 496366 Cash

T0004 2025-11-02 Groceries Makassar Silver 3 499680 2043426 989180 Debit Card

T0005 2025-04-28 Furniture Padang Silver 8 565163 2033888 985435 E-Wallet

T0006 2025-10-26 Beauty Semarang Silver 9 2195947 1026012 423620 E-Wallet

T0007 2025-08-17 Electronics Denpasar Gold 1 1776786 1247546 628405 Debit Card

T0008 2025-09-01 Electronics Padang Platinum 7 951197 811466 378210 Debit Card

T0009 2025-01-14 Electronics Padang Bronze 8 2322927 891515 465257 Credit Card

T0010 2025-06-02 Beauty Malang Gold 1 1022169 614842 267675 E-Wallet

TransactionID TransactionDate ProductCategory City CustomerTier Quantity UnitPrice TotalPrice Advertising PaymentMethod

3.2 Line-chart

A Line Chart is a data visualization tool that illustrates how values change over a sequence,
typically over time. It connects data points with a continuous line, making it ideal for displaying
trends and patterns in time-series data [27]. Line charts are particularly useful for:

• Identifying Seasonal Patterns: Recognizing recurring fluctuations at regular intervals,
such as increased sales during holidays [28].

• Detecting Growth or Decline Trends: Observing upward or downward movements in
data over time [29].

• Spotting Peaks or Dips: Highlighting significant increases or decreases in activity, such
as sales spikes during promotions [30].

In this Dataset, we can use a line chart to show how total sales or the number of transactions
change across dates during the year 2024.

3.2.1 Basic Line-chart

The following line chart using Base R functions (see Figure 3.2) shows themonthly sales trend
derived from sales_data. This visualization helps identify growth patterns, seasonal fluctua-
tions, and overall performance across time periods.
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# Step 1: Ensure TransactionDate is in Date format
sales_data$TransactionDate <- as.Date(sales_data$TransactionDate,

format = "%Y-%m-%d")
# Step 2: Calculate total sales per month
sales_trend <- aggregate(TotalPrice ~ format(sales_data$TransactionDate,

"%Y-%m"),
data = sales_data, sum)

# Step 3: Rename columns for better clarity
names(sales_trend) <- c("MonthStr", "TotalSales")
# Step 4: Add "-01" to create a complete date format
sales_trend$Month <- as.Date(paste0(sales_trend$MonthStr, "-01"),

format = "%Y-%m-%d")
# Step 5: Plot the line chart
plot(
sales_trend$Month,
sales_trend$TotalSales,
type = "o",
col = "steelblue",
pch = 16,
lwd = 2,
main = "Monthly Sales Trend in 2024",
xlab = "Month",
ylab = "Total Sales (IDR)"

)
grid(col = "gray80", lty = "dotted")
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Figure 3.2: Monthly Sales Trend

3.2.2 Line-chart using ggplot2

The following visualization (Figure 3.3) displays the trend of monthly total sales throughout the
year. It helps identify periods of high or low sales performance, supporting time-based decision-
making. We use the ggplot2 library for cleaner visualization and dplyr + lubridate for
data wrangling.

# Load required packages
library(ggplot2)
library(dplyr)
library(lubridate)

# Summarize total sales by month
sales_trend <- sales_data %>%
mutate(Month = floor_date(TransactionDate, "month")) %>%
group_by(Month) %>%
summarise(TotalSales = sum(TotalPrice))

# Create line chart
ggplot(sales_trend, aes(x = Month, y = TotalSales)) +
geom_line(color = "steelblue", linewidth = 1.2) + # updated aesthetic
geom_point(color = "darkorange", size = 2) +
labs(
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title = "Monthly Sales Trend in 2024",
x = "Month",
y = "Total Sales (IDR)"

) +
theme_minimal()
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Figure 3.3: Monthly Sales Trend (ggplot2)

3.3 Bar-chart

A Bar Chart is a type of data visualization used to represent categorical data with rectangular
bars. Each bar’s height (or length) corresponds to the value or frequency of a category, making
it easy to compare quantities across different groups [31].

Bar charts are especially suitable for:

• Discrete numeric data – numbers that can only take specific values (e.g., number of
items purchased) [32].

• Ordinal categorical data – categories with a natural order (e.g., customer satisfaction
levels: Low, Medium, High) [33].

In this Dataset, theBar Chart is used to show theTotal Sales by City. This allows us to quickly
identify which cities contribute the most to total sales performance [34].
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Insights:

• Taller bars indicate higher total sales.
• The chart helps compare city-level sales performance visually.
• It is ideal for categorical variables such as City and discrete numeric values like
TotalPrice.

• For ordinal data, bar charts make it easy to observe trends or patterns across ordered
categories.

3.3.1 Basic Bar-chart

In this section, we create a bar chart (see, Figure 3.4) using Base R functions instead of ggplot2.
The base plotting system in R provides a simple and direct way to visualize data without re-
quiring additional packages. Here, we visualize total sales by city to compare which locations
contribute most to overall revenue.

# Step 1: Aggregate total sales per city
sales_city <- aggregate(TotalPrice ~ City, data = sales_data, sum)

# Step 2: Sort data by total sales (descending)
sales_city <- sales_city[order(sales_city$TotalPrice, decreasing = TRUE), ]

# Step 3: Set margins
par(mar = c(8, 5, 4, 2)) # c(bottom, left, top, right)

# Step 4: Create bar chart
barplot(
height = sales_city$TotalPrice,
names.arg = sales_city$City,
col = "steelblue",
las = 2, # rotate city labels vertically
cex.names = 0.8, # reduce font size of city names
main = "Total Sales by City",
xlab = "",
ylab = ""

)

# Optional: Add grid lines
grid(nx = NA, ny = NULL, col = "gray80", lty = "dotted")
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Figure 3.4: Total Sales by City

3.3.2 Bar-chart using ggplot2

In this section, we create the same bar chart (see, Figure 3.5) using the ggplot2 package, which
provides a more modern and flexible approach to visualization in R. Compared to the Base
R plotting system, ggplot2 allows easier customization, better control over aesthetics, and
integration with themes and color palettes. We visualize total sales by city to compare sales
performance across locations.

# Load ggplot2
library(ggplot2)

# Summarize total sales per city
sales_city <- aggregate(TotalPrice ~ City, data = sales_data, sum)

# Sort city by total sales (descending)
sales_city <- sales_city[order(sales_city$TotalPrice, decreasing = TRUE), ]

# Create bar chart
ggplot(sales_city, aes(x = reorder(City, -TotalPrice), y = TotalPrice)) +
geom_bar(stat = "identity", fill = "steelblue") +
geom_text(aes(label = round(TotalPrice/1e6, 1)),

vjust = -0.5, size = 3, color = "black") +
labs(
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title = "Total Sales by City",
x = "City",
y = "Total Sales (in Millions IDR)"

) +
theme_minimal() +
theme(
axis.text.x = element_text(angle = 45, hjust = 1, size = 9),
plot.title = element_text(size = 14, face = "bold")

)
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Figure 3.5: Total Sales by City (ggplot2)

3.4 Histogram-chart

A Histogram is a graphical representation of the distribution of numerical data. It divides the
data into intervals, known as bins, and displays the frequency of data points within each bin.
This visualization helps identify patterns such as the central tendency, spread, skewness, and
the presence of multiple modes in the data [27].

Histograms are particularly effective for:

• Visualizing the Distribution: They provide a clear picture of how data is distributed
across different ranges, helping to identify the shape of the distribution (e.g., normal,
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skewed, bimodal) [34].
• Identifying Central Tendency and Spread: By observing the peak of the histogram, one
can infer the central value of the data. The width of the histogram indicates the variability
or spread of the data [35].

• Detecting Skewness: The asymmetry of the histogram can reveal whether the data is
skewed to the left or right, indicating potential biases in the data collection process [36].

• Recognizing Multiple Modes: A histogram can show if the data has multiple peaks
(modes), suggesting the presence of different subgroups within the dataset [37].

In this Dataset, we can use histograms to explore the distribution of variables such as:

• Quantity (number of items purchased)
• UnitPrice (price per item)
• TotalPrice (total transaction value)

3.4.1 Basic Histogram-chart

In this example, we use Base R plotting functions to create a histogram (Figure 3.6) showing
how many transactions occurred for each quantity of items purchased. A histogram helps us
understand the distribution of data — in this case, which purchase quantities are most common.
Peaks (tall bars) represent quantities that occur more frequently, while shorter bars indicate rarer
purchase sizes.

hist(sales_data$Quantity,
main = "Histogram of Quantity",
xlab = "Number of Items Purchased",
ylab = "Frequency",
col = "skyblue",
border = "white",
breaks = 5)
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Figure 3.6: Histogram of Quantity

3.4.2 Histogram-chart using ggplot2

In this case, we use the ggplot2 library to display how many transactions fall within each
range of item quantities purchased. Each bar represents a range of purchase quantities, while
the height indicates the frequency of transactions within that range. This Figure 3.7 helps us
quickly identify whether customers tend to buy in small, medium, or large quantities.

library(ggplot2)

ggplot(sales_data, aes(x = Quantity)) +
geom_histogram(
bins = 5, # number of bins (adjust as needed)
fill = "skyblue", # fill color for the bars
color = "white", # border color for the bars
alpha = 0.8 # transparency level

) +
labs(
title = "Histogram of Quantity",
x = "Number of Items Purchased",
y = "Frequency"

) +
theme_minimal()
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Figure 3.7: Histogram of Quantity (ggplot2)

3.5 Pie-chart

A Pie Chart is a circular statistical graphic divided into slices to illustrate numerical propor-
tions within a dataset. Each slice of the pie represents a category’s contribution to the whole,
making it ideal for showing part-to-whole relationships.

Pie charts are best used when:

• The dataset contains a small number of categories.

• You want to emphasize relative proportions or percentages.

• The total adds up to 100% of the dataset.

However, pie charts are less effectivewhen there are toomany categories or when the differences
between slices are small — in such cases, a bar chart is often more suitable [38]; [39].

3.5.1 Basic Pie-chart

In this dataset, we can use aPie Chart (see, Figure 3.8) to visualize the percentage contribution
of total sales by product category. This helps to quickly understand which product categories
dominate total sales performance.
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# --- Summarize total sales by product category (base R only) ---
total_sales <- tapply(sales_data$TotalPrice, sales_data$ProductCategory, sum)

# Calculate percentage for each category
percentage <- round(100 * total_sales / sum(total_sales), 1)

# Create labels with category names and percentage
labels <- paste(names(total_sales), " - ", percentage, "%", sep = "")

# --- Create Donut Chart (Base R) ---
par(mar = c(2, 2, 2, 2)) # Adjust margins for clean layout

# Draw pie chart
pie(
total_sales,
labels = labels,
main = "Percentage of Total Sales by Product Category (2024)",
col = rainbow(length(total_sales)),
clockwise = TRUE,
border = "white",
radius = 1,
cex = 0.9 # control label size

)

# Add a white circle in the center to make it a donut
symbols(
0, 0,
circles = 0.4,
inches = FALSE,
add = TRUE,
bg = "white", # center color (donut hole)
fg = NA # remove border

)

47



3.5. PIE-CHART CHAPTER 3. BASIC DATA VISUALIZATIONS

Beauty − 17.2%

Electronics − 20.2%

Fashion − 17.4%

Furniture − 21.4%

Groceries − 23.9%

Percentage of Total Sales by Product Category (2024)

Figure 3.8: Percentage of Total Sales by Product Category (2024)

Insights:

• Larger slices indicate higher total sales share.

• Useful for summarizing categorical variables such as ProductCategory.

• Supports decision-making by highlighting the dominant categories in the market.

3.5.2 Pie-chart using ggplot2

In this example, we use the ggplot2 package to visualize the percentage of total sales by city (see,
Figure 3.9). Each slice of the pie represents one city’s contribution, making it easy to compare
which cities generate the most or least revenue.

library(ggplot2)
library(dplyr)
library(ggrepel)

# --- Summarize total sales by product category ---
sales_summary <- sales_data %>%
group_by(ProductCategory) %>%
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summarise(TotalSales = sum(TotalPrice, na.rm = TRUE)) %>%
mutate(Percentage = round(100 * TotalSales / sum(TotalSales), 1)) %>%
arrange(desc(TotalSales)) %>%
mutate(
ypos = cumsum(TotalSales) - 0.5 * TotalSales,
Label = paste0(ProductCategory, "\n", Percentage, "%")

)

# --- Donut Chart (Polished Version) ---
ggplot(sales_summary, aes(x = 2, y = TotalSales, fill = ProductCategory)) +
geom_col(width = 1, color = "white") +
coord_polar(theta = "y", start = 0) +
xlim(0.5, 3) + # add extra space around the donut
theme_void() +
geom_text_repel(
aes(y = ypos, label = Label),
color = "black",
size = 4,
nudge_x = 1, # push labels away from the donut
force = 8, # increase label repulsion strength
segment.size = 0.5,
segment.color = "gray60",
min.segment.length = 0.5,
max.overlaps = Inf,
show.legend = FALSE

) +
scale_fill_brewer(palette = "Set2") +
annotate("text", x = 0.5, y = 0, label = "Total Sales",

size = 5, color = "gray40") +
labs(
title = "Percentage of Total Sales by Product Category (2024)",
fill = "Product Category"

) +
theme(
plot.title = element_text(
hjust = 0.5,
face = "bold",
size = 14,
color = "#333333"

),
legend.position = "none",
plot.background = element_rect(fill = "white", color = NA)

)

49



3.6. BOX-PLOT CHAPTER 3. BASIC DATA VISUALIZATIONS

Groceries

23.9%

Furniture

21.4%

Electronics

20.2%

Fashion

17.4%

Beauty

17.2%

Total Sales

Percentage of Total Sales by Product Category (2024)

Figure 3.9: Percentage of Total Sales by Product Category (2024) (ggplot2)

3.6 Box-plot

ABoxplot is a data visualization technique that displays the distribution, spread, and potential
outliers of a continuous variable through its summary statistics—minimum, first quartile (Q1),
median, third quartile (Q3), and maximum [27]. It provides a compact view of how data values
are dispersed and where they concentrate.

Boxplots are particularly useful for: - Comparing Distributions Across Groups: Revealing
differences in data spread and central tendency across categories (e.g., product types or customer
tiers) [28]. - Detecting Outliers: Identifying unusually high or low data points that may indi-
cate data errors or special cases [29]. - Assessing Data Symmetry and Skewness: Observing
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whether the data are evenly distributed or skewed toward higher or lower values [30].

In this Dataset, a boxplot can be used to compare the distribution of total sales (TotalPrice)
across different customer tiers (CustomerTier) or product categories (ProductCategory).
This helps identify which segments tend to have higher transaction values and whether there are
significant outliers in purchasing behavior.

3.6.1 Basic Box-plot

In this example, we use Base R plotting to display how total sales (TotalPrice) vary across
different product categories (see,Figure 3.10). The box represents the interquartile range (IQR),
the line inside shows the median, and dots beyond the whiskers may indicate outliers.

# ============================================
# Boxplot of TotalPrice with arrows & stats
# Base R version (no ggplot2)
# ============================================

# Compute summary statistics
summary_stats <- data.frame(
Stat = c("Min", "Q1", "Median", "Q3", "Max", "Mean"),
Value = c(
min(sales_data$TotalPrice, na.rm = TRUE),
quantile(sales_data$TotalPrice, 0.25, na.rm = TRUE),
median(sales_data$TotalPrice, na.rm = TRUE),
quantile(sales_data$TotalPrice, 0.75, na.rm = TRUE),
max(sales_data$TotalPrice, na.rm = TRUE),
mean(sales_data$TotalPrice, na.rm = TRUE)

)
)

# --- Adjust small offset to avoid overlap between Median and Mean ---
median_idx <- which(summary_stats$Stat == "Median")
mean_idx <- which(summary_stats$Stat == "Mean")

# If values are close, add vertical offset
if (abs(summary_stats$Value[median_idx] - summary_stats$Value[mean_idx]) <

0.05 * diff(range(summary_stats$Value))) {
summary_stats$Value[median_idx] <-
summary_stats$Value[median_idx] * 1.02 # move slightly upward

summary_stats$Value[mean_idx] <-
summary_stats$Value[mean_idx] * 0.95 # move slightly downward

}

# Adjust plot margins (more space on the right)
par(mar = c(5, 4, 5, 6))

# Create basic boxplot
boxplot(
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sales_data$TotalPrice,
main = "Distribution of Total Sales Value with Summary Statistics",
ylab = "Total Price (IDR)",
col = "#69b3a2",
border = "gray40",
boxwex = 0.3,
notch = FALSE,
outline = TRUE

)

# X position of the boxplot
x_box <- 1

# Add arrows pointing from left to right
arrows(
x0 = x_box + 0.15, x1 = x_box + 0.25,
y0 = summary_stats$Value, y1 = summary_stats$Value,
length = 0.08, angle = 20, col = "gray40", lwd = 1

)

# Add text labels to the right of the arrows
text(
x = x_box + 0.28, y = summary_stats$Value,
labels = paste0(summary_stats$Stat, ": ",

format(round(summary_stats$Value, 0), big.mark = ",")),
pos = 4, # left-aligned text
cex = 0.8, col = "#222222"

)

# Add caption below the plot
mtext("Source: @dsciencelabs",

side = 1,
line = 4,
adj = 1,
cex = 0.8,
col = "gray50")
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Figure 3.10: Distribution of Total Sales Value with Summary Statistics

Explanation:

Statistic Description

Min The smallest value in the dataset.
Q1 (First Quartile) The value below which 25% of the data fall.
Median The middle value dividing the data into two

equal halves.
Q3 (Third Quartile) The value below which 75% of the data fall.
Max The largest value in the dataset.
Mean The arithmetic average of all data points.

3.6.2 Box-plot using ggplot2

The ggplot2 package allows a more elegant and customizable approach to creating box plots
(see, Figure 3.11). This visualization shows the distribution of total sales (TotalPrice) across
product categories, highlighting the median, variability, and potential outliers. Compared to the
Base R version, ggplot2 provides smoother visuals and easier styling through themes and color
mapping.
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library(ggplot2)
library(dplyr)
library(grid)

# =======================================================
# Compute summary statistics for TotalPrice
# =======================================================
summary_stats <- data.frame(
Stat = c("Min", "Q1", "Median", "Q3", "Max", "Mean"),
Value = c(
min(sales_data$TotalPrice, na.rm = TRUE),
quantile(sales_data$TotalPrice, 0.25, na.rm = TRUE),
median(sales_data$TotalPrice, na.rm = TRUE),
quantile(sales_data$TotalPrice, 0.75, na.rm = TRUE),
max(sales_data$TotalPrice, na.rm = TRUE),
mean(sales_data$TotalPrice, na.rm = TRUE)

)
)

# =======================================================
# Adjust small offset to avoid overlap between Median & Mean
# =======================================================
median_idx <- which(summary_stats$Stat == "Median")
mean_idx <- which(summary_stats$Stat == "Mean")

if (abs(summary_stats$Value[median_idx] - summary_stats$Value[mean_idx]) <
0.05 * diff(range(summary_stats$Value))) {

summary_stats$Value[median_idx]<-summary_stats$Value[median_idx] * 1.02 # up
summary_stats$Value[mean_idx] <- summary_stats$Value[mean_idx] * 0.98 # down

}

# =======================================================
# Create ggplot boxplot with larger width and arrows
# =======================================================
ggplot(sales_data, aes(x = "Total", y = TotalPrice)) +
geom_boxplot(
width = 0.6,
fill = "#69b3a2",
color = "gray40",
outlier.color = "gray40"

) +

# Horizontal arrows shifted right to avoid overlapping the boxplot
geom_segment(
data = summary_stats,
aes(x = 1.65, xend = 1.8, y = Value, yend = Value),
arrow = arrow(length = unit(0.15, "cm"), angle = 20),
color = "gray40"

) +
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# Text labels at the right of arrows
geom_text(
data = summary_stats,
aes(
x = 1.85,
y = Value,
label = paste0(Stat, ": ", format(round(Value, 0), big.mark = ","))

),
hjust = 0,
size = 3.5,
color = "#222222"

) +

# Scale and margins to keep everything centered
scale_x_discrete(expand = expansion(add = c(3, 3))) +
labs(
title = "Distribution of Total Sales Value with Summary Statistics",
y = "Total Price (IDR)",
x = NULL,
caption = "Source: @dsciencelabs"

) +
theme_minimal(base_size = 12) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 0.5, color = "gray50", size = 10),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
plot.margin = margin(20, 120, 20, 120)

) +
coord_cartesian(clip = "off")
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Figure 3.11: Distribution of Total Sales Value with Summary Statistics

The Figure 3.12 provides a visual summary of the spread and central tendency of sales data by
Product Category. Each box represents the interquartile range (IQR), the line inside the box
marks the median, and points outside the whiskers indicate outliers — unusually high or low
sales values that may deserve further investigation.

library(ggplot2)

# --- Boxplot of Total Price by Product Category ---

ggplot(sales_data, aes(x = ProductCategory, y = TotalPrice, fill = ProductCategory)) +
geom_boxplot(
color = "darkgray",
outlier.colour = "red",
outlier.shape = 16,
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outlier.size = 2,
alpha = 0.8
) +
labs(
title = "Distribution of Total Sales by Product Category",
x = "Product Category",
y = "Total Price (IDR)",
caption = "Source: @dsciencelabs"
) +
theme_minimal(base_size = 13) +
theme(
plot.title = element_text(
face = "bold",
size = 14,
color = "#333333",
hjust = 0.5
),
axis.text.x = element_text(
angle = 30,
hjust = 1,
color = "#333333"
),
legend.position = "none",
plot.background = element_rect(fill = "white", color = NA)
)
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Figure 3.12: Distribution of Total Sales by Product Category

3.7 Scatter-plot

A Scatter Plot is a data visualization technique that displays the relationship between two
continuous variables by plotting individual data points on a two-dimensional plane. Each point
represents one observation, with its position determined by the values of the two variables. Scat-
ter plots are useful for identifying patterns, trends, correlations, clusters, and potential outliers
in the data [27].

Scatter plots are particularly useful for:

• Identifying Relationships Between Variables: Revealing positive, negative, or no
correlation between variables (e.g., advertising spend vs. sales performance) [28].

• Detecting Clusters or Groups: Highlighting natural groupings in data that may corre-
spond to categories, regions, or segments [29].

• Spotting Outliers: Identifying unusual data points that deviate from the general trend,
which could indicate errors or special cases [30].

In this Dataset, a scatter plot can be used to explore the relationship between total sales
(TotalPrice) and advertising spend (Advertising), or between TotalPrice and
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CustomerSatisfaction. This helps identify whether higher spending leads to increased
sales, whether specific groups form distinct clusters, and whether there are extreme observations
in the dataset that require further investigation.

3.7.1 Basic Scatter-plot

The basic scatter plot shown in Figure 3.13 illustrates the relationship between Advertising
Spend and Total Sales (TotalPrice) using base R plotting. Each point represents a sales ob-
servation, allowing us to visually identify patterns or potential outliers. This basic visualization
provides a clear starting point before enhancing the design using ggplot2.
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Figure 3.13: Scatter Plot: Total Sales vs Advertising

3.7.2 Scatter-plot using ggplot2

The Figure 3.14 illustrates the relationship between Advertising Spend and Total Sales (Total-
Price). This visualization helps identify patterns, trends, or potential outliers between these two
numerical variables.

3.8 Summary

The Table 3.3 provides an overview of the most common chart types used in data visualization,
highlighting their advantages, disadvantages, suitable data types, and typical use cases. It serves
as a quick reference to help select the most appropriate chart based on the dataset and analytical
objectives.
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Figure 3.14: Scatter Plot of Total Sales vs Advertising

Table 3.3: Summary of Basic Chart Types

Type_Data Advantages Disadvantages Use_Case

Line Chart Continuous, Time-series Shows trends over time; easy to read Not effective for discrete categories;
too many lines can be confusing

Sales trends, stock prices, daily
temperature

Bar Chart Categorical, Discrete Easy comparison between categories;
clear visualization

Not suitable for continuous data;
crowded if many categories

Compare sales by product category,
revenue by region

Histogram Continuous Shows data distribution; easy to see
frequency

Does not show relationship between
variables; binning affects
interpretation

Analyze distribution of age, income,
TotalPrice

Pie Chart Categorical Simple view of proportions or
percentages

Hard to compare categories if many;
inaccurate for similar values

Market share, sales proportion per
category

Boxplot Continuous Shows distribution, outliers, median,
and quartiles

Does not show trend; individual data
points are not visible

Compare TotalPrice distribution
across groups/categories

Scatter Plot Continuous, Numeric Shows relationship/correlation
between two variables; detects
outliers

Hard to read if too dense; does not
show overall distribution

Analyze TotalPrice vs Advertising,
TotalPrice vs CustomerSatisfaction
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Chapter 4

Central Tendency

As discussed in the Data Overview section, understanding data types is crucial before applying
measures of Central Tendency (CT). For example, the mean is suitable for interval or ratio
data, while the median can be applied to both ordinal and continuous data. The mode, however,
can be used for all data types, including nominal categories. Choosing the right measure ensures
that the “center” of the data is represented accurately, avoiding misleading interpretations.

Watch here: Measures of Central Tendency

By mastering central tendency (Figure 4.1), readers will be able to describe datasets more ef-
fectively, compare groups of data, and prepare for deeper statistical analysis, such as measures
of dispersion and hypothesis testing. Graphical tools—such as histograms, boxplots, and fre-
quency distributions—can further enhance understanding by visually confirming how the data’s
center aligns with its overall shape and spread [40].

As illustrated in the Figure 4.1, the discussion now turns to measures of central tendency—
mean, median, and mode—together with guidance on selecting the most suitable measure
for a given dataset. These statistical tools offer concise summaries of complex information,
making it easier to detect patterns, describe distributions, and lay the groundwork for deeper
analysis. Gaining proficiency with these measures equips us to interpret data more reliably and
to support conclusions with stronger evidence [41], [42].

4.1 Definition of CT

Central Tendency is a statistical measure that represents the typical or central value of a dataset.
It aims to provide a single value that best represents the entire data, allowing us to understand
where most data values are concentrated. The three most common measures of central tendency
are: Mean,Median, andMode [43].

4.1.1 Mean

Themean is obtained by dividing the sum of all data values by the total number of observations.
It is suitable for interval and ratio data types.
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𝑋̄ = ∑ 𝑋𝑖
𝑛

Where:

• 𝑋̄: mean (average)

• 𝑋𝑖: each data value

• 𝑛: number of observations

Example

Data: 10, 20, 30, 40, 50

𝑋̄ = 10 + 20 + 30 + 40 + 50
5 = 30

The average value of the data is 30.

4.1.2 Median

The median is the middle value of an ordered dataset. It is suitable for ordinal, interval, and
ratio data [44]. Steps to Find the Median:

1. Arrange the data in ascending order.

2. If the number of data points 𝑛 is odd, the median is at position 𝑛+1
2 .

3. If 𝑛 is even, the median is the average of the two middle values.

Example

Data: 5, 7, 8, 12, 15, 18, 20

𝑛 = 7 ⇒ Median = 𝑋(4) = 12
Because there are 7 data points (odd number), the median is located at the (n + 1) / 2 =
4th position when the data are arranged in ascending order. Hence, the 4th value, which
is 12, becomes the median — the central value that divides the dataset into two equal
parts:

• Lower half: 5, 7, 8

• Upper half: 15, 18, 20
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4.1.3 Mode

The mode is the most frequently occurring value in a dataset. It can be used for nominal,
ordinal, interval, or ratio data [44].

Example

Data: 3, 4, 4, 5, 6, 6, 6, 7

𝑀𝑜𝑑𝑒 = 6(because it appears most often)
The most common value in the dataset is 6.

4.2 Appropriate Measure

When analyzing data, selecting the correct measure of central tendency is crucial. The appro-
priate measure (mean, median, or mode) depends on the type of data whether it is categorical,
ordered, or numeric. Using the right measure ensures that your analysis accurately reflects the
nature and distribution of the data [45].

Type of Data Suitable Measure Explanation

Nominal Mode Data in categories (e.g.,
color, gender)

Ordinal Median or Mode Ordered data without
equal spacing (e.g., rank,
satisfaction level)

Interval / Ratio Mean Numeric data with
meaningful intervals (e.g.,
income, weight)

Note:

If the dataset contains extreme outliers, use themedian since it is less affected by extreme
values compared to the mean.

4.3 Conditional Rule

The choice ofwhichmeasure of central tendency to use also depends on the condition or pattern
of the data. Different data shapes and distributions can influence which statistic best represents
the center of the dataset [46].

Data Condition Recommended Measure

Data without outliers and symmetrical Mean
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Data Condition Recommended Measure

Data with outliers or skewed
distribution

Median

Categorical data Mode
Multimodal data (more than one peak) Mode (can be multi-mode)

Explanation:

• When the data is symmetrical and clean (no outliers), the mean gives a good
overall representation.

• If the data contains extreme values or is skewed, the median is more reliable
because it is not affected by those extremes.

• For categorical variables, the mode identifies the most frequent category.

• In some datasets with multiple peaks, there can bemore than onemode, indicating
several dominant values or groups.

4.4 Visualization for CT

Understanding measures of central tendency—mean, median, and mode—is more intuitive
when supported by visualizations. Graphical representations such as histograms and boxplots
help reveal the underlying shape, spread, and balance of a dataset. Through these visual tools,
we can identify whether the data are symmetrical, skewed, categorical, or multimodal [47].

Each visualization provides unique insights:
- Histograms show the frequency distribution and how central measures align with data con-
centration.
- Boxplots highlight the median, quartiles, and presence of outliers in a concise format.

In the following subsections, we will explore how central tendency behaves under different
conditions using both histogram and boxplot visualizations:

• Symmetrical and No Outliers – when data are evenly distributed around the center.

• Extreme Values (Skewed) – when outliers pull the mean in one direction.

• Categorical Variables – when data represent distinct groups or classes.

• More Than One Mode – when data have multiple peaks or centers of concentration.

4.4.1 Symmetrical and No outliers

A symmetrical distribution occurs when data values are evenly spread around the center, creating
a balanced and bell-shaped pattern. In this case, themean,median, andmode all fall at or near
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the same central point. This indicates that there are no significant outliers or skewness pulling
the data to one side.

In the Figure 4.2, the smooth density curve highlights the normal distribution of values, while
the vertical lines represent the positions of themean, median, andmode— all nearly overlapping
at the center. Such a distribution is typical for naturally occurring phenomena like height, weight,
or measurement errors.

library(ggplot2)
# --- Symmetrical data: Perfect bell-shaped (Normal Distribution, no outliers) ---
set.seed(123)
data_sym <- data.frame(value = rnorm(50000, mean = 50, sd = 10))
# --- Compute Mean, Median, Mode ---
mean_val <- mean(data_sym$value)
median_val <- median(data_sym$value)
mode_val <- as.numeric(names(sort(table(round(data_sym$value, 0)),

decreasing = TRUE)[1]))
# --- Visualization (Histogram + Density) ---
ggplot(data_sym, aes(x = value)) +
geom_histogram(aes(y = after_stat(density)),

binwidth = 2,
fill = "#5ab4ac",
color = "white",
alpha = 0.8) +

geom_density(color = "#2b8cbe", linewidth = 1.3, alpha = 0.9) +
geom_vline(aes(xintercept = mean_val, color = "Mean"), linewidth = 1.2) +
geom_vline(aes(xintercept = median_val, color = "Median"),

linewidth = 1.2, linetype = "dashed") +
geom_vline(aes(xintercept = mode_val, color = "Mode"),

linewidth = 1.2, linetype = "dotdash") +
labs(
title = "Symmetrical Distribution (No Outliers)",
subtitle = "Mean, Median, and Mode coincide at the center of the bell curve",
x = "Value",
y = "Density",
color = "Measure"

) +
theme_minimal(base_size = 13) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
legend.position = "bottom"

)

68



CHAPTER 4. CENTRAL TENDENCY 4.4. VISUALIZATION FOR CT

0.00

0.01

0.02

0.03

0.04

25 50 75

Value

D
en

si
ty

Measure Mean Median Mode

Mean, Median, and Mode coincide at the center of the bell curve

Symmetrical Distribution (No Outliers)

Figure 4.2: Symmetrical Distribution (No Outliers)

Explanation:

A symmetrical distribution represents a balanced dataset where values are evenly dis-
tributed around the central point. This pattern forms the classic bell-shaped curve, also
known as a normal distribution. In such cases, themean,median, and mode are equal
or nearly identical, reflecting perfect equilibrium in the data.

Key Interpretations

• Balance Around the Center: Data are distributed evenly on both sides of the
center, showing no bias toward higher or lower values.

• Equality of Central Measures: The mean, median, and mode overlap or align
closely, indicating that the dataset is centered without distortion from extreme val-
ues.

• **Absence of Skewness and Outliers:* There are no outliers pulling the data to one
side, and the distribution is neither left- nor right-skewed. This results in a stable
and predictable shape.

• Predictable Shape — Bell Curve: The histogram and smooth density curve form
a bell shape, where most values cluster near the center, and frequencies gradually
taper off toward both tails.
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Statistical Implication

Such a symmetrical pattern satisfies many classical statistical assumptions, making it
foundational for various parametric analyses such as:

• t-tests
• ANOVA
• Linear regression

Because the data follow a normal distribution, inferential analyses become more valid,
reliable, and stable, as deviations and sampling errors are minimized.

Real-World Examples

Symmetrical, bell-shaped distributions commonly appear in:

• Human characteristics (e.g., height, weight, IQ)
• Natural phenomena (e.g., measurement errors, biological variation)
• Academic performance (e.g., exam scores from large populations)

4.4.2 Extreme Values (Skewed)

A skewed distribution occurs when data values are not symmetrically distributed around the
center — meaning one tail of the distribution is longer or more stretched than the other. This
skewness is often caused by extreme values (outliers) that pull the mean toward one direction,
while the median and mode remain closer to the peak of the data.

When a dataset contains extreme high or low values, the distribution becomes positively skewed
(right-skewed) or negatively skewed (left-skewed). These distortions affect the position of cen-
tral tendency measures and provide valuable insight into the underlying data behavior. In the
Figure 4.3 plot below, we can observe how a few extreme values shift the mean away from the
main cluster of data, creating an asymmetrical shape.

library(ggplot2)
# --- Right-skewed data (with extreme values) ---
set.seed(123)
data_skew <- data.frame(value = c(rgamma(4800, shape = 2, scale = 10),

rnorm(200, mean = 200, sd = 5)))
# --- Compute Mean, Median, Mode ---
mean_val <- mean(data_skew$value)
median_val <- median(data_skew$value)
mode_val <- as.numeric(names(sort(table(round(data_skew$value, 0)),

decreasing = TRUE)[1]))
# --- Visualization (Histogram + Density) ---
ggplot(data_skew, aes(x = value)) +
geom_histogram(aes(y = after_stat(density)),
binwidth = 5,
fill = "#5ab4ac",
color = "white",
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alpha = 0.8) +
geom_density(color = "#2b8cbe", linewidth = 1.3, alpha = 0.9) +
geom_vline(aes(xintercept = mean_val, color = "Mean"), linewidth = 1.2) +
geom_vline(aes(xintercept = median_val, color = "Median"), linewidth = 1.2,

linetype = "dashed") +
geom_vline(aes(xintercept = mode_val, color = "Mode"), linewidth = 1.2,

linetype = "dotdash") +
labs(
title = "Right-Skewed Distribution (With Extreme Values)",
subtitle = "Mean is pulled toward the extreme high values due to skewness",
x = "Value",
y = "Density",
color = "Measure"
) +
theme_minimal(base_size = 13) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
legend.position = "bottom"
)
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Figure 4.3: Right-Skewed Distribution (With Extreme Values)
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Explanation:

A skewed distribution indicates that the dataset is asymmetrical, meaning the data do not
fall evenly around the central point. The presence of extreme values (outliers) causes this
imbalance, pulling one side of the distribution’s tail farther than the other.

Types of Skewness
• Positively Skewed (Right-Skewed): The tail extends to the right, showing that
a small number of large values are stretching the mean upward (Order: Mode <
Median < Mean).

• Negatively Skewed (Left-Skewed): The tail extends to the left, indicating that
very small values pull the mean downward (Order: Mean < Median < Mode).

Key Interpretations

• Effect of Extreme Values: Outliers on one end distort the balance of the distribu-
tion, shifting the mean away from the center.

• Separation of Central Measures: The mean, median, and mode no longer align;
their spacing reveals the degree of skewness.

• Asymmetrical Shape: The histogram shows one side tapering more gradually,
confirming the directional bias in the data.

• Impact on Statistical Assumptions: Skewed data violate normality assumptions
required in many parametric tests.

Statistical Implication

Skewness can influence data interpretation and analysis validity, especially when using
parametric methods such as t-tests, ANOVA, or linear regression, which assume normal-
ity. In such cases, analysts often:

• Apply data transformation (e.g., log, square root)
• Use non-parametric tests (e.g., Mann–Whitney U, Kruskal–Wallis)
• Identify and handle outliers explicitly

Real-World Examples

Right- or left-skewed distributions commonly appear in:

• Income and wealth data: A few individuals earn far more than most (right-
skewed).

• Time-to-failure or lifespan data: Many items fail early, with fewer lasting very
long (left-skewed).

• Sales and transaction data: A small number of customers may account for ex-
tremely high purchase amounts.

• Environmental data: Some readings, like pollution concentration, exhibit right-
skew due to rare spikes.
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4.4.3 Categorical Variables

Categorical variables divide data into distinct groups or categories. When combined with a
numerical variable, we can analyze how the distribution of numerical values differs across cate-
gories. A boxplot is an excellent visualization for this purpose— it shows the median, quartiles,
range, and outliers within each group.

For example, in the chart below (Figure 4.4), each box represents a product category, while the
vertical axis shows the distribution of sales values within that category.

# ==========================================================
# Categorical Variables — Boxplot Visualization (Fixed & Varied Distributions)
# ==========================================================
library(ggplot2)
library(dplyr)

set.seed(123)

# --- Create category structure ---
categories <- c("Electronics", "Clothing", "Home", "Beauty", "Sports")
sales_data <- data.frame(
ProductCategory = sample(
categories, 500, replace = TRUE,
prob = c(0.25, 0.30, 0.20, 0.15, 0.10)

)
)

# --- Generate different distributions per category correctly ---
sales_data <- sales_data %>%
group_by(ProductCategory) %>%
mutate(
TotalSales = case_when(
ProductCategory == "Electronics" ~ rnorm(n(), mean = 120, sd = 20), # normal, symmetric
ProductCategory == "Clothing" ~ rlnorm(n(), meanlog = 4.5, sdlog = 0.4), # right-skewed
ProductCategory == "Home" ~ runif(n(), min = 60, max = 150), # uniform
ProductCategory == "Beauty" ~ rexp(n(), rate = 1/70), # exponential, skewed
ProductCategory == "Sports" ~ rnorm(n(), mean = 90, sd = 35) # wide spread

)
) %>%
ungroup()

# --- Visualization: Boxplot by Category ---
ggplot(sales_data, aes(x = ProductCategory, y = TotalSales, fill = ProductCategory)) +
geom_boxplot(
alpha = 0.8, color = "gray30",
outlier.colour = "red", outlier.shape = 16, outlier.size = 2

) +
labs(
title = "Boxplot of Sales Distribution by Product Category",
subtitle = "Each category displays a unique distribution pattern of total sales",
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x = "Product Category",
y = "Total Sales (in units)",
fill = "Category"

) +
theme_minimal(base_size = 13) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
legend.position = "none"

)
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Figure 4.4: Boxplot of Sales Distribution by Product Category

# ==========================================================
# Boxplot of Sales by Product Category — with Global Mean & Mode Lines
# ==========================================================
library(ggplot2)
library(dplyr)

set.seed(123)

# --- Create category structure ---
categories <- c("Electronics", "Clothing", "Home", "Beauty", "Sports")
sales_data <- data.frame(
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ProductCategory = sample(
categories, 500, replace = TRUE,
prob = c(0.25, 0.30, 0.20, 0.15, 0.10)

)
)

# --- Generate different distributions per category ---
sales_data <- sales_data %>%
group_by(ProductCategory) %>%
mutate(
TotalSales = case_when(
ProductCategory == "Electronics" ~ rnorm(n(), mean = 120, sd = 20),
ProductCategory == "Clothing" ~ rlnorm(n(), meanlog = 4.5, sdlog = 0.4),
ProductCategory == "Home" ~ runif(n(), min = 60, max = 150),
ProductCategory == "Beauty" ~ rexp(n(), rate = 1/70),
ProductCategory == "Sports" ~ rnorm(n(), mean = 90, sd = 35)

)
) %>%
ungroup()

# --- Compute global mean and mode ---
mean_val <- mean(sales_data$TotalSales, na.rm = TRUE)

# Estimate mode using kernel density (works for continuous data)
dens <- density(sales_data$TotalSales, na.rm = TRUE)
mode_val <- dens$x[which.max(dens$y)]

# --- Visualization ---
ggplot(sales_data, aes(x = ProductCategory, y = TotalSales, fill = ProductCategory)) +
geom_boxplot(
alpha = 0.8, color = "gray30",
outlier.colour = "red", outlier.shape = 16, outlier.size = 2

) +
# Add mean line
geom_hline(
yintercept = mean_val, color = "#1b9e77", linewidth = 1.2

) +
# Add mode line
geom_hline(
yintercept = mode_val, color = "#d95f02", linewidth = 1.2, linetype = "dashed"

) +
# Annotate lines
annotate(
"text", x = 5.4, y = mean_val, label = sprintf("Mean = %.1f", mean_val),
color = "#1b9e77", hjust = 0, vjust = -0.5, fontface = "bold", size = 3.8

) +
annotate(
"text", x = 5.4, y = mode_val, label = sprintf("Mode = %.1f", mode_val),
color = "#d95f02", hjust = 0, vjust = -0.5, fontface = "bold", size = 3.8
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) +
labs(
title = "Boxplot of Sales Distribution by Product Category",
subtitle = "Global mean (green solid) and mode (orange dashed) lines for comparison across all categories",
x = "Product Category",
y = "Total Sales (in units)"

) +
theme_minimal(base_size = 13) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
legend.position = "none"

)
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Explanation:

A categorical variable divides data into distinct groups or categories— for example, prod-
uct types, departments, or regions — while a numerical variable measures quantitative
outcomes such as sales, profit, or ratings. When visualized using a boxplot, the relation-
ship between these two types of variables becomes clear, showing how the numerical data
are distributed within each category.
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Key Interpretations

• Median (Center Line): Represents the central value of sales within each category,
showing which category tends to sell more or less.

• Interquartile Range (IQR): The height of each box shows the middle 50% of the
data — wider boxes indicate greater variability in sales.

• Whiskers and Outliers: The vertical lines (whiskers) represent typical sales
ranges, while the red dots highlight outliers (unusually high or low values).

• ComparisonAcross Categories: Different box heights and positions indicate vari-
ation in both central tendency and spread among product categories.

Statistical Implications

Boxplots of categorical variables are valuable for:

• Detecting differences in distribution among groups.
• Identifying skewness and outliers within each category.
• Assessing variability and central tendency visually without relying on complex sta-
tistical summaries.

Real-World Applications

This approach is essential in:

• Business analytics: Comparing sales or profits across product lines.
• Healthcare: Comparing recovery times or satisfaction scores across hospitals.
• Education: Comparing test scores across schools or departments.

By visualizing categorical variables with boxplots, analysts can quickly detect differences
between groups, guide deeper statistical testing, and support data-driven decisions.

4.4.4 More Than One Mode

In many real-world datasets, the distribution of values does not always form a single, smooth
peak. Instead, some datasets exhibit two or more distinct peaks, known as multiple modes. Each
mode represents a cluster where values tend to concentrate—meaning that the data have several
regions of high frequency rather than one central location.

In the following histogram (see, Figure 4.5), we will observe a bimodal distribution where two
separate peaks appear clearly. This illustrates how the histogram can reveal hidden structure in
the data that simple summary statistics, like the mean or median, might overlook.

# ==========================================================
# More Than One Mode — Bimodal Distribution Visualization
# ==========================================================
library(ggplot2)
library(dplyr)
set.seed(123)
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# --- Generate Bimodal Data (two peaks) ---
# Combine two normal distributions with different means
data_bimodal <- data.frame(
value = c(
rnorm(2500, mean = 40, sd = 6), # first cluster
rnorm(2500, mean = 70, sd = 6) # second cluster

)
)
# --- Compute Summary Statistics ---
mean_val <- mean(data_bimodal$value)
median_val <- median(data_bimodal$value)
# --- Visualization: Histogram + Density Curve ---
ggplot(data_bimodal, aes(x = value)) +
geom_histogram(
aes(y = after_stat(density)),
bins = 40, fill = "#74a9cf",
color = "white", alpha = 0.8

) +
geom_density(color = "#0570b0", linewidth = 1.3, alpha = 0.9) +
geom_vline(aes(xintercept = mean_val, color = "Mean"), linewidth = 1.2) +
geom_vline(aes(xintercept = median_val, color = "Median"),

linewidth = 1.2, linetype = "dashed") +
labs(
title = "Bimodal Distribution (More Than One Mode)",
subtitle = "Two distinct peaks represent different groups or subpopulations",
x = "Value",
y = "Density",
color = "Measure"

) +
theme_minimal(base_size = 13) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
legend.position = "bottom"

)
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Figure 4.5: Bimodal Distribution (More Than One Mode)

Unlike histograms, boxplots do not display the exact number of peaks, but they clearly show that
the data are not symmetrically distributed— for example, the median line may be off-center, and
the whiskers might extend unevenly to one side. Together, the histogram and boxplot provide
complementary insights:

• the histogram reveals the overall shape (and multiple modes),
• while the boxplot emphasizes the spread and skewness of the data.

In the following visualization (see, Figure 4.6), the boxplot helps us interpret how a bimodal
dataset behaves in terms of variation, central value, and outliers, reinforcing the insights gained
from the histogram.

# ==========================================================
# Boxplot Representation — Bimodal Distribution
# ==========================================================
library(ggplot2)
library(dplyr)
set.seed(123)
# --- Generate Bimodal Data (same as histogram) ---
data_bimodal <- data.frame(
value = c(
rnorm(2500, mean = 40, sd = 6), # first cluster
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rnorm(2500, mean = 70, sd = 6) # second cluster
)
)
# --- Compute Summary Statistics ---
mean_val <- mean(data_bimodal$value)
median_val <- median(data_bimodal$value)
# --- Visualization: Boxplot ---
ggplot(data_bimodal, aes(x = "", y = value)) +
geom_boxplot(
fill = "#74a9cf",
color = "gray30",
outlier.colour = "#fb6a4a",
outlier.shape = 16,
outlier.size = 2,
width = 0.3
) +
geom_hline(aes(yintercept = mean_val, color = "Mean"), linewidth = 1.2) +
geom_hline(aes(yintercept = median_val, color = "Median"), linewidth = 1.2,

linetype = "dashed") +
labs(
title = "Boxplot of Bimodal Distribution (More Than One Mode)",
subtitle = "Wider spread indicates data concentration around two regions",
x = NULL,
y = "Value",
color = "Measure"
) +
scale_color_manual(values = c("Mean" = "#0570b0", "Median" = "#ff7f00")) +
theme_minimal(base_size = 13) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
axis.text.x = element_blank(),
legend.position = "bottom"
)
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Figure 4.6: Bimodal Distribution (More Than One Mode)

Explanation:

A boxplot cannot explicitly display two peaks (bimodal pattern), because:

• The boxplot only summarizes data statistically (using the five-number summary:
minimum, first quartile, median, third quartile, and maximum).

• It does not represent the shape of the distribution (e.g., how many peaks or modes
exist).

# ==========================================================
# Enhanced Violin + Boxplot — Bimodal Distribution
# ==========================================================
library(ggplot2)
library(ggtext)
set.seed(123)

data_bimodal <- data.frame(
value = c(
rnorm(2500, mean = 40, sd = 6),
rnorm(2500, mean = 70, sd = 6)

)
)
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# --- Create the plot ---
ggplot(data_bimodal, aes(x = "", y = value)) +
# Gradient violin to show smooth density
geom_violin(
aes(fill = stat(y)),
color = "gray30",
alpha = 0.8,
width = 1.1,
linewidth = 0.6

) +
scale_fill_gradient(
low = "#c6dbef", high = "#08306b", name = "Density"

) +
# Overlay boxplot
geom_boxplot(
width = 0.12,
fill = "#fdd0a2",
color = "gray25",
outlier.colour = "#fb6a4a",
outlier.shape = 16,
outlier.size = 2

) +
# Annotate the two modes
annotate(
"text", x = 1.15, y = 40, label = "First Mode $\\approx$ 40",
color = "#045a8d", size = 4, fontface = "bold", hjust = 0

) +
annotate(
"text", x = 1.15, y = 70, label = "Second Mode $\\approx$ 70",
color = "#d94801", size = 4, fontface = "bold", hjust = 0

) +
annotate(
"curve",
x = 1.05, xend = 1.0, y = 42, yend = 45,
curvature = 0.3, color = "#045a8d", arrow = arrow(length = unit(0.15, "cm"))

) +
annotate(
"curve",
x = 1.05, xend = 1.0, y = 68, yend = 65,
curvature = -0.3, color = "#d94801", arrow = arrow(length = unit(0.15, "cm"))

) +
labs(
title = "Violin + Boxplot of Bimodal Distribution",
subtitle = "The violin shape reveals two clear concentration regions around
<b style='color:#045a8d;'>40</b> and <b style='color:#d94801;'>70</b>",
x = NULL,
y = "Value",
fill = "Density"

) +
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theme_minimal(base_size = 14) +
theme(
plot.title = element_text(face = "bold", size = 16, hjust = 0.5),
plot.subtitle = element_markdown(hjust = 0.5, size = 12),
axis.text.x = element_blank(),
legend.position = "none",
panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank(),
plot.background = element_rect(fill = "#f9fbfd", color = NA)

)
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Figure 4.7: Violin + Boxplot of Bimodal Distribution

Explanation:

A bimodal distribution occurs when a dataset has two distinct peaks (modes), meaning
there are two dominant groups of values around different centers. Unlike a normal distri-
bution that has one central peak, a bimodal shape suggests that the data may come from
two different populations or underlying processes combined into one dataset.
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Key Interpretations

• Two Peaks (Modes): Each peak represents a cluster of frequently occurring values
— often caused by two subgroups with different characteristics.

• Mean and Median: These measures may fall between the two modes, failing to
represent either group accurately.

• Spread and Overlap: The distance between peaks and the overlap between them
indicate how distinct or similar the two groups are.

• PotentialMixture of Populations: Bimodality is a strong clue that the dataset may
not be homogeneous.

Statistical Implications

• Classical measures like mean and standard deviation can be misleading, since they
ignore multimodal structure.

• Analysts should consider segmenting the data (e.g., clustering or grouping) before
running inferential tests.

• Identifying multiple modes often leads to insightful segmentation — discovering
hidden subgroups within the data.

4.5 Dataset
 Search:

Showing 1 to 10 of 200 entries Previous 1 2 3 4 5 … 20 Next

Interactive Table: Customer Purchase Data

1 1 32 M West Electronics 528 4 1

2 2 37 F South Books 72 4 5

3 3 63 M West Electronics 327 4 2

4 4 41 M North Sports 391 7 1

5 5 42 F East Electronics 514 7 5

6 6 66 F East Sports 381 6 3

7 7 47 M East Sports 510 5 1

8 8 21 F South Clothing 102 4 2

9 9 30 F North Sports 559 2 2

10 10 33 M South Books 27 5 2

Copy CSV

CustomerID Age Gender StoreLocation ProductCategory TotalPurchase NumberOfVisits FeedbackScore

References
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Chapter 5

Statistical Dispersion

While Central Tendency identifies the “middle” of a dataset, Measures of Disper-
sion/Variability describe how widely the values are spread around that center. In other
words, dispersion quantifies the degree of variability or diversity within the data. Two datasets
can share the same average, yet their distributions may look completely different—one tightly
clustered, the other broadly scattered.

Watch here: Statistical Dispersion

By combining Central Tendency with these measures of dispersion (see, Figure 5.1), readers
gain both numerical and visual insights, enabling a more accurate and holistic interpretation of
their data [48]–[51].

5.1 Range

The range is the simplest measure of dispersion, representing the difference between the largest
and smallest observations in a dataset. It provides a quick sense of how spread out the data are
[52].

Formula:

𝑅𝑎𝑛𝑔𝑒 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

A larger range indicates greater variability among the data values, while a smaller range suggests
that the data are more concentrated around the mean. The range is easy to compute and under-
stand, making it a useful measure for providing a quick and rough estimate of how widely the
data are spread. However, it has notable limitations: it is highly sensitive to outliers and does
not take into account the distribution of values between the smallest and largest observations
[53], [54].

Example:

A researcher measures the systolic blood pressure reduction (in mmHg) of five patients after
taking Drug A:
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Figure 5.1: Statistical Dispersion 5W+1H
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[45, 52, 49, 47, 55]

We can compute the range of the blood pressure reduction values, as the following:

𝑅𝑎𝑛𝑔𝑒 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 = 55 − 45 = 10

The reductions vary by 10 mmHg, indicating relatively low variability among patients.

5.2 Variance

Variancemeasures the average of the squared deviations from the mean. It quantifies howmuch
each data point differs from the mean, capturing the degree of spread in the dataset.

Formulas:

• For a population:

𝜎2 = ∑𝑁
𝑖=1(𝑋𝑖 − 𝜇)2

𝑁
• For a sample:

𝑠2 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

𝑛 − 1

A higher variance indicates that the data points are more widely spread from the mean, while
a lower variance suggests that they are clustered more closely together. Variance takes into ac-
count all data points in a dataset, not just the extremes, and serves as the foundation for more
advanced statistical measures such as standard deviation and ANOVA. However, because vari-
ance is expressed in squared units, it can be less intuitive to interpret directly. Additionally, it is
sensitive to extreme values, which can disproportionately affect the measure of variability [53],
[54].

Example:

We can compute the sample variance of the blood pressure reduction values, as the following:

• Step One: Compute the mean,

𝑋̄ = 46 + 50 + 54 + 48 + 52
5 = 250

5 = 50

• Step Two: Compute each squared deviation,

𝑋𝑖 (𝑋𝑖 − 𝑋̄) (𝑋𝑖 − 𝑋̄)2

46 -4 16
50 0 0
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𝑋𝑖 (𝑋𝑖 − 𝑋̄) (𝑋𝑖 − 𝑋̄)2

54 4 16
48 -2 4
52 2 4

• Step Three: Compute the sample variance:

𝑠2 = ∑(𝑋𝑖 − 𝑋̄)2

𝑛 − 1

𝑠2 = 16 + 0 + 16 + 4 + 4
5 − 1 = 40

4 = 10

The sample variance is 10 (mmHg²), meaning that, on average, the squared deviations of blood
pressure reductions from the mean are 10 units.

5.3 Standard Deviation

The standard deviation (SD) is the square root of the variance. It measures the average distance
of each data point from the mean and is expressed in the same units as the original data.

Formulas:

• For a population:

𝜎 = √∑𝑁
𝑖=1(𝑋𝑖 − 𝜇)2

𝑁
• For a sample:

𝑠 = √∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

𝑛 − 1

A low standard deviation indicates that the data points are close to the mean, reflecting low
variability within the dataset, while a high standard deviation shows that the data points are more
widely dispersed, indicating higher variability. One of themain advantages of standard deviation
is that it is expressed in the same units as the original data, making it easier to interpret compared
to variance. It is also widely used in both descriptive and inferential statistics for assessing data
consistency and reliability. However, standard deviation is influenced by outliers, which can
distort the measure of spread, and it assumes that the data distribution is approximately normal
for its interpretation to be most meaningful [55].

Example:

Recall that the sample variance (𝑠2) was:

𝑠2 = 10
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The standard deviation (𝑠) is the square root of the variance:

𝑠 =
√

𝑠2 =
√

10 ≈ 3.16

The sample standard deviation is 3.16 mmHg, which means that, on average, each patient’s
blood pressure reduction differs from the mean by about 3.16 mmHg.

5.4 Study Cases

A clinical study was conducted to evaluate the effectiveness and consistency of three different
antihypertensive drugs—Drug A, Drug B, and Drug C—in lowering patients’ blood pressure.
Each group of patients received one type of drug for four weeks. The goal was to reduce systolic
blood pressure (SBP) to around 120 mmHg, which is considered normal according to the World
Health Organization (WHO) and the American Heart Association (AHA) guidelines. Although
the mean reduction in blood pressure for all three drugs is approximately 50 mmHg, the vari-
ability in response differs significantly. This variation reflects how consistent or scattered the
treatment effects are among patients. Let consider thi dataset (tab-dataset-bab51?)

 Search:

Showing 1 to 10 of 300 entries Previous 1 2 3 4 5 … 30 Next

1 1 Drug A 46.7455922240579

2 2 Drug A 48.39708300940256

3 3 Drug A 57.34151202756458

4 4 Drug A 49.90051241394185

5 5 Drug A 50.1944091326237

6 6 Drug A 58.12329539123537

7 7 Drug A 51.85255148676498

8 8 Drug A 43.22266428378629

9 9 Drug A 46.11370619735133

10 10 Drug A 47.31966060631918

Copy CSV

PatientID Drug BP_Reduction

Graphs help visualize the variability in treatment effects among the three drugs:

• Boxplots show the spread and outliers of blood pressure reduction.
• Histograms reveal how reductions are distributed among patients.
• Scatterplots illustrate how responses vary with other factors.

These visuals highlight that Drug A has consistent effects, Drug B shows some outliers, and
Drug C displays a wider, skewed variation.

5.4.1 Boxplots

Before analyzing the differences among Drug A, Drug B, and Drug C, it is important to under-
stand how boxplots represent data dispersion. A boxplot provides a compact visual summary of
a dataset through five key statistics: minimum, first quartile (Q1), median (Q2), third quartile
(Q3), and maximum, etc.

# Read dataset above then calculate
# Summary statistics to verify means are exactly 50
drug_summary <- drug_data %>%
group_by(Drug) %>%
summarise(
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Mean = mean(BP_Reduction),
Min = min(BP_Reduction),
Max = max(BP_Reduction),
Range = Max - Min,
Variance = var(BP_Reduction),
SD = sd(BP_Reduction)

)

# ==========================================================
# Display interactive table
# ==========================================================
datatable(
drug_summary %>%
mutate(across(where(is.numeric), ~round(., 2))), # numeric to 2 decimals

options = list(
dom = 't', # show only the table
paging = FALSE, # disable pagination
ordering = FALSE # disable sorting

),
rownames = FALSE

)

Drug Mean Min Max Range Variance SD

Drug A 50 38 60.48 22.48 20.83 4.56

Drug B 50 39.15 84.42 45.27 54.29 7.37

Drug C 50 21.67 195.7 174.03 657.49 25.64

The box represents the interquartile range (IQR = Q3 − Q1), showing where the middle 50%
of data points lie. The line inside the box marks the median, while the “whiskers” extend to
the smallest and largest values within 1.5 × IQR. Any points beyond the whiskers are plotted
individually as outliers, indicating unusually high or low observations.

# Plot: violin + boxplot with mean annotation --------
library(ggplot2)

ggplot(drug_data, aes(x = Drug, y = BP_Reduction, fill = Drug)) +
# Violin plot for full distribution
geom_violin(alpha = 0.4, trim = FALSE, color = NA) +
# Boxplot overlay (narrower width)
geom_boxplot(width = 0.15, outlier.color = "red", alpha = 0.6) +
# Mean point
stat_summary(fun = mean, geom = "point", shape = 23, size = 3, fill = "blue", color = "black") +
# Mean label
geom_text(
data = drug_summary,
aes(x = Drug, y = Mean + 3,

label = paste0("Mean = ", formatC(Mean, digits = 2, format = "f"))),
color = "blue", size = 3.5, fontface = "bold", inherit.aes = FALSE

) +
labs(
title = "Drug Effects: Equal Means (50) with Different Dispersions",
subtitle = "Drug A = normal | Drug B = normal + outliers | Drug C = right-skewed + extreme outliers",
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x = "",
y = "Effect (e.g., reduction in systolic BP, mmHg)"

) +
theme_minimal(base_size = 13) +
theme(
legend.position = "none",
plot.title = element_text(face = "bold")

)
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Drug Effects: Equal Means (50) with Different Dispersions

Interpretation:

• Drug A: Symmetrical violin and narrow boxplot indicate low variability and a consistent
effect among patients.

• Drug B: Violin shows slight widening at higher values; boxplot highlights mild outliers.
Indicates moderate variability; most patients respond similarly, but a few have stronger
effects.

• Drug C: Right-skewed violin with long tail and extreme points. Boxplot captures these
extremes, showing high variability and skewness. Some patients experience much higher
reductions than the majority.

5.4.2 Histograms

A histogram provides a visual summary of a dataset by dividing the range of data into con-
secutive intervals, called bins, and displaying the frequency or density of observations in each
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bin. The height of each bar reflects how many data points fall within that interval. Histograms
allow us to quickly assess the shape of the distribution, the spread of the data, the presence of
skewness, and potential outliers.

# -------- Plot: Histogram + Density + Smart Mean Label Placement --------
library(dplyr)
library(ggplot2)

# Calculate density peaks (for label positioning)
density_peaks <- drug_data %>%
group_by(Drug) %>%
summarise(PeakY = max(density(BP_Reduction)$y))

# Combine with mean values
label_data <- left_join(drug_summary, density_peaks, by = "Drug")

# Plot
ggplot(drug_data, aes(x = BP_Reduction, fill = Drug)) +
geom_histogram(aes(y = after_stat(density)), alpha = 0.5,

color = "black", bins = 100, position = "identity") +
geom_density(alpha = 0.2, color = "darkblue", size = 1) +
geom_vline(data = drug_summary, aes(xintercept = Mean, color = Drug),

linetype = "dashed", size = 1) +
geom_text(
data = label_data,
aes(x = Mean, y = PeakY + 0.005, # just above peak

label = paste0("Mean = ", formatC(Mean, digits = 2, format = "f"))),
color = "blue", size = 3.5, fontface = "bold"

) +
facet_wrap(~Drug, ncol = 1, scales = "free_y") +
labs(
title = "Distribution of Blood Pressure Reduction by Drug",
subtitle = "Equal means ($\\approx$ 50 mmHg) but different dispersions",
x = "Blood Pressure Reduction (mmHg)",
y = "Density"

) +
theme_minimal(base_size = 13) +
theme(legend.position = "none")
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# -------- Plot: All Drugs in One Frame --------
library(dplyr)
library(ggplot2)

# Gabungkan mean + density peak (optional: tidak wajib kalau mau manual y posisi)
density_peaks <- drug_data %>%
group_by(Drug) %>%
summarise(PeakY = max(density(BP_Reduction)$y))

label_data <- left_join(drug_summary, density_peaks, by = "Drug")

ggplot(drug_data, aes(x = BP_Reduction, fill = Drug, color = Drug)) +
# Histogram density-normalized
geom_histogram(aes(y = after_stat(density)),

position = "identity", bins = 80, alpha = 0.35) +
# Density curve
geom_density(alpha = 0.3, linewidth = 1) +
# Mean line
geom_vline(data = drug_summary,

aes(xintercept = Mean, color = Drug),
linetype = "dashed", linewidth = 1) +

# Mean label above each density peak
geom_text(
data = label_data,
aes(x = Mean, y = PeakY + 0.002,
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label = paste0("Mean = ", formatC(Mean, digits = 2, format = "f")),
color = Drug),

size = 4, fontface = "bold", show.legend = FALSE
) +
labs(
title = "Distribution of Blood Pressure Reduction (All Drugs)",
subtitle = "All means $\\approx$ 50 mmHg but with different spread and skewness",
x = "Blood Pressure Reduction (mmHg)",
y = "Density",
fill = "Drug",
color = "Drug"

) +
theme_minimal(base_size = 13) +
theme(
legend.position = "top",
plot.title = element_text(face = "bold")

)
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Interpretation:

• Drug A: Narrow histogram and density curve indicate tight clustering around the mean.
Low variability → consistent effect among patients.

• Drug B: Slightly wider spread and presence of minor outliers. Moderate variability →
most patients respond similarly, but a few show extreme reduction.
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• Drug C: Right-skewed distribution with long tail and extreme outliers. High variability
→ responses vary greatly, and some patients experience very high reductions.

5.4.3 Scatterplots

Here’s a practical scatterplot example using Drug A, B, and C, showing blood pressure reduc-
tions for individual patients, including trend lines and mean reference.

# -------- Scatterplot --------
ggplot(drug_data, aes(x = PatientID, y = BP_Reduction, color = Drug)) +
geom_point(size = 2, alpha = 0.7) +
geom_hline(yintercept = 50, linetype = "dashed", color = "black") +
labs(
title = "Scatterplot of Blood Pressure Reduction by Drug",
subtitle = "Each point represents a patient; dashed line shows the mean (50 mmHg)",
x = "Patient ID",
y = "Blood Pressure Reduction (mmHg)"

) +
theme_minimal(base_size = 13)
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Each point represents a patient; dashed line shows the mean (50 mmHg)

Scatterplot of Blood Pressure Reduction by Drug

**Explanation:

• Each point represents a patient’s reduction in blood pressure.
• The x-axis shows individual patients, while the y-axis shows the BP reduction.

95



References CHAPTER 5. STATISTICAL DISPERSION

• The dashed line at 50 mmHg represents the mean reduction for all drugs.
• Drug A shows tightly clustered points (low variability).
• Drug B has some extreme points (outliers), increasing variability.
• Drug C shows a right-skewed distribution with extreme outliers, indicating high variabil-
ity.

This scatterplot visually complements the histogram and boxplot analyses, helping to identify
patient-level differences and treatment consistency.

References
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Chapter 6

Essentials of Probability

Probability is a foundational pillar of statistical reasoning, offering a systematic and coherent
framework for understanding uncertainty and guiding informed decision-making. Rather than
relying on intuition or conjecture, probability enables us to quantify the likelihood of various
outcomes, interpret patterns within data, and analyze phenomena that arise from natural or ex-
perimental processes. A strong command of probability concepts is essential for effective data
analysis, scientific research, and evidence-based practice.

This section presents the key principles that form the basis of probability theory:

• Fundamental concepts of probability, including sample spaces, events, and the comple-
ment rule—core components that define how probabilities are structured and interpreted.

• Independent and dependent events, which differentiate scenarios where the occurrence of
one event does or does not influence another, a distinction critical for accurate modeling
and prediction.

• The union of events, which addresses the probability that at least one among several events
will occur.

• Exclusive and exhaustive events, clarifying how events interact within a sample space and
how those relationships shape probability calculations.

• Binomial experiments and binomial distributions, essential tools for analyzing repeated
trials with two possible outcomes, widely used in scientific studies, reliability testing, and
survey analysis.

Each topic is accompanied by instructional video resources designed to enhance conceptual
understanding and support deeper engagement with the material. Together, these components
provide a comprehensive and rigorous foundation for advancing to more complex statistical
methods.

6.1 Fundamental Concept

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/ynjHKBCiGXY?si=lmDmcVp-f1l64TbV
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6.2 Independent and Dependent

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/LS-_ihDKr2M?si=HQq5ACfh5wwDYmiU

6.3 Union of Events

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/vqKAbhCqSTc?si=d3US5PYLeV-DZWBZ

6.4 Exclusive and Exhaustive

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/f7agTv9nA5k?si=SoKGr0XpHj1u4K5f

6.5 Binomial Experiment

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/nRuQAtajJYk?si=Q0Ulh5UxDF0svzXd

6.6 Binomial Distribution

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/Y2-vSWFmgyI?si=Tz7vLscgShvKrBxQ

References
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Chapter 7

Probability Distributions

Probability not only helps us understand how likely an event is to occur, but also forms the
foundation of many statistical methods used for decision-making. When a process or experi-
ment produces varying outcomes, we use a random variable to represent those outcomes and
a probability distribution to describe how the probabilities are assigned to each possible value.
Understanding the shape and properties of a distribution is essential because it determines how
data behave, how we calculate probabilities, and how we make predictions. From distributions
for continuous variables to the behavior of statistics such as sample means, probability distribu-
tions serve as the core of inferential statistics.

This material will guide you through several key concepts:

• Continuous Random Variables for continuous variables, which describe the likelihood of
values over a continuous range.

• Sampling distributions, which represent the distribution of sample statistics such as the
sample mean or sample proportion.

• The Central Limit Theorem (CLT), one of the most important results in statistics, explain-
ing why the distribution of sample means tends to be normal regardless of the population’s
underlying shape.

• Sample proportion distributions, widely used in survey analysis and quantitative research.

Each section is supported with video explanations to enhance conceptual understanding. By
mastering these topics, you will be better equipped to analyze data, build statistical models, and
draw conclusions based on solid probabilistic principles.

7.1 Continuous Random

Understanding these basics will provide a strong foundation as we transition into the main topic
of this video: Continuous Random Variables and Their Probability Distributions.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/ZyUzRVa6hCM?si=X5gzd8qqSrIIbtiI
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To understand continuous random variables, it is essential to know how probability is repre-
sented using a Probability Density Function (PDF).
Unlike discrete random variables, a continuous random variable does not assign probability to
individual points. Instead, probability is obtained from the area under the PDF curve.

7.1.1 Random Variable

A random variable is continuous if it can take any value within an interval on the real number
line.
Examples include: height, time, temperature, age, pressure, and velocity.

Key characteristics:

• The variable takes values in an interval such as (𝑎, 𝑏) or even (−∞, +∞).
• The probability of any single point is always zero:

𝑃(𝑋 = 𝑥) = 0

• Probabilities are meaningful only over intervals:

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

7.1.2 Probability Density Funct.

A function 𝑓(𝑥) is a valid Probability Density Function (PDF) if it satisfies:
1. Non-negativity

𝑓(𝑥) ≥ 0 ∀𝑥

2. Total Area Equals 1

∫
∞

−∞
𝑓(𝑥) 𝑑𝑥 = 1

Interpretation:

• Larger values of 𝑓(𝑥) indicate higher probability density around that value.
• However, 𝑓(𝑥) is not a probability; probabilities come from the area under the curve.
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Example PDF: 𝑓(𝑥) = 3𝑥2 on [0, 1]
Consider the probability density function:

𝑓(𝑥) = 3𝑥2, 0 ≤ 𝑥 ≤ 1

Validation:

∫
1

0
3𝑥2 𝑑𝑥 = 1

7.1.3 Probability on an Interval

To compute probability within an interval:

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
3𝑥2 𝑑𝑥

Example:

𝑃(0.5 ≤ 𝑋 ≤ 1)

7.1.4 Cumulative Distribution Funct.

The Cumulative Distribution Function (CDF) is defined as:

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫
𝑥

0
3𝑡2 𝑑𝑡 = 𝑥3

Relationship between PDF and CDF:

𝑓(𝑥) = 𝐹 ′(𝑥)

7.2 Sampling Distributions

Before exploring the concept of sampling distributions in detail, this video provides a clear
visual explanation of how statistics such as sample means behave when repeatedly drawn from
the same population. It offers an intuitive foundation for understanding variability, uncertainty,
and why sampling distributions are essential in statistical inference. Please watch the video
below before continuing with the material.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/7S7j75d3GM4?si=8-iAi1t3dy13AgZL
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7.3 Central Limit Theorem

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/ivd8wEHnMCg?si=EgHT8gPNfz13gwHR

7.4 Sample Proportion

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/q2e4mK0FTbw?si=36BHRKnztM-yXmPE

7.5 Review Sampling Distribution

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/c0mFEL_SWzE?si=diLTtIJ0cp-zVuz4

References
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Chapter 8

Confidence Interval

Before diving into the formulas and theory of Confidence Intervals (CI), this chapter presents
a video designed to help you grasp the concept in a simple and visual way. The video offers a
clear picture of why CI matter and how they operate in data analysis. By understanding the core
idea first, readers will be better prepared for the more detailed explanations that follow.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/MbXThbTSrVI?si=BZQL6DzC8ScRkb2b

The video above provides a visual and intuitive introduction to the fundamental ideas of in-
ferential statistics—especially uncertainty, estimation, and significance in data analysis. This
overview serves as a systematic guide to understand how each chapter connects before you ex-
plore them in detail. The framework and methods align with recent standard references such as
[56], [57], and [58], which provide updated discussions on probability distributions, sampling
theory, and CI construction and interpretation.

8.1 CI using z-Distribution

When estimating a population mean and the population standard deviation is known, or when
the sample size is large (typically 𝑛 ≥ 30), we can use the normal (𝑧) distribution to construct
a Confidence Interval. The 𝑧-distribution (standard normal) has fixed variance, unlike the 𝑡-
distribution whose variance depends on sample size.

Because of this, the 𝑧-distribution is appropriate when the variability of the population is already
known or well-estimated from big data.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/czdwHU27OqA?si=1R-DCvlQDo-ACEWL
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8.1.1 Manual of z-distribution

The analytics team wants to measure the average number of daily clicks on a new application
feature. It is known that the population standard deviation is already known, because the
historical dataset is very large. From the initial test, 50 user samples tried the new feature, and
the following summary was obtained:

Summary data:

• Sample mean: ̄𝑥 = 23.8 clicks/day
• Population standard deviation (known):𝜎 = 4.5 clicks
• Sample size:𝑛 = 50

We want to calculate the 95% Confidence Interval for the population mean of daily clicks.

Formula for CI using z-distribution

𝐶𝐼 = ̄𝑥 ± 𝑧𝛼/2 ( 𝜎√𝑛)

Sample size

𝑛 = 50

Because 𝑛 ≥ 30, the z-distribution is valid even if the population distribution is not known.

Sample mean

̄𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖

= 1
50(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)

= 23.8

Population standard deviation (known)

𝜎 = 4.5

This is the main requirement for using the z-distribution.

Critical value 𝑧 for 95% CI

• Significance level: 𝛼 = 0.05, 𝛼/2 = 0.025
• Standard normal distribution table: 𝑧0.025 = 1.96
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Standard Error (SE)

𝑆𝐸 = 𝜎√𝑛
= 4.5√

50
= 4.5

7.071
≈ 0.637

Margin of Error (ME)

𝑀𝐸 = 𝑧𝛼/2 × 𝑆𝐸
= 1.96 × 0.637
≈ 1.248

Confidence Interval

𝐶𝐼95% = ̄𝑥 ± 𝑀𝐸
= 23.8 ± 1.248
≈ (22.552, 25.048)

Interpretation (Data Science)

With 95% confidence, the average number of daily clicks from users of the new feature is esti-
mated to lie between:

22.552 and 25.048 clicks per day

The confidence interval from the z-distribution is narrower than that from the t-distribution
because 𝜎 is known and does not need to be estimated from the sample.

8.1.2 R Code for z-distribution

# Load libraries
library(knitr)
library(kableExtra)
library(htmltools)

# Data input
xbar <- 23.8 # sample mean
sigma <- 4.5 # population standard deviation (known)
n <- 50 # sample size
alpha <- 0.05 # significance level
z_crit <- qnorm(1 - alpha/2) # Critical z-value for 95% CI
SE <- sigma / sqrt(n) # Standard Error (SE)
ME <- z_crit * SE # Margin of Error (ME)
lower_CI <- xbar - ME # LCI
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upper_CI <- xbar + ME # UCI

# Summary table with formulas (LaTeX)
summary_table <- data.frame(
Parameter = c("Sample mean (x̄)",

"Population SD (�)",
"Sample size (n)",
"z critical value",
"Standard Error (SE)",
"Margin of Error (ME)",
"Lower CI",
"Upper CI"),

Value = c(xbar, sigma, n, round(z_crit,4),
round(SE,4), round(ME,4), round(lower_CI,3), round(upper_CI,3)),

Formula = c(
"$$\\bar{x} = \\frac{1}{n}\\sum_{i=1}^{n} x_i$$",
"$$\\sigma$$",
"$$n$$",
"$$z_{1-\\alpha/2}$$",
"$$SE = \\frac{\\sigma}{\\sqrt{n}}$$",
"$$ME = z_{1-\\alpha/2} \\times SE$$",
"$$\\bar{x} - ME$$",
"$$\\bar{x} + ME$$"

),
stringsAsFactors = FALSE

)

# Render tabel in Quarto HTML
kable(summary_table, escape = FALSE, booktabs = TRUE, align = "lcc") %>%
kable_styling(full_width = FALSE)

Parameter Value Formula

Sample mean (x̄) | 23.8000 | $$\bar{x} = \frac{1}{n}\sum_{i=1}^{n} x_i$$
Population SD (σ) 4.5000 $$\sigma$$
Sample size (n) 50.0000 $$n$$
z critical value 1.9600 $$z_{1-\alpha/2}$$
Standard Error (SE) 0.6364 $$SE = \frac{\sigma}{\sqrt{n}}$$

Margin of Error (ME) 1.2473 $$ME = z_{1-\alpha/2} \times SE$$
Lower CI 22.5530 $$\bar{x} - ME$$
Upper CI 25.0470 $$\bar{x} + ME$$

8.2 CI Using t-Distribution

When estimating a population mean from sample data, we often do not know the true popu-
lation standard deviation. In these situations—especially when the sample size is small—the

106



CHAPTER 8. CONFIDENCE INTERVAL 8.2. CI USING T-DISTRIBUTION

t-distribution provides a more accurate way to measure uncertainty than the normal (𝑧) distri-
bution.

The 𝑡-distribution has heavier tails, reflecting the extra variability that comes from estimating
the standard deviation directly from the sample.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/6r5IZCjvIHI?si=9qi2oF7GSrzlMZit

A Confidence Interval (CI) for the population mean using the 𝑡-distribution is:

̄𝑥 ± 𝑡𝛼/2, 𝑑𝑓 ( 𝑠√𝑛)

where:

• ̄𝑥 = sample mean

• 𝑠 = sample standard deviation

• 𝑛 = sample size

• 𝑑𝑓 = 𝑛 − 1 = degrees of freedom

• 𝑡𝛼/2, 𝑑𝑓 = critical 𝑡-value from the 𝑡-distribution

Using this formula, we create an interval that likely contains the true population mean, while
realistically accounting for uncertainty due to limited data.

8.2.1 Manual of t-distribution

The product team launched a new recommendation feature and took a small sample of user
interactions to measure engagement, specifically the time spent (in minutes) on the feature.
We want to estimate the average time spent by all users on this feature with a 95% confidence
level.

Sample data (minutes): 7.2, 5.8, 6.5, 8.0, 6.9, 7.4, 5.5, 6.7, 7.1, 6.3

Sample size

𝑛 = 10
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Sample mean

̄𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖

= 1
10(𝑥1 + 𝑥2 + ⋯ + 𝑥10)

= 1
10(7.2 + 5.8 + 6.5 + 8.0 + 6.9 + 7.4 + 5.5 + 6.7 + 7.1 + 6.3)

= 67.4
10

= 6.74 minutes
#### Sample standard deviation {-}

𝑠 = √∑𝑛
𝑖=1(𝑥𝑖−𝑥̄)2

𝑛−1

= √ (7.2−6.74)2+(5.8−6.74)2+⋯+(6.3−6.74)2

10−1

= √4.063
9

≈ 0.67 minutes

Degrees of freedom

𝑑𝑓 = 𝑛 − 1 = 9

Critical 𝑡 value for 95% CI

Significance level:
𝛼 = 0.05, 𝛼/2 = 0.025

From the t-table (or statistical function):

𝑡0.025, 9 ≈ 2.262

Standard Error (SE)

𝑆𝐸 = 𝑠√𝑛
= 0.77√

10
≈ 0.2436

Margin of Error (ME)

𝑀𝐸 = 𝑡𝛼/2, 𝑑𝑓 × 𝑆𝐸
= 2.262 × 0.2436
≈ 0.551
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Confidence Interval

𝐶𝐼95% = ̄𝑥 ± 𝑀𝐸
= 6.74 ± 0.551
≈ (6.203, 7.291)

Interpretation (Data Science)

With 95% confidence, we estimate that the average time spent by users on the recommen-
dation feature is between 6.203 and 7.291 minutes. Even with a small sample, this interval
provides a realistic range for the population mean, accounting for uncertainty from estimating
the standard deviation.

8.2.2 R Code t-distribution

library(knitr)
library(kableExtra)

# Data
data <- c(7.2,5.8,6.5,8.0,6.9,7.4,5.5,6.7,7.1,6.3)
n <- length(data)
xbar <- mean(data)
s <- sd(data)
df <- n - 1
alpha <- 0.05
t_crit <- qt(1 - alpha/2, df)
SE <- s / sqrt(n)
ME <- t_crit * SE
CI_lower <- xbar - ME
CI_upper <- xbar + ME

# Summary table with formulas
summary_table <- data.frame(
Parameter = c("Sample size (n)",

"Sample mean (x̄)",
"Sample SD (s)",
"Degrees of freedom (df)",
"t critical value",
"Standard Error (SE)",
"Margin of Error (ME)",
"Lower CI",
"Upper CI"),

Value = c(n, round(xbar,3),
round(s,3), df, round(t_crit,3),
round(SE,3), round(ME,3),
round(CI_lower,3), round(CI_upper,3)),

Formula = c(
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"$$n$$",
"$$\\bar{x} = \\frac{1}{n}\\sum_{i=1}^{n} x_i$$",
"$$s = \\sqrt{\\frac{\\sum_{i=1}^{n} (x_i - \\bar{x})^2}{n-1}}$$",
"$$df = n-1$$",
"$$t_{1-\\alpha/2, df}$$",
"$$SE = \\frac{s}{\\sqrt{n}}$$",
"$$ME = t_{1-\\alpha/2} \\times SE$$",
"$$\\bar{x} - ME$$",
"$$\\bar{x} + ME$$"

),
stringsAsFactors = FALSE

)

# Render table
kable(summary_table, escape = FALSE, booktabs = TRUE, align = "lcc") %>%
kable_styling(full_width = FALSE)

Parameter Value Formula

Sample size (n) 10.000 $$n$$
Sample mean (x̄) | 6.740 | $$\bar{x} = \frac{1}{n}\sum_{i=1}^{n} x_i$$
Sample SD (s) 0.750 $$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$
Degrees of freedom (df) 9.000 $$df = n-1$$
t critical value 2.262 $$t_{1-\alpha/2, df}$$

Standard Error (SE) 0.237 $$SE = \frac{s}{\sqrt{n}}$$
Margin of Error (ME) 0.537 $$ME = t_{1-\alpha/2} \times SE$$
Lower CI 6.203 $$\bar{x} - ME$$
Upper CI 7.277 $$\bar{x} + ME$$

8.3 Determining the Sample Size

Determining the sample size is a crucial step in designing experiments, surveys, and data anal-
yses. The goal is to ensure that the sample is large enough to provide accurate and reliable
estimates of population parameters such as themean𝜇 or proportion 𝑝. Sample size calculations
typically depend on:

• confidence level

• acceptable margin of error

• variability in the data (e.g., standard deviation)

• whether the population is large or finite

When the population standard deviation 𝜎 is known, the minimum required sample size is:
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𝑛 = (
𝑧𝛼/2 ⋅ 𝜎

𝐸 )
2

where:

• 𝑧𝛼/2 = critical value from the standard normal distribution

• 𝜎 = population standard deviation

• 𝐸 = desired margin of error

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/qVDVAZigXg0?si=GbqdAjaSclnitViq

8.3.1 Manual of the Sample Size

A data analytics team wants to estimate the average page loading time in an application. From
historical data, the population standard deviation is known to be:

𝜎 = 1.8 seconds

The team wants a margin of error of:

𝐸 = 0.3 seconds

Confidence level:

95%, 𝑧0.025 = 1.96

𝑛 = (1.96 × 1.8
0.3 )

2

𝑛 = (3.528
0.3 )2

= (11.76)2

≈ 138.3

Sample size must be an integer:

𝑛 = 139 observations

8.3.2 R Code (Sample Size for a Mean)

111



8.4. CI FOR A PROPORTION CHAPTER 8. CONFIDENCE INTERVAL

sigma <- 1.8
E <- 0.3
z <- 1.96

n <- (z * sigma / E)^2
ceiling(n)

[1] 139

8.4 CI for a Proportion

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/dLEtlteLVJU?si=82teF9pD7rZV_6B8

8.4.1 Manual of CI Proportion

A data science team wants to estimate the proportion of users who clicked on a new call-to-
action (CTA) button during an A/B test. From a sample of users, the team records how many
actually clicked the button.

Sample Data

• Total sample size: 𝑛 = 240,
• Number of users who clicked: 𝑥 = 78

Sample Proportion

The sample proportion ̂𝑝 is:

̂𝑝 = 𝑥
𝑛 = 78

240 = 0.325

So about 32.5% of sampled users clicked the CTA. Compute a 95% confidence interval for
the true population proportion 𝑝.

Standard Error (SE)

𝑆𝐸 = √ 𝑝̂(1−𝑝̂)
𝑛

= √0.325(1−0.325)
240

= √0.325×0.675
240

≈ 0.0294
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Critical Value

For a 95% confidence level: 𝑧𝛼/2 = 1.96

Margin of Error (ME)

𝑀𝐸 = 𝑧𝛼/2 × 𝑆𝐸 = 1.96 × 0.0294 ≈ 0.0577

Confidence Interval

𝐶𝐼95% = ̂𝑝 ± 𝑀𝐸
= 0.325 ± 0.0577
≈ (0.267, 0.383)

Interpretation (Data Science)

With 95% confidence, the true proportion of all users who would click the CTA lies between
26.7% and 38.3%. This interval quantifies uncertainty and helps the team decide whether the
CTA is performing strongly enough for deployment.

8.4.2 R Code for CI Proportion

library(knitr)
library(kableExtra)

# Data
n <- 240
x <- 78
p_hat <- x / n
z_crit <- 1.96
SE <- sqrt(p_hat * (1 - p_hat) / n)
ME <- z_crit * SE
CI_lower <- p_hat - ME
CI_upper <- p_hat + ME

# Summary table with formulas
summary_table <- data.frame(
Parameter = c("Total sample size (n)",

"Number of successes (x)",
"Sample proportion (p̂)",
"Standard Error (SE)",
"Critical value (z_{�/2})",
"Margin of Error (ME)",
"Lower 95% CI",
"Upper 95% CI"),
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Value = c(n, x, round(p_hat,3), round(SE,4), z_crit, round(ME,4), round(CI_lower,3), round(CI_upper,3)),
Formula = c(
"$$n$$",
"$$x$$",
"$$\\hat{p} = \\frac{x}{n}$$",
"$$SE = \\sqrt{\\frac{\\hat{p}(1-\\hat{p})}{n}}$$",
"$$z_{1-\\alpha/2}$$",
"$$ME = z_{1-\\alpha/2} \\times SE$$",
"$$\\hat{p} - ME$$",
"$$\\hat{p} + ME$$"

),
stringsAsFactors = FALSE

)

# Render table
kable(summary_table, escape = FALSE, booktabs = TRUE, align = "lcc") %>%
kable_styling(full_width = FALSE)

Parameter Value Formula

Total sample size (n) 240.0000 $$n$$
Number of successes (x) 78.0000 $$x$$
Sample proportion (p̂) | 0.3250 | $$\hat{p} = \frac{x}{n}$$
Standard Error (SE) 0.0302 $$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
Critical value (z_{α/2}) 1.9600 $$z_{1-\alpha/2}$$

Margin of Error (ME) 0.0593 $$ME = z_{1-\alpha/2} \times SE$$
Lower 95% CI 0.2660 $$\hat{p} - ME$$
Upper 95% CI 0.3840 $$\hat{p} + ME$$

8.5 One-Sided CI

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/c9RVFq6v5-g?si=Bdc9-BPQO4L1Va1d

8.5.1 Manual of One-Sided CI

The product team launched a new recommendation feature and sampled user interactions to
measure engagement, specifically the proportion of users who clicked the CTA. We want to
estimate the true population proportion with a 95% one-sided confidence interval.

Sample data:

• Total sample size: 𝑛 = 240

• Number of users who clicked: 𝑥 = 78
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Sample proportion

̂𝑝 = 𝑥
𝑛 = 78

240 = 0.325

Standard Error (SE)

𝑆𝐸 = √ 𝑝̂(1−𝑝̂)
𝑛

= √0.325×0.675
240

≈ 0.0294

Critical value for 95% one-sided CI

Significance level:
𝛼 = 0.05

From z-table (one-sided):

𝑧1−𝛼 ≈ 1.645

Margin of Error (ME)

𝑀𝐸 = 𝑧1−𝛼 ⋅ 𝑆𝐸
= 1.645 ⋅ 0.0294
≈ 0.0484

One-Sided Confidence Interval

Upper One-Sided CI:

𝐶𝐼𝑢𝑝𝑝𝑒𝑟 = ̂𝑝 + 𝑀𝐸
= 0.325 + 0.0484
≈ 0.373

Lower One-Sided CI:

𝐶𝐼𝑙𝑜𝑤𝑒𝑟 = ̂𝑝 − 𝑀𝐸
= 0.325 − 0.0484
≈ 0.277
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Interpretation (Data Science)

• Lower one-sided CI:With 95% confidence, at least 27.7% of users would click the CTA.

• Upper one-sided CI: With 95% confidence, no more than 37.3% of users would click
the CTA.

This interval quantifies uncertainty in the population proportion using one-sided estimation,
which is useful for decision-making whenwe are only concerned with aminimum ormaximum
threshold.

8.5.2 R Code One-Sided CI

library(knitr)
library(kableExtra)

# Data
n <- 240 # sample size
x <- 78 # number of successes
p_hat <- x/n # sample proportion
alpha <- 0.05
z_crit <- qnorm(1 - alpha) # one-sided z critical
SE <- sqrt(p_hat * (1 - p_hat)/n)
ME <- z_crit * SE
CI_lower <- p_hat - ME
CI_upper <- p_hat + ME

# Summary table with formulas
summary_table <- data.frame(
Parameter = c("Sample size (n)",

"Number of successes (x)",
"Sample proportion (p̂)",
"Significance level (�)",
"Critical value (z���)",
"Standard Error (SE)",
"Margin of Error (ME)",
"Lower One-Sided CI",
"Upper One-Sided CI"),

Value = c(n, x, round(p_hat,3), alpha, round(z_crit,3), round(SE,4), round(ME,4), round(CI_lower,3), round(CI_upper,3)),
Formula = c(
"$$n$$",
"$$x$$",
"$$\\hat{p} = \\frac{x}{n}$$",
"$$\\alpha$$",
"$$z_{1-\\alpha}$$",
"$$SE = \\sqrt{\\frac{\\hat{p}(1-\\hat{p})}{n}}$$",
"$$ME = z_{1-\\alpha} \\times SE$$",
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"$$CI_{lower} = \\hat{p} - ME$$",
"$$CI_{upper} = \\hat{p} + ME$$"

),
stringsAsFactors = FALSE

)

# Render table
kable(summary_table, escape = FALSE, booktabs = TRUE, align = "lcc") %>%
kable_styling(full_width = FALSE)

Parameter Value Formula

Sample size (n) 240.0000 $$n$$
Number of successes (x) 78.0000 $$x$$
Sample proportion (p̂) | 0.3250 | $$\hat{p} = \frac{x}{n}$$
Significance level (α) 0.0500 $$\alpha$$
Critical value (z��α) 1.6450 $$z_{1-\alpha}$$

Standard Error (SE) 0.0302 $$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
Margin of Error (ME) 0.0497 $$ME = z_{1-\alpha} \times SE$$
Lower One-Sided CI 0.2750 $$CI_{lower} = \hat{p} - ME$$
Upper One-Sided CI 0.3750 $$CI_{upper} = \hat{p} + ME$$

References
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Chapter 9

Statistical Inference

Statistical inference is the process of drawing conclusions about a population based on infor-
mation obtained from a sample. It allows researchers and analysts to make generalizations,
predictions, and decisions under uncertainty, bridging the gap between observed data and the
broader population [59].

This mind map illustrates the core structure of statistical inference (see Figure Figure 9.1), high-
lighting its three main components: Statistical Hypotheses, Hypothesis Testing Methods, and
Statistical Decision Making. Key elements such as Null Hypothesis (H�), Alternative Hypoth-
esis (H�), T-Test, Z-Test, Chi-Square Test, and P-Value for decision making are included, pro-
viding a concise overview of how hypotheses are formulated, tested, and used to guide statistical
decisions.

STATISTICAL
INFERENCE

Statistical Hypotheses

Hypothesis Testing Methods

Statistical Decision Making

Null Hypothesis (H₀)

Alternative Hypothesis (H₁)

T-Test

Z-Test

Chi-Square Test

P-Value & Decision Making

Figure 9.1: Statistical Inference

Statistical inference explains how conclusions about a population can be drawn from sample data
by systematically accounting for uncertainty and variability. This topic serves as a bridge be-
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tween descriptive statistics and formal decision-making methods, such as parameter estimation
and hypothesis testing. The following video is designed to provide a clear and intuitive intro-
duction to statistical inference, helping students build conceptual foundations that will support
their learning of more advanced statistical techniques.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/6E6pB5JFLgM?si=t_lnDhsa80kJKA7k

9.1 Statistical Hypotheses

Statistical hypotheses are formal statements about a population parameter that can be tested
using sample data. They provide a framework for making objective decisions based on evi-
dence, helping researchers determine whether observed effects are due to random variation or
represent a true phenomenon. In hypothesis testing, we compare the Null Hypothesis (H�)
and the Alternative Hypothesis (H�) to decide which statement is more consistent with the
observed data.

The following video provides a clear and concise conceptual explanation of the relationship be-
tween statistical hypotheses, parameter estimation, and confidence intervals, helping you build
strong intuition before moving on to formal calculations and analytical procedures.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/a_l991xUAOU?si=rKXtI_DRUkgQkv8q

9.1.1 Null Hypothesis (H�)

The Null Hypothesis (H�) serves as the baseline or reference point in hypothesis testing.
It represents the assumption that there is no effect, no difference, or no relationship in the
population. H� provides a standard against which the observed data is compared, allowing
researchers to determine whether any observed difference is likely due to random variation
rather than a true effect [60].

Key Points:

• Acts as a benchmark for testing statistical evidence.

• Assumed true initially and is tested for possible rejection, not proven.

• Denoted as H� in all statistical analyses.

Examples:

1. Drug Effect on Blood Pressure:
The null hypothesis states that a new drug has no effect on blood pressure:

𝐻0 ∶ 𝜇treatment = 𝜇control
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2. Comparison of Teaching Methods:
The null hypothesis states there is no difference in average test scores between two
teaching methods:

𝐻0 ∶ 𝜇1 = 𝜇2

In practice, H� provides a conservative assumption. Only if the sample data provides strong
enough evidence against H� do we consider rejecting it in favor of theAlternative Hypothesis
(H�). This ensures decisions are data-driven and objective, minimizing the risk of concluding
an effect exists when it does not [59].

9.1.2 Alternative Hypothesis (H�)

The Alternative Hypothesis (H� or Ha) represents the statement that contradicts the Null
Hypothesis (H�). It reflects the effect, difference, or relationship the researcher expects to
detect in the population [59]–[61].

Key Points:

• Indicates the presence of a real effect or difference.

• Denoted as H� or Ha.

• Can be two-tailed (detecting a difference in either direction) or one-tailed (detecting a
difference in a specific direction).

Examples:

1. Drug Effect on Blood Pressure:
The alternative hypothesis states that a new drug reduces or changes blood pressure:

𝐻1 ∶ 𝜇treatment ≠ 𝜇control

2. Comparison of Teaching Methods:
The alternative hypothesis states that one teaching method improves test scores com-
pared to the other:

𝐻1 ∶ 𝜇1 > 𝜇2

In hypothesis testing, H� is accepted only if the sample evidence is strong enough to reject
H�. This ensures that conclusions about population effects are supported by data, reducing
the risk of drawing incorrect inferences [59].
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9.1.3 Type I/II Errors

In hypothesis testing, errors can occur when making decisions based on sample data. The two
main types of errors are Type I Error (α) and Type II Error (β). The table below summarizes
the comparison with examples:

Error Type Definition Probability Example

Type I Error (α) Rejecting H� when
it is actually true
(false positive)

α, commonly 0.05 Concluding a
new drug
lowers blood
pressure when
in reality it
does not.

Type II Error (β) Failing to reject H�
when it is actually
false (false
negative)

β; Power = 1 − β Concluding a
new drug has
no effect on
blood pressure
when it
actually does.

Notes:

• Type I Error (α) is controlled by setting the significance level before conducting the test.

• Type II Error (β) depends on the sample size, effect size, and variability. Increasing
sample size reduces β and increases the power of the test.

• Understanding both errors is crucial for making informed statistical decisions and bal-
ancing the risk of false positives and false negatives in research.

9.2 Hypothesis Test Methods

In statistics, hypothesis testing methods are used to determine whether the evidence from a
sample is strong enough to reject the null hypothesis (H�) in favor of the alternative hypothesis
(H�). The choice of test depends on the type of data, sample size, and population character-
istics.

9.2.1 T-Test

The T-Test is used to compare the mean of a sample to a known value or to compare means
between two groups when the population standard deviation is unknown and the sample size
is relatively small.

Types of T-Test:
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1. One-sample T-Test: Compare sample mean to a known value.

2. Independent two-sample T-Test: Compare means of two independent groups.

3. Paired T-Test: Compare means of paired observations (e.g., before-after measure-
ments).

Example:
- Testing whether the average test score of students differs from 75.

𝐻0 ∶ 𝜇 = 75 𝑣𝑠 𝐻1 ∶ 𝜇 ≠ 75

9.2.2 Z-Test

The Z-Test is used to compare means when the population standard deviation is known or
the sample size is large (n ≥ 30). It assumes that the data is approximately normally distributed.

Types of Z-Test:

1. One-sample Z-Test: Compare a sample mean to a known population mean.

2. Two-sample Z-Test: Compare means of two independent populations with known stan-
dard deviations.

Example:

• Testing whether a new teaching method changes the average score, assuming the
population standard deviation is known:

𝐻0 ∶ 𝜇new = 𝜇old 𝑣𝑠 𝐻1 ∶ 𝜇new ≠ 𝜇old

9.2.3 Chi-Square Test

The Chi-Square Test (χ² Test) is used for categorical data to examine whether the observed
frequency distribution differs from the expected distribution.

Types of Chi-Square Test:

1. Goodness-of-Fit Test: Tests if a single categorical variable follows a hypothesized
distribution.

2. Test of Independence: Tests whether two categorical variables are independent.

Example:

• Testing whether gender (male/female) is independent of preference for online learning
(yes/no):

𝐻0 ∶ Gender and preference are independent𝐻1 ∶ Gender and preference are not independent
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9.3 Statistical Decision Making

Statistical Decision Making involves using the results of hypothesis tests to make informed
decisions about the population. After performing a T-Test, Z-Test, or Chi-Square Test, we inter-
pret the p-value and decide whether to reject or fail to reject the null hypothesis (H�). This
process allows us to draw conclusions while considering the risk of errors. Steps in Statistical
Decision Making:

1. Set significance level (α):

• Common choices: 0.05 (5%), 0.01 (1%), or 0.10 (10%).

• This determines the threshold for rejecting H�.

2. Perform the hypothesis test:

• Calculate test statistic (𝑇 , 𝑍, 𝜒2) based on sample data.

• Compute the p-value.

3. Compare p-value with α:

• If p-value ≤ α: Reject H� → evidence supports H�.

• If p-value > α: Fail to reject H� → insufficient evidence to support H�.

4. Consider Type I and Type II Errors:

• Type I Error (α): Rejecting H� when it is true.

• Type II Error (β): Failing to reject H� when it is false.

• Balance between α and β is important for decision reliability.

9.3.1 T-Test

• Suppose we test whether the average score of a sample of students is different from 80.

• T-Test yields: t = 1.82, p-value = 0.10

• Significance level: α = 0.05

Decision:

• Since p-value (0.10) > α (0.05), we fail to reject H�.

• Interpretation: There is insufficient evidence to conclude that the average score differs
from 80.
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9.3.2 Chi-Square Test

• Suppose we test whether gender and preference for online learning are independent.

• Chi-Square Test yields: χ² = 4.23, p-value = 0.04

• Significance level: α = 0.05

Decision:

• Since p-value (0.04) < α (0.05), we reject H�.

• Interpretation: There is evidence that gender and preference are not independent.

References
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Chapter 10

Nonparametric Methods

Nonparametric methods are statistical techniques that do not rely on strict distributional
assumptions, such as normality or known population parameters. These methods are particu-
larly useful when dealing with small samples, ordinal or categorical data, or data that contain
outliers and skewness [62]; [63].

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/welIUs2boQ8?si=9sKOrtKCAR8jMuAB

Within the framework of statistical inference (see, Figure 10.1), nonparametric methods allow
researchers to draw valid conclusions even when classical parametric assumptions are violated.
As a result, they are widely applied in data science, business analytics, engineering, health
sciences, and social research [64].

10.1 Role of Nonparametric

Statistical inference aims to draw conclusions about a population based on sample data while
accounting for uncertainty. Traditional parametric inference relies on assumptions about pop-
ulation parameters, such as the mean and variance. When these assumptions are questionable,
nonparametric inference provides a robust alternative [62].

Instead of focusing on parameters like the mean (𝜇), nonparametric methods often emphasize:

• Medians

• Distributional equality

• Ranks or signs

• Frequencies

This shift allows inference to remain valid under broader conditions.
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NONPARAMETRIC
METHODS

Core
Concepts

Nonparametric
Tests

Statistical
Decision Making

Median & Distribution

Ranks & Signs

Sign Test

Wilcoxon Tests

Mann–Whitney U

Kruskal–Wallis

Friedman Test

Chi-Square Test

P-Value & α

Figure 10.1: Nonparametric Methods
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10.2 When to Use?

Nonparametric methods are recommended when:

• The data distribution is unknown or non-normal
• Sample size is small
• Data contain outliers
• Measurement scale is ordinal or nominal
• Variance homogeneity assumptions are violated

Parametric vs Parametric Methods:

Aspect Parametric Methods Nonparametric Methods

Distribution
assump-
tion

Required Not required

Sensitivity
to outliers

High Low

Data scale Interval / Ratio Ordinal / Nominal
Statistical
power

Higher (if assumptions met) Lower but more robust

10.3 Nonparametric Hypotheses

As in parametric inference, nonparametric testing is based on statistical hypotheses:

• Null Hypothesis (H�): No difference, no effect, or no association
• Alternative Hypothesis (H�): A difference, effect, or association exists

However, these hypotheses typically concern medians, distributions, or ranks, rather than
means [63].

Example:

𝐻0 ∶ Median satisfaction score is the same across services

𝐻1 ∶ Median satisfaction score differs across services

10.4 Common Nonparametric

10.4.1 Sign Test

The Sign Test is one of the simplest nonparametric tests and is used to test hypotheses about
a population median or the median of paired differences. Unlike parametric tests, it does not
require assumptions about the underlying data distribution and is highly robust to outliers.
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The Sign Test is appropriate when:

• Observations are paired (before–after or matched samples)
• The distribution of differences is unknown or highly skewed
• Data contain outliers
• Only the direction of change is reliable

Key Characteristics:

• Uses only the sign (+ or −) of differences

• Extremely robust to non-normality and outliers

• Has relatively low statistical power

Hypotheses

𝐻0 ∶ Median difference = 0

𝐻1 ∶ Median difference ≠ 0

Real-World Case: Manufacturing Quality Control

A manufacturing plant introduces a new machine calibration procedure aimed at reducing
product defects. For each production batch, the number of defective items is recorded before
and after calibration. Due to occasional machine failures, the defect counts include extreme
values and are not normally distributed.

Because the magnitude of changes is unreliable, the Sign Test is applied to determine whether
themedian change in defect counts differs from zero.

Step 1: Compute Paired Differences

For each batch:

𝑑𝑖 = Defectsafter − Defectsbefore

# Defect counts before and after calibration
before <- c(12, 15, 10, 18, 20, 14, 16, 22, 11, 19)
after <- c(10, 14, 11, 15, 18, 13, 15, 20, 11, 17)

# Compute paired differences
diff <- after - before
diff

[1] -2 -1 1 -3 -2 -1 -1 -2 0 -2
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Step 2: Assign Signs

• 𝑑𝑖 > 0: Positive sign (+)

• 𝑑𝑖 < 0: Negative sign (−)

• 𝑑𝑖 = 0: Discard the observation

Let 𝑛 be the number of non-zero differences.

# Remove zero differences

diff_nonzero <- diff[diff != 0]

# Assign signs

signs <- ifelse(diff_nonzero > 0, "+", "-")
data.frame(Difference = diff_nonzero, Sign = signs)

Difference Sign
1 -2 -
2 -1 -
3 1 +
4 -3 -
5 -2 -
6 -1 -
7 -1 -
8 -2 -
9 -2 -

Step 3: Count Signs

• Number of positive signs: 𝑛+

• Number of negative signs: 𝑛−

n_pos <- sum(diff_nonzero > 0)
n_neg <- sum(diff_nonzero < 0)

n_pos

[1] 1

n_neg

[1] 8

Under 𝐻0, positive and negative signs are equally likely.
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Step 4: Test Statistic

The test statistic is defined as:

𝑋 = min(𝑛+, 𝑛−)

# Test statistic

X <- min(n_pos, n_neg)
X

[1] 1

Under the null hypothesis:

𝑋 ∼ Binomial(𝑛, 0.5)

# Perform Sign Test using binom.test()
binom.test(n_pos, n_pos + n_neg, p = 0.5, alternative = "two.sided")

Exact binomial test

data: n_pos and n_pos + n_neg
number of successes = 1, number of trials = 9, p-value = 0.03906
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.002809137 0.482496515
sample estimates:
probability of success

0.1111111

Step 5: Decision Rule

• Compute the p-value using the binomial distribution

• Reject 𝐻0 if:

p-value < 𝛼

Interpretation:

• Reject 𝐻0: There is sufficient evidence that the median difference is not zero, indicating
that the calibration has a significant effect on defect counts.

• Fail to reject 𝐻0: There is insufficient evidence to conclude that the calibration affects
product defects.
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The Sign Test is a reliable and robust nonparametric method for analyzing paired data when
distributional assumptions are violated. Although it has lower power than alternative tests, it
remains valuable in real-world applications where data quality is limited.

10.4.2 Wilcoxon Signed-Rank Test

TheWilcoxon Signed-Rank Test is a nonparametric test used to compare paired samples and
test hypotheses about themedian of paired differences [62]. Unlike the Sign Test, it considers
both the direction and magnitude of differences, making it more powerful while still avoiding
strict distributional assumptions.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/NZsL2eDQiDQ?si=r95mg9cdFBwlVVl5

The Wilcoxon Signed-Rank Test is commonly regarded as the nonparametric alternative to
the paired t-test.

The Wilcoxon Signed-Rank Test is appropriate when:

• Observations are paired (before–after or matched samples)
• The distribution of differences is not normal
• Data are at least ordinal
• The distribution of differences is approximately symmetric
• The magnitude of changes is meaningful and reliable

Key Characteristics:

• Uses both the sign and rank of paired differences

• More powerful than the Sign Test

• Does not assume normality

• Sensitive to strong asymmetry

Hypotheses

𝐻0 ∶ Median difference = 0

𝐻1 ∶ Median difference ≠ 0
Real-World Case: Manufacturing Quality Control

A manufacturing plant evaluates the effectiveness of a new machine calibration procedure
designed to reduce product defects. For each production batch, the number of defective items is
recorded before and after calibration.

Although the defect data are not normally distributed, themagnitude of change in defect counts
is reliable and meaningful. Therefore, the Wilcoxon Signed-Rank Test is applied to assess
whether themedian change in defect counts differs significantly from zero.
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Step 1: Compute Paired Differences

For each batch:

𝑑𝑖 = Defectsafter − Defectsbefore

# Defect counts before and after calibration
before <- c(12, 15, 10, 18, 20, 14, 16, 22, 11, 19)
after <- c(10, 14, 11, 15, 18, 13, 15, 20, 11, 17)

# Compute paired differences
diff <- after - before
diff

[1] -2 -1 1 -3 -2 -1 -1 -2 0 -2

Step 2: Remove Zero Differences

• If 𝑑𝑖 = 0, discard the observation

• Let 𝑛 be the number of non-zero differences

# Remove zero differences

diff_nonzero <- diff[diff != 0]
diff_nonzero

[1] -2 -1 1 -3 -2 -1 -1 -2 -2

Step 3: Rank the Absolute Differences

• Compute |𝑑𝑖| for each remaining pair

• Rank the values from smallest to largest

• If ties occur, assign average ranks

# Absolute differences

abs_diff <- abs(diff_nonzero)

# Rank absolute differences

ranks <- rank(abs_diff)

data.frame(
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Difference = diff_nonzero,
AbsDifference = abs_diff,
Rank = ranks
)

Difference AbsDifference Rank
1 -2 2 6.5
2 -1 1 2.5
3 1 1 2.5
4 -3 3 9.0
5 -2 2 6.5
6 -1 1 2.5
7 -1 1 2.5
8 -2 2 6.5
9 -2 2 6.5

Step 4: Assign Signs to Ranks

• If 𝑑𝑖 > 0, assign a positive rank

• If 𝑑𝑖 < 0, assign a negative rank

# Assign signed ranks

signed_ranks <- ifelse(diff_nonzero > 0, ranks, -ranks)

data.frame(
Difference = diff_nonzero,
Rank = ranks,
SignedRank = signed_ranks
)

Difference Rank SignedRank
1 -2 6.5 -6.5
2 -1 2.5 -2.5
3 1 2.5 2.5
4 -3 9.0 -9.0
5 -2 6.5 -6.5
6 -1 2.5 -2.5
7 -1 2.5 -2.5
8 -2 6.5 -6.5
9 -2 6.5 -6.5

Step 5: Compute Test Statistic

Let:
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• 𝑊 + = sum of positive ranks

• 𝑊 − = sum of negative ranks

The test statistic is defined as:

𝑊 = min(𝑊 +, 𝑊 −)
# Sum of positive and negative ranks

W_pos <- sum(ranks[diff_nonzero > 0])
W_neg <- sum(ranks[diff_nonzero < 0])

W_pos

[1] 2.5

W_neg

[1] 42.5

# Test statistic

W <- min(W_pos, W_neg)
W

[1] 2.5

For large samples (𝑛 > 20), the statistic may be approximated by a normal distribution.

Step 6: Decision Rule

Compute the p-value using the Wilcoxon distribution or its normal approximation

# Perform Wilcoxon Signed-Rank Test
wilcox.test(
after,
before,
paired = TRUE,
alternative = "two.sided",
exact = TRUE
)

Wilcoxon signed rank test with continuity correction

data: after and before
V = 2.5, p-value = 0.01868
alternative hypothesis: true location shift is not equal to 0

136



CHAPTER 10. NONPARAMETRIC METHODS 10.4. COMMON NONPARAMETRIC

Reject 𝐻0 if:

p-value < 𝛼

Interpretation:

• Reject 𝐻0: There is sufficient evidence that the median difference is not zero, indicating
that the calibration significantly affects defect counts.

• Fail to reject 𝐻0: There is insufficient evidence to conclude that the calibration has a
significant effect.

TheWilcoxon Signed-Rank Test provides a balance between robustness and efficiency, mak-
ing it a preferred nonparametricmethod for paired datawhen normality assumptions are violated.

10.4.3 Mann–Whitney U Test

TheMann–Whitney U Test is a nonparametric test used to compare two independent samples
and assess whether they come from populations with the same central tendency. It is commonly
regarded as the nonparametric alternative to the independent two-sample t-test.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/LcxB56PzylA?si=7ISh_4144R-9TF4P

Rather than comparing means, the Mann–Whitney U Test evaluates whether observations from
one group tend to be larger or smaller than those from the other group based on their ranks.

The Mann–Whitney U Test is appropriate when:

• Two samples are independent
• Data are at least ordinal
• The population distributions are not normal
• Sample sizes may be small or unequal
• The shapes of the two distributions are similar

Key Characteristics:

• Uses ranks instead of raw data

• Does not assume normality

• Robust to outliers

• Tests differences in distribution location
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Hypotheses

𝐻0 ∶ The two populations have the same distribution

𝐻1 ∶ The two populations have different distributions

(If distribution shapes are similar, this is often interpreted as a test of median equality.)

Real-World Case: Business and Marketing Analytics

A company wants to compare customer satisfaction scores between two independent mar-
keting strategies (Strategy A and Strategy B). Survey responses are collected using a Likert
scale, producing ordinal data that do not satisfy normality assumptions.

Because the two customer groups are independent and the data are ordinal, theMann–Whitney
U Test is used to determine whether customer satisfaction differs significantly between the two
strategies.

Step 1: Combine and Rank the Data

• Combine observations from both groups

• Rank all observations from smallest to largest

• Assign average ranks in the presence of ties

# Customer satisfaction scores (Likert scale: 1–5)
strategy_A <- c(3, 4, 4, 5, 3, 4, 5, 4)
strategy_B <- c(2, 3, 3, 4, 2, 3, 4, 3)

# Combine data
scores <- c(strategy_A, strategy_B)
group <- factor(c(rep("A", length(strategy_A)),

rep("B", length(strategy_B))))

# Rank combined data
ranks <- rank(scores)

data.frame(
Score = scores,
Group = group,
Rank = ranks

)

Score Group Rank
1 3 A 5.5
2 4 A 11.5
3 4 A 11.5
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4 5 A 15.5
5 3 A 5.5
6 4 A 11.5
7 5 A 15.5
8 4 A 11.5
9 2 B 1.5
10 3 B 5.5
11 3 B 5.5
12 4 B 11.5
13 2 B 1.5
14 3 B 5.5
15 4 B 11.5
16 3 B 5.5

Step 2: Compute Rank Sums

Let:

• 𝑅1 = sum of ranks for Group 1

• 𝑅2 = sum of ranks for Group 2

# Rank sums

R1 <- sum(ranks[group == "A"])
R2 <- sum(ranks[group == "B"])

R1

[1] 88

R2

[1] 48

Step 3: Compute the U Statistics

For sample sizes 𝑛1 and 𝑛2:

𝑈1 = 𝑛1𝑛2 + 𝑛1(𝑛1 + 1)
2 − 𝑅1

𝑈2 = 𝑛1𝑛2 + 𝑛2(𝑛2 + 1)
2 − 𝑅2
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# Sample sizes

n1 <- length(strategy_A)
n2 <- length(strategy_B)

# Compute U statistics

U1 <- n1 * n2 + n1 * (n1 + 1) / 2 - R1
U2 <- n1 * n2 + n2 * (n2 + 1) / 2 - R2

U1

[1] 12

U2

[1] 52

Step 4: Test Statistic

The test statistic is:

𝑈 = min(𝑈1, 𝑈2)

# Test statistic

U <- min(U1, U2)
U

[1] 12

For large samples, 𝑈 can be approximated by a normal distribution.

Step 5: Decision Rule

Compute the p-value from the Mann–Whitney distribution or its normal approximation

# Mann–Whitney U Test using R
wilcox.test(
strategy_A,
strategy_B,
alternative = "two.sided",
exact = TRUE
)
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Wilcoxon rank sum test with continuity correction

data: strategy_A and strategy_B
W = 52, p-value = 0.03033
alternative hypothesis: true location shift is not equal to 0

Reject 𝐻0 if:

p-value < 𝛼

Interpretation:

• Reject 𝐻0: There is sufficient evidence that the two groups differ in central tendency or
distribution location.

• Fail to reject 𝐻0: There is insufficient evidence to conclude a difference between the
two groups.

The Mann–Whitney U Test is a powerful and flexible nonparametric method for comparing
two independent groups when parametric assumptions are violated or data are ordinal.

10.4.4 Kruskal–Wallis Test

The Kruskal–Wallis Test is a nonparametric test used to compare three or more indepen-
dent groups and determine whether they originate from the same population distribution. It is
commonly regarded as the nonparametric alternative to one-way ANOVA.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/l86wEhUzkY4?si=Vhkxk30XPJ1iSRdb

Instead of comparing group means, the Kruskal–Wallis Test evaluates differences in central
tendency by comparing the ranks of observations across groups.

The Kruskal–Wallis Test is appropriate when:

• There are three or more independent samples
• Data are at least ordinal
• The population distributions are not normal
• Sample sizes may be unequal
• The shapes of the group distributions are similar

Key Characteristics:

• Uses ranks instead of raw data

• Does not assume normality
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• Robust to outliers

• Suitable for small sample sizes

Hypotheses

𝐻0 ∶ All populations have the same distribution

𝐻1 ∶ At least one population has a different distribution

(If distribution shapes are similar, this is often interpreted as a test of median equality.)

Real-World Case: Engineering and Quality Control

A manufacturing company wants to compare product defect rates across three different pro-
ductionmachines (Machine A, B, and C). The defect counts are skewed and contain outliers due
to occasional machine malfunctions. Because the data are non-normal and the machines operate
independently, the Kruskal–Wallis Test is applied to determine whether there are statistically
significant differences in defect rates among the machines.

Step 1: Combine and Rank All Observations

• Combine observations from all groups into a single dataset

• Rank all values from smallest to largest

• Assign average ranks in the presence of ties

# Defect counts for each machine
machine_A <- c(5, 7, 6, 8, 9, 6, 7)
machine_B <- c(10, 12, 11, 9, 13, 10, 14)
machine_C <- c(4, 5, 6, 4, 5, 7, 6)

# Combine data
defects <- c(machine_A, machine_B, machine_C)
machine <- factor(c(rep("A", length(machine_A)),

rep("B", length(machine_B)),
rep("C", length(machine_C))))

# Rank all observations
ranks <- rank(defects)

data.frame(
Defects = defects,
Machine = machine,
Rank = ranks

)
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Defects Machine Rank
1 5 A 4.0
2 7 A 11.0
3 6 A 7.5
4 8 A 13.0
5 9 A 14.5
6 6 A 7.5
7 7 A 11.0
8 10 B 16.5
9 12 B 19.0
10 11 B 18.0
11 9 B 14.5
12 13 B 20.0
13 10 B 16.5
14 14 B 21.0
15 4 C 1.5
16 5 C 4.0
17 6 C 7.5
18 4 C 1.5
19 5 C 4.0
20 7 C 11.0
21 6 C 7.5

Step 2: Compute Rank Sums for Each Group

Let:

• 𝑅𝑗 = sum of ranks for group 𝑗

• 𝑛𝑗 = sample size of group 𝑗

• 𝑘 = number of groups

• 𝑁 = ∑𝑘
𝑗=1 𝑛𝑗

# Sample sizes
n_A <- length(machine_A)
n_B <- length(machine_B)
n_C <- length(machine_C)

# Rank sums
R_A <- sum(ranks[machine == "A"])
R_B <- sum(ranks[machine == "B"])
R_C <- sum(ranks[machine == "C"])

R_A

[1] 68.5
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R_B

[1] 125.5

R_C

[1] 37

Step 3: Compute the Test Statistic

The Kruskal–Wallis test statistic is:

𝐻 = 12
𝑁(𝑁 + 1)

𝑘
∑
𝑗=1

𝑅2
𝑗

𝑛𝑗
− 3(𝑁 + 1)

# Total sample size
N <- length(defects)

# Compute H statistic
H <- (12 / (N * (N + 1))) * (
(R_A^2 / n_A) +
(R_B^2 / n_B) +
(R_C^2 / n_C)
) - 3 * (N + 1)

H

[1] 14.93321

Step 4: Sampling Distribution

For sufficiently large samples, the test statistic follows a chi-square distribution:

𝐻 ∼ 𝜒2
𝑘−1

# Degrees of freedom
df <- 3 - 1

# Compute p-value
p_value <- 1 - pchisq(H, df)
p_value

[1] 0.0005718666
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Step 5: Decision Rule

Compute the p-value from the chi-square distribution

# Kruskal–Wallis test using R
kruskal.test(defects ~ machine)

Kruskal-Wallis rank sum test

data: defects by machine
Kruskal-Wallis chi-squared = 15.14, df = 2, p-value = 0.0005158

Reject 𝐻0 if:

p-value < 𝛼

Interpretation:

• Reject 𝐻0: There is sufficient evidence that at least one group differs in central tendency
or distribution location.

• Fail to reject 𝐻0: There is insufficient evidence to conclude a difference among the
groups.

Post-Hoc Analysis

If𝐻0 is rejected, post-hoc tests such asDunn’s testmay be conducted to identify which specific
groups differ. TheKruskal–Wallis Test provides a robust and flexible approach for comparing
multiple independent groups when parametric assumptions are violated.

10.4.5 Friedman Test

The Friedman Test is a nonparametric statistical test used to detect differences among three or
more related (paired) groups. It is commonly regarded as the nonparametric alternative to
the one-way repeated-measures ANOVA.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/2moNzzkkZwU?si=au5hcqwTJyb0zsQf

Rather than comparing means, the Friedman Test evaluates differences in central tendency by
comparing within-subject ranks across treatments or conditions.

The Friedman Test is appropriate when:

• The same subjects are measured under three or more conditions
• Observations are paired or repeated measures
• Data are at least ordinal
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• The normality assumption for repeated-measures ANOVA is violated
• The magnitude of measurements is comparable across conditions

Key Characteristics:

• Uses ranks within each subject/block

• Does not assume normality

• Controls for subject-to-subject variability

• Suitable for small sample sizes

Hypotheses

𝐻0 ∶ All treatments have the same distribution

𝐻1 ∶ At least one treatment has a different distribution

(If distribution shapes are similar, this is often interpreted as a test of median equality across
treatments.)

Real-World Case: Human Performance Evaluation

A company evaluates employee productivity under three different work schedules: fixed
hours, flexible hours, and remote work. The same employees are evaluated under each schedule
over separate periods.

Because the productivity scores are not normally distributed and measurements are repeated
on the same individuals, the Friedman Test is used to determine whether productivity differs
significantly across the three work conditions.

Step 1: Organize Data into Blocks

• Each row represents a subject (block)

• Each column represents a treatment or condition

# Defect counts for each batch under different settings
setting_A <- c(8, 7, 9, 6, 10)
setting_B <- c(6, 5, 7, 5, 8)
setting_C <- c(9, 8, 10, 7, 11)

# Create data frame (blocks = batches)
defects <- data.frame(
Batch = factor(1:5),
A = setting_A,
B = setting_B,
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C = setting_C
)

defects

Batch A B C
1 1 8 6 9
2 2 7 5 8
3 3 9 7 10
4 4 6 5 7
5 5 10 8 11

Step 2: Rank Data Within Each Block

• Rank the values within each subject from smallest to largest

• Assign average ranks in case of ties

# Rank within each batch
ranks <- t(apply(defects[, -1], 1, rank))

colnames(ranks) <- c("A", "B", "C")
ranks

A B C
[1,] 2 1 3
[2,] 2 1 3
[3,] 2 1 3
[4,] 2 1 3
[5,] 2 1 3

Step 3: Compute Rank Sums for Each Treatment

Let:

• 𝑅𝑗 = sum of ranks for treatment 𝑗

• 𝑛 = number of subjects (blocks)

• 𝑘 = number of treatments

# Rank sums
R <- colSums(ranks)

n <- nrow(defects) # number of blocks
k <- ncol(ranks) # number of treatments

R
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A B C
10 5 15

Step 4: Compute the Test Statistic

The Friedman test statistic is:

𝑄 = 12
𝑛𝑘(𝑘 + 1)

𝑘
∑
𝑗=1

𝑅2
𝑗 − 3𝑛(𝑘 + 1)

# Compute Friedman statistic manually
Q <- (12 / (n * k * (k + 1))) * sum(R^2) - 3 * n * (k + 1)
Q

[1] 10

Step 5: Sampling Distribution

For sufficiently large samples, the test statistic follows a chi-square distribution:

𝑄 ∼ 𝜒2
𝑘−1

# Degrees of freedom
df <- k - 1

# Compute p-value
p_value <- 1 - pchisq(Q, df)
p_value

[1] 0.006737947

Step 6: Decision Rule

Compute the p-value from the chi-square distribution

# Friedman test using R
friedman.test(as.matrix(defects[, -1]))

Friedman rank sum test

data: as.matrix(defects[, -1])
Friedman chi-squared = 10, df = 2, p-value = 0.006738
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Reject 𝐻0 if:

p-value < 𝛼

Interpretation:

• Reject 𝐻0: There is sufficient evidence that at least one treatment differs in central ten-
dency.

• Fail to reject 𝐻0: There is insufficient evidence to conclude a difference among treat-
ments.

Post-Hoc Analysis

If 𝐻0 is rejected, post-hoc procedures such as the Nemenyi test or pairwiseWilcoxon signed-
rank tests with adjustment may be used to identify which treatments differ.

The Friedman Test is a powerful nonparametric method for analyzing repeated-measures or
blocked data when parametric assumptions are violated.

10.4.6 Chi-Square Test

The Chi-Square Test is a nonparametric statistical test used to examine relationships between
categorical variables. It is widely applied to determine whether observed frequencies differ
significantly from expected frequencies under a specified hypothesis.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/EjtXk-yEK6w?si=qjzHP61u-HmxRras

The Chi-Square Test is commonly used for independence testing and goodness-of-fit analysis.

The Chi-Square Test is appropriate when:

• Data are categorical
• Observations are independent
• Frequencies (counts) are analyzed, not percentages
• Expected frequencies in each cell are sufficiently large (typically ≥ 5)

Key Characteristics:

• Based on frequency counts

• Does not assume normality

• Simple to compute and interpret

• Sensitive to sample size
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Types of Chi-Square Tests

1. Chi-Square Test of Independence
Examines whether two categorical variables are associated.

2. Chi-Square Goodness-of-Fit Test
Determines whether an observed distribution matches a theoretical distribution.

Hypotheses (Independence Test)

𝐻0 ∶ The two categorical variables are independent

𝐻1 ∶ The two categorical variables are not independent

Real-World Case: Social and Behavioral Sciences

A university wants to examine whether students’ study programs (Science, Engineering, So-
cial Sciences) are associated with their preferred learning mode (online, hybrid, in-person).

Because both variables are categorical and the data consist of frequency counts, theChi-Square
Test of Independence is applied.

Step 1: Construct a Contingency Table

Program / Learning Mode Online Hybrid In-Person

Science 𝑂11 𝑂12 𝑂13
Engineering 𝑂21 𝑂22 𝑂23
Social Sciences 𝑂31 𝑂32 𝑂33

# Observed frequencies
observed <- matrix(
c(40, 35, 25, # Science
30, 45, 25, # Engineering
50, 30, 20), # Social Sciences

nrow = 3,
byrow = TRUE

)

colnames(observed) <- c("Online", "Hybrid", "In-Person")
rownames(observed) <- c("Science", "Engineering", "Social Sciences")

observed

Online Hybrid In-Person
Science 40 35 25
Engineering 30 45 25
Social Sciences 50 30 20
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Step 2: Compute Expected Frequencies

For each cell:

𝐸𝑖𝑗 = (Row Total)𝑖 × (Column Total)𝑗
Grand Total

# Compute expected frequencies
expected <- chisq.test(observed)$expected
expected

Online Hybrid In-Person
Science 40 36.66667 23.33333
Engineering 40 36.66667 23.33333
Social Sciences 40 36.66667 23.33333

Step 3: Compute the Test Statistic

The Chi-Square statistic is:

𝜒2 =
𝑟

∑
𝑖=1

𝑐
∑
𝑗=1

(𝑂𝑖𝑗 − 𝐸𝑖𝑗)2

𝐸𝑖𝑗

where:

• 𝑂𝑖𝑗 = observed frequency

• 𝐸𝑖𝑗 = expected frequency

• 𝑟 = number of rows

• 𝑐 = number of columns

# Chi-square statistic
chisq_stat <- sum((observed - expected)^2 / expected)
chisq_stat

[1] 8.896104

Step 4: Degrees of Freedom

𝑑𝑓 = (𝑟 − 1)(𝑐 − 1)
# Degrees of freedom
df <- (nrow(observed) - 1) * (ncol(observed) - 1)
df

[1] 4
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Step 5: Decision Rule

Compute the p-value from the chi-square distribution

# Chi-Square Test of Independence using R
chisq.test(observed)

Pearson's Chi-squared test

data: observed
X-squared = 8.8961, df = 4, p-value = 0.06375

Reject 𝐻0 if:

p-value < 𝛼

Interpretation

• Reject 𝐻0: There is a significant association between the categorical variables.
• Fail to reject 𝐻0: There is insufficient evidence to conclude an association.

Effect Size (Optional)

For contingency tables, effect size can be measured using Cramér’s V:

𝑉 = √ 𝜒2

𝑁(𝑘 − 1)

where 𝑘 is the smaller of 𝑟 or 𝑐.
The Chi-Square Test is a fundamental tool for analyzing categorical data and identifying rela-
tionships between qualitative variables in many applied research fields.

10.5 Advantages and Limitations

The following table presents a summary of the advantages and limitations of nonparamet-
ric statistical methods, which may be considered when selecting an appropriate analytical ap-
proach based on data characteristics and research objectives.

Method Advantages Disadvantages

Sign Test Fewer assumptions;
extremely robust to outliers

Very low statistical power; ignores
magnitude of differences

Wilcoxon
Signed-Rank Test

More powerful than Sign
Test; uses magnitude and
direction

Requires symmetric distribution of
differences
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Method Advantages Disadvantages

Mann–Whitney U
Test

Suitable for ordinal data;
robust to non-normality

Tests distributional shift rather than
mean difference

Kruskal–Wallis Test Extends Mann–Whitney to
multiple groups; no
normality assumption

Does not indicate which groups
differ without post-hoc tests

Friedman Test Suitable for repeated
measures; controls subject
variability

Less powerful than parametric
repeated-measures ANOVA

Chi-Square Test Ideal for categorical data;
simple and intuitive

Sensitive to small expected
frequencies; no direction of
association

10.6 Nonparametric Case Studies

This section presents several real-world case studies illustrating the application of nonpara-
metric statistical methods in different fields. Each case highlights the characteristics of the
data, the rationale for choosing a nonparametric approach, and the appropriate statistical test
used to address the research question.

10.6.1 Case Study 1

Manufacturing Quality Control (Sign Test):

Amanufacturing plant investigates whether a newmachine calibration procedure reduces the
number of defective products. Defect counts are recorded before and after calibration for the
same production batches. The data contain extreme values due to occasional machine failures
and do not satisfy normality assumptions. Objective: Test whether the median change in defect
counts differs from zero.

10.6.2 Case Study 2

Medical Treatment Evaluation (Wilcoxon Signed-Rank Test):

A clinical researcher examines whether a new therapy reduces patient pain scoresmeasured on
an ordinal scale. Pain levels are recorded for the same patients before and after treatment. The
distribution of differences is non-normal, but themagnitude of change ismeaningful. Objective:
Determine whether the median pain score after treatment differs from before treatment.

10.6.3 Case Study 3

Marketing Strategy Comparison (Mann–Whitney U Test):

Acompany compares customer satisfaction ratings between two independentmarketing strate-
gies. Survey responses are collected using a Likert scale from two separate customer groups.
Objective: Assess whether customer satisfaction differs between the two strategies.
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10.6.4 Case Study 4

Production Line Performance (Kruskal–Wallis Test):

An engineering team evaluates defect rates across three independent production machines.
The defect data are skewed and contain outliers. Objective: Identify whether at least one ma-
chine has a different defect rate distribution.

10.6.5 Case Study 5

Human Performance Analysis (Friedman Test):

An organization studies employee productivity under three different work conditions (on-
site, hybrid, remote). Productivity scores are measured for the same employees under each
condition. Objective: Determine whether productivity differs across work conditions.

10.6.6 Case Study 6

Education and Learning Preferences (Chi-Square Test):

A university analyzes the relationship between students’ study programs and their preferred
learning modes (online, hybrid, in-person). Data are collected as frequency counts. Objective:
Examine whether learning preferences are associated with study programs.

These case studies demonstrate how nonparametric methods provide flexible and robust so-
lutions when data violate parametric assumptions or involve ordinal and categorical measure-
ments.
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