


Calculus and Its Applications
Mathematical Techniques

Bakti Siregar, M.Sc., CDS.



Table of contents

Preface 3

About the Writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Feedback & Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction to Calculus 5

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Applied Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Real Numbers 9

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Natural Numbers (ℕ) . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Whole Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Integers (ℤ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Rational Numbers (ℚ) . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Commutative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Associative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Distributive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.5 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.6 Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



TABLE OF CONTENTS TABLE OF CONTENTS

2.6 Youtube ~ Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Essencials of Functions 17

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Types of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Algebraic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Transcendental Functions . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Injective (One-to-One) . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Surjective (Onto) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Bijective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4 Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.5 Monotone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Youtube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Operations on Functions 29

4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Types of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.4 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.5 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Real-World Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 A Car Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Energy and Metallurgy . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



TABLE OF CONTENTS TABLE OF CONTENTS

5 Limits of Functions 41

5.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Basic Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Evaluation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Direct Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Factoring and Simplifying . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3 Rationalizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.4 Dividing by the Highest Power of 𝑥 . . . . . . . . . . . . . . . . . . . 45

5.3.5 L’Hôpital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Special Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Trigonometric Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.2 Exponential Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.3 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.4 Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.5 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.1 One-Sided Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.2 Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.3 Limits at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5.4 Growth Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Differential 55

6.1 Concept of Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Constant Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.3 Constant Multiple Rule . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.4 Sum and Difference Rule . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.5 Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.6 Quotient Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.7 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Elementary Function Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 60

3



TABLE OF CONTENTS TABLE OF CONTENTS

6.3.1 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.2 Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.3 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.4 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 60

6.4 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Logarithmic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 Higher-Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Appllied of Differentials 63

7.1 Derivatives in Metallurgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.1 Carbon Diffusion Function . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.2 Porosity Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.3 Strength vs Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1.4 Thermal Grain Growth . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.5 Molten Metal Vibration . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.6 Cooling Curve of Hot Steel . . . . . . . . . . . . . . . . . . . . . . . 68

7.1.7 Gold Leaching Concentration . . . . . . . . . . . . . . . . . . . . . . 68

7.1.8 Ball Motion in Ball Mill . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Derivatives in Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.1 Reservoir Pressure and Porosity . . . . . . . . . . . . . . . . . . . . . 70

7.2.2 Pressure Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.3 Porosity Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.4 Economic Value Function . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.5 Total Reservoir Value per Meter . . . . . . . . . . . . . . . . . . . . . 71

7.2.6 Reservoir Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Derivatives in Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 Ore Grade and Density . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.2 Ore Grade Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.3 Ore Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.4 Economic Value Function . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.5 Total Ore Value per Meter . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.6 Copper Grade and Profit Analysis . . . . . . . . . . . . . . . . . . . . 73

7.3.7 Groundwater Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4



TABLE OF CONTENTS TABLE OF CONTENTS

8 Integrals 77

8.1 Illustrations for Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Two Types of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2.1 Indefinite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2.2 Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 Area in Single Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3.1 Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3.2 Linear Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3.3 Function Crossing the x-axis . . . . . . . . . . . . . . . . . . . . . . 81

8.3.4 Visual Explanation (Video 3) . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Area in Two Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4.2 Steps to Compute the Area . . . . . . . . . . . . . . . . . . . . . . . 83

8.4.3 Visual Explanation (Video 2) . . . . . . . . . . . . . . . . . . . . . . 84

8.5 Volume using Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.5.1 Disk Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.5.2 Washer Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.5.3 Shell Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.6 Example Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.6.1 Visual Explanation (Video 3) . . . . . . . . . . . . . . . . . . . . . . 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9 Appllied of Integrals 89

9.1 Summary Applied of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 89

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10 Transcendental Functions 91

10.1 Transcendental Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5



TABLE OF CONTENTS TABLE OF CONTENTS

6



In the evolving landscape of science, engineering, and technology, calculus remains a fundamen-
tal tool for understanding change, modeling complex systems, and solving real-world problems.
From the classical challenges of motion and geometry to modern applications in data science,
optimization, and engineering, calculus provides a unifying language that bridges theory and
practice. By mastering its core concepts and techniques, students and practitioners can analyze
dynamic processes, make informed decisions, and develop models that foster innovation and
excellence across disciplines.

This book, Calculus and Its Applications: Mathematical Techniques, offers a structured and
comprehensive introduction to calculus. Beginning with the foundations of real numbers and
the essentials of functions, readers are gradually guided through special functions, limits, and
the core principles of derivatives. Building on these fundamentals, the text explores both the
applications of derivatives in optimization and modeling, as well as the theory and practice of
indefinite integrals and their wide-ranging applications. The journey concludes with a discus-
sion of transcendental functions, connecting classical concepts to advanced and contemporary
challenges.

Beyond theory, the book emphasizes practical applications—showing how calculus underpins
decision-making, system optimization, and problem-solving in diverse fields. Each chapter in-
tegrates concepts with examples that reflect both traditional mathematical problems and modern
technological contexts.

Through this approach, readers will not only develop a strong understanding of the mathematical
principles of calculus but also gain the skills to apply them effectively to real-world challenges—
fulfilling the book’s vision of connecting classical problems with modern challenges.
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Feedback & Suggestions Preface

• A solid foundation in real numbers, functions, and limits
• The ability to analyze and interpret data across engineering and scientific contexts
• A clear understanding of the role of derivatives and integrals in modeling and problem-
solving

• Practical skills in applying numerical methods and calculus techniques to real-world chal-
lenges

This book is designed for beginners seeking to build a strong foundation in calculus while appre-
ciating its concepts and diverse applications—from classical mathematical problems to modern
scientific and engineering challenges. We value the active participation of readers, whose in-
sights and questions enrich the learning journey. It is our hope that this material serves not only
as an introduction to calculus but also as a practical guide for applying mathematical reasoning
to contemporary problems.

Feedback & Suggestions

Your feedback is invaluable in enhancing the quality of this book. We warmly invite readers to
share their thoughts on the content, organization, and clarity of the material. Suggestions for ad-
ditional topics, extended explanations, or further real-world applications are highly encouraged.

With your support and contributions, our goal is to make this book a comprehensive and acces-
sible resource on calculus and its applications—from classical problems to modern challenges.
Thank you for your engagement and feedback.

For feedback and suggestions, please contact:

• siregarbakti@gmail.com

• siregarbakti@itsb.ac.id
• dsciencelabs@outlook.com
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Chapter 1

Introduction to Calculus

Calculus (Mathematical Techniques) is a branch of mathematics that helps us understand how
things change (such as population growth, temperature rise, or production rates) and how things
move (like a car on the road, an object falling, or material flowing in a system). It provides
useful tools to solve problems, make predictions, and create models in science, engineering, and
daily life. In Mining whether in oil, coal, gold, copper, or other mineral resources—calculus
is applied to estimate reserves, calculate safe and efficient extraction methods, model slope
stability, predict groundwater flow, monitor production performance, and optimize operational
aspects such as cost efficiency, revenue generation, and workforce allocation. InMetallurgy, it
is used to analyze heating and cooling processes, optimize smelting operations, study chemical
reaction rates, design stronger alloys, and predict corrosion over time. Overall, calculus is not
just about numbers but a practical tool that supports efficiency, safety, and sustainability in
industries such as mining, metallurgy, and many other fields.

1.1 Overview

The Figure 1.1 presents a visual overview of the chapter, highlighting the structure of key topics
and their interconnections. It provides readers with a clear guide to navigate the material and
understand ho w concepts link to applications.

This chapter introduces the fundamental building blocks of calculus, including real numbers,
functions, limits, derivatives, integrals, and transcendental functions. Each concept is connected
to practical applications to illustrate how calculus underpins real-world problem-solving.

1.2 Applied Calculus

Applied Calculus (Figure 1.2) is a branch of calculus that focuses on the practical application of
limits, derivatives, integrals, and special functions in solving real-world problems. Rather than
being studied purely as a theoretical subject, calculus is presented here as an analytical tool to
understand change, model phenomena, and support decision-making across multiple disciplines.

The following mindmap illustrates a 5W+1H framework that explains:
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1.2. APPLIED CALCULUS CHAPTER 1. INTRODUCTION TO CALCULUS

INTRODUCTION
TO

CALCULUS
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Essentials of Functions
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Figure 1.1: Mind Map of Introduction to Calculus
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Figure 1.2: Detailed 5W+1H for Applied Calculus
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CHAPTER 1. INTRODUCTION TO CALCULUS 1.2. APPLIED CALCULUS

• What: The core concepts of Applied Calculus, including limits, derivatives, integrals,
and special functions.

• Why: Its importance in modeling real-world problems, prediction, and decision-making.
• When: Applied Calculus has always been important in the past, remains essential to-
day, and will continue to be needed in the future for science, technology, and real-world
applications.

• Where: The areas of application, ranging from business and economics, engineering and
physics, health and medicine, computer science and AI, to mining engineering and met-
allurgy.

• Who: The practitioners who apply Applied Calculus, such as scientists, engineers,
economists, and data analysts.

• How: The methods and tools used, both analytical techniques and modern computational
software.

This structure helps learners understand the role of calculus as an applied, relevant, and essential
discipline for addressing challenges across diverse fields.
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Chapter 2

Real Numbers

UnderstandingReal Numbers (ℝ) is the first step in exploring the world of real analysis. These
numbers serve as the essential building blocks for calculus, algebra, numerical modeling, and
various applied sciences. They provide a framework for representing quantities, measuring
change, and describing continuous processes in both mathematics and real-world applications
[1]–[3].

To help navigate the key aspects of real numbers, the Figure 2.1 offers a 5W+1H mind map.
This visualization guides learners through theWhat—definitions and subsets; theWhy—their
importance and significance; theWhen—historical discoveries and formalization; theWhere—
applications in science, engineering, economics, and daily life; theWho—mathematicians and
everyday users; and theHow—representation on the number line, decimal forms, and intervals.
By following this map, one can see not just the numbers themselves, but their role and relevance
across disciplines.

The following Table 2.1 presents a structured summary of the 5W+1H questions related to Real
Numbers, based on the Figure 2.1 mind map. It organizes the material into categories—What,
Why, When, Where, Who, How—to guide learners in understanding the definitions, subsets,
properties, number line representation, and applications of real numbers in science, engineering,
economics, and daily life.

2.1 Definition

The real numbers (ℝ) are the set of numbers that include both rational numbers (fractions of
integers) and irrational numbers (numbers that cannot be expressed as fractions). They can be
represented on the number line, which extends infinitely in both positive and negative directions
[1], [2].

Formally:

ℝ = {𝑥 ∣ 𝑥 corresponds to a point on the number line}.

9
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THE REAL NUMBERS

What?

Why?

When?

Where?

Who?

How?

Definition & Subsets

Natural Numbers (ℕ)

Whole Numbers

Integers (ℤ)

Rational Numbers (ℚ)

Irrational Numbers

Properties & Importance

Closure

Commutative

Associative

Distributive

Identity

Inverse

Historical Discovery

Applications

Science & Engineering

Economics

Daily Life

Mathematicians & Scientists

Number Line

Decimal Form

Interval Notation

Figure 2.1: Real Numbers with 5W+1H Notes

Table 2.1: Understanding the Properties of Real Numbers

Property Description Example / Application

Closure Operations on real numbers (add, subtract,
multiply, divide) always produce another real
number.

𝑎 + 𝑏, 𝑎 − 𝑏, 𝑎 ⋅ 𝑏, 𝑎/𝑏 (if 𝑏 ≠ 0)

Order Real numbers can be compared and arranged
from smallest to largest.

𝑎 < 𝑏 → comparing magnitudes, sorting data

Density Between any two real numbers, there is always
another real number — useful for interpolation
and fine measurement.

∃𝑐 ∶ 𝑎 < 𝑐 < 𝑏 → interpolation or precision
scale

Absolute Value Measures distance from zero regardless of sign. |𝑎| →magnitude of deviation or change
Scientific
Measurement

Represents measurable quantities in science,
mining, and metallurgy (mass, distance,
temperature, ore grades).

Mass = 1.2 × 10� kg, Temperature = 350°C,
Depth = 500 m

Engineering
Constants

Physical constants used in formulas and
calculations (e.g., gravity, speed of light).

𝑔 = 9.8m/s2, 𝑐 = 3 × 108 m/s

Negative Numbers Represents losses, deficits, or values below a
reference point (e.g., depth below sea level,
financial loss).

Depth = −350 m, Balance = −$50, Temperature
= −5°C

Fractions /
Decimals

Represents portions or decimal values (e.g., ore
grade percentage, sample concentration).

Ore grade = 2.5%, Concentration = 0.025, Tax
= 7.5%

Irrational Numbers Non-repeating, non-terminating decimals used
in precise measurements (e.g., π, √2).

𝜋 = 3.14159…, √2 = 1.4142…,

𝑒 = 2.718…

10
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2.2 Subsets

Real numbers (ℝ) consist of several subsets, each with distinct properties and applications. Un-
derstanding these subsets is fundamental in mathematics, physics, and engineering.

2.2.1 Natural Numbers (ℕ)

Natural numbers are the set of positive counting numbers used for enumerating objects. For-
mally, the set of natural numbers is written as

ℕ = {1, 2, 3, 4, … }.

Natural numbers have several important properties. They are always positive, and they are
closed under addition and multiplication. However, they are not closed under subtraction or
division; for example, 2 − 3 ∉ ℕ. Some examples of natural numbers include 1, 2, 3, 10, 100,
and so on. These numbers are widely used in everyday life and in mathematics for counting
discrete objects, numbering sequences, and performing basic arithmetic operations.

2.2.2 Whole Numbers

Whole numbers extend natural numbers by including zero. Formally, the set of whole numbers
is written as

Whole Numbers = {0, 1, 2, 3, … }.

Whole numbers have several important properties. They are non-negative and are closed under
addition and multiplication. However, they are not closed under subtraction; for example, 0 −
1 ∉ Whole Numbers. Some examples of whole numbers include 0, 1, 2, 50, 1000, and so on.
Whole numbers are widely used in numbering positions, indexing in programming, and counting
objects when zero is included.

2.2.3 Integers (ℤ)

Integers include all whole numbers and their negative counterparts. Formally, the set of integers
is written as

ℤ = {… , −3, −2, −1, 0, 1, 2, 3, … }.

Integers have several important properties. They are closed under addition, subtraction, and
multiplication, but they are not closed under division; for example, 1/2 ∉ ℤ. Some examples
of integers include−10, −1, 0, 3, 15, and so on. Integers are widely used for representing gains
and losses, elevations, temperatures, and positions relative to a reference point.

11
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2.2.4 Rational Numbers (ℚ)
Rational numbers are numbers that can be expressed as a fraction 𝑝

𝑞 where 𝑝, 𝑞 ∈ ℤ and 𝑞 ≠ 0.
Formally, the set of rational numbers is written as

ℚ = {𝑝
𝑞 ∣ 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0} .

Rational numbers have several important properties. They can be positive, negative, or zero,
and they are closed under addition, subtraction, multiplication, and division (except division
by zero). They can also be represented as terminating or repeating decimals. Some examples
of rational numbers include 1

2 , −7
3 , 0.75, and 0.333 …. Rational numbers are widely used in

fractions for measurements, probabilities, ratios, and proportional relationships.

2.2.5 Irrational Numbers

Irrational numbers cannot be expressed as a fraction 𝑝
𝑞 with integers 𝑝 and 𝑞, and their decimal

expansions are non-terminating and non-repeating. They can be positive or negative and are gen-
erally closed under addition, subtraction, multiplication, and sometimes division, but they can-
not be represented exactly as a fraction. Examples of irrational numbers include 𝜋, 𝑒,

√
2,

√
3,

and ln 2. These numbers are widely used in geometry, such as 𝜋 for circles, in calculus, in
physical constants, and in modeling exponential growth or decay.

2.3 Properties

The set of real numbers (ℝ) follows several fundamental rules that govern arithmetic operations,
essential in algebra, calculus, and applied mathematics.

2.3.1 Closure

ℝ is closed under addition and multiplication, meaning the sum or product of any two mem-
bers is still a real number. Division by zero is the only exception.

2.3.2 Commutative

Addition and multiplication are commutative, so the order of numbers does not affect the result:

𝑎 + 𝑏 = 𝑏 + 𝑎 and 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎.

2.3.3 Associative

Grouping of numbers does not change the outcome, reflecting the associative rule for both
operations:

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) and (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐).

12
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2.3.4 Distributive

Multiplication distributes over addition, meaning multiplying a number by a sum equals multi-
plying each term individually and then adding:

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐.

2.3.5 Identity

There exist identities for addition and multiplication. Adding 0 or multiplying by 1 leaves any
number unchanged:

𝑎 + 0 = 𝑎 and 𝑎 ⋅ 1 = 𝑎.

2.3.6 Inverse

Every number has additive and multiplicative inverses (except zero for multiplication). The
additive inverse −𝑎 satisfies 𝑎 + (−𝑎) = 0, and the reciprocal 1

𝑎 satisfies 𝑎 ⋅ 1
𝑎 = 1.

2.4 Representation

Figure Figure 2.2 illustrates a number line, a visual tool representing real numbers in order,
which helps to clearly understand their relative positions and relationships.

The number line is a fundamental visual tool in mathematics that allows us to represent real
numbers in order. It provides a clear way to understand the relative positions of numbers, in-
cluding zero as the central reference point, positive numbers to the right, and negative numbers
to the left. Rational numbers can be located precisely on the line, while irrational numbers oc-
cupy approximate positions between integers, filling in the gaps and illustrating the density of
real numbers. The key concepts summarized in Table Table 2.2 highlight the main categories
and their properties, helping to organize the understanding of real numbers on the number line.

2.5 Summary

Real numbers Table 2.3 are the foundation of all calculus concepts, forming the set of numbers
that includes integers, fractions, and decimals. They are essential for performing calculations,
defining functions, and understanding limits, derivatives, and integrals. A solid understanding
of real numbers allows us to work with continuous quantities, measure physical phenomena,
and apply mathematical reasoning in real-world contexts. The key properties, descriptions, and
typical applications of real numbers are summarized in Table 2.4.

2.6 Youtube ~ Real Numbers

[Thumbnail not available]

Watch here: Click here to watch the video
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0

1 2 3 4 5

-1-2-3-4-5

0.5 1.5-0.5-1.5

1.414

1.732

-1.414

-1.732

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Zero
Positive	Numbers
Negative	Numbers
Rational	Numbers
Irrational	Numbers

Real	Numbers

Figure 2.2: Representation on Number Line

Table 2.2: Key Concepts of Number Line

Concept Description Notes

Zero as Center Central reference point separating positive and
negative numbers.

Acts as reference for measuring distance and
direction (Figure 2.2)

Positive Numbers Numbers greater than zero placed to the right of
the origin; includes natural, whole, and positive
fractions or decimals.

Magnitude increases to the right of zero

Negative Numbers Numbers less than zero placed to the left of the
origin; represents deficits, losses, or positions
below reference.

Includes negative fractions and decimals

Rational Numbers Numbers expressible as fractions or
terminating/repeating decimals; located exactly
on the number line.

Each fraction corresponds to a precise point
between integers

Irrational Numbers Numbers not exactly expressible as fractions;
approximate positions between integers filling
in the gaps.

Examples: π, √2, e; shows density of real
numbers
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Table 2.3: Understanding the Properties of Real Numbers

Property Description Example

Closure Operations on real numbers (add, subtract,
multiply, divide) always produce another real
number.

𝑎 + 𝑏, 𝑎 − 𝑏, 𝑎 ⋅ 𝑏, 𝑎/𝑏 (if 𝑏 ≠ 0)

Order Real numbers can be compared and arranged
from smallest to largest.

𝑎 < 𝑏 → comparing magnitudes, sorting data

Density Between any two real numbers, there is always
another real number — useful for interpolation
and fine measurement.

∃𝑐 ∶ 𝑎 < 𝑐 < 𝑏 → interpolation, fine
measurement

Absolute Value Measures distance from zero regardless of sign. |𝑎| → distance from zero, magnitude of change
Scientific Measurement Represents measurable quantities in science,

mining, and metallurgy (mass, distance,
temperature, ore grades).

Coal reserve = 1.2M tons, Temperature =
350°C, Depth = 500 m

Engineering Constants Physical constants used in formulas and
calculations (e.g., gravity, speed of light).

𝑔 = 9.8m/s2, 𝑐 = 3 × 108 m/s

Negative Numbers Represents losses, deficits, or values below a
reference point (e.g., debt, depth below sea
level, temperature below zero).

Bank balance = −$50, Depth = −350 m,
Temperature = −5°C

Fractions / Decimals Used for precise measurements, proportions,
percentages, ore grades, or financial fractions.

Ore grade = 2.5%, Cooking 250 g flour, Tax =
7.5%

Irrational Numbers Numbers like π, √2, or e appear in formulas,
geometry, and scientific modeling.

Volume of cylinder = π·r²h, Diagonal of square
= √2·a, Continuous growth = e^rt

2.7 Applied

Real numbers play a crucial role in many fields because they can represent continuous quantities,
perform precise measurements, and quantify relationships. Table Table 2.4 summarizes their
main applications in science and engineering, economics, and everyday life.

References
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Table 2.4: Applications of Real Numbers (Positive, Negative, Zero, Fractions, Irrational)

Domain Description Examples

Science & Engineering Real numbers (positive, negative, zero, fractions, and irrationals)
represent continuous measurements like distance, mass, temperature,
velocity, and energy. Negative values describe loss (e.g., temperature
below zero), fractions handle precise scaling, and irrationals (like π,
√2) appear in formulas and geometry.

Positive: 12.5 m, Zero: 0°C, Negative: −10 m/s
(direction), Fraction: 1/3 mol, Irrational: π·r²

Economics & Business In economics and business, real numbers express prices, costs,
revenues, profits, debts, and interest rates. Negative numbers show
losses or debts, fractions are used in taxation or discount rates, and
irrationals sometimes appear in financial models and growth rates.

Price = $25.50, Profit = $1200, Loss = −$300, Tax = 7.5%,
Growth = e^rt

Daily Life In daily life, real numbers appear in money, weights, volumes,
percentages, and time. Negative values are seen in temperatures (−5
°C), balances (−$50), or altitude below sea level, while fractions and
decimals are used in cooking or shopping.

−5 °C, Bank balance = −$50, 250 g flour (fractional),
Meeting at 14:30, Discount = 20%

Mining & Metallurgy In mining and metallurgy, real numbers quantify mineral reserves,
drilling depths, extraction rates, chemical concentrations, heat levels,
costs, and revenues. Negative values reflect losses or deficits, zero
indicates balance or cut-off limits, fractions express ore grades, and
irrationals (like π in volume calculations) support precise modeling.

Coal reserve = 1.2M tons, Depth = −350 m, Ore grade =
2.5%, Smelting T = 1200 °C, Volume = π·r²h
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Chapter 3

Essencials of Functions

Understanding Functions is fundamental in mathematics, as they describe the relationship be-
tween quantities and form the backbone of calculus, algebra, numerical modeling, and applied
sciences. Functions allow us to model change, describe systems, and solve real-world problems
[1]–[3].

The Figure 3.1 shows a 5W+1H mind map of functions.
It helps learners understand:

• What→ definition, domain, range, and types of functions.

• Why→why functions are important and their applications in math and science.

• When→when functions are used, especially in problem-solving and research.

• Where→ areas of application such as engineering, physics, economics, and daily life.

• Who→mathematicians and practitioners who use functions.

• How→ways to represent functions using equations, tables, graphs, and intervals.

Functions are one of the core concepts in mathematics, playing a central role in modeling,
analysis, and real-world applications. Using the 5W+1H framework (What, Why, When,
Where, Who, How), we can explore functions from multiple perspectives: their definition,
importance, historical development, fields of application, key contributors, and different forms
of representation.

Table Table 3.1 summarizes the key questions and provides illustrative examples of functions
along with their interpretations for each 5W+1H category.

3.1 Definition

Imagine a Figure 3.2: You put in fruits (for example, 1 apple, 2 apples, or 3 apples). Themachine
processes the fruits. It always produces a certain amount of apple juice depending on how many
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Table 3.1: 5W+1H Questions for Functions

Description Example_Function Example_Output

What?

What? What is a function? 𝑓 ∶ 𝑋 → 𝑌 Each input → exactly one output
What? What are the domain and range? 𝑓(𝑥) = 𝑥2, Domain = ℝ, Range =

[0, ∞)
Domain all inputs; Range all outputs

What? What types of functions exist? Linear, Quadratic, Polynomial,
Exponential, Trigonometric

Example: 𝑓(𝑥) = 2𝑥 + 1,
𝑓(𝑥) = 𝑥2 − 3

What? What are the key properties of
functions?

Injective, Surjective, Bijective,
Continuous, Monotone

e.g. 𝑓(𝑥) = 𝑥2 is not injective on ℝ

Why?

Why? Why are functions important in
mathematics?

Modeling 𝑦 = 𝑓(𝑥) relationships Predict outcomes, solve equations

Why? Why do we need to understand
function properties?

Analyzing 𝑓(𝑥) before applying to
problems

Correct manipulation of 𝑓(𝑥)

When?

When? When was the function concept
formalized?

17th century (Leibniz, Euler) Formalized in 1600s

When? When are functions applied in
real-life problems?

Finance: 𝐴(𝑡) = 𝑃(1 + 𝑟)𝑡; Physics:
𝑠(𝑡) = 𝑣0𝑡 + 1

2 𝑎𝑡2
Applications in simulations and
modeling

Where?

Where? Where are functions used in science
and engineering?

Ohm’s law: 𝑉 = 𝐼𝑅, Newton’s law:
𝐹 = 𝑚𝑎

Used in circuits, mechanics,
chemistry

Where? Where can functions be observed in
economics and daily life?

Population growth 𝑃(𝑡) = 𝑃0𝑒𝑟𝑡 Used in demand curves, budgeting

Who?

Who? Who were key mathematicians in
developing function theory?

Euler, Leibniz, Dirichlet Pioneers in function theory

Who? Who uses functions in practical
applications?

Scientists, engineers, economists Real-world users across disciplines

How?

How? How are functions represented using
equations?

𝑓(𝑥) = 𝑥2, 𝑓(𝑥) = sin𝑥 Symbolic form representation

How? How are functions represented using
tables?

Tabular form: (𝑥, 𝑓(𝑥)) pairs Input-output lookup

How? How are functions represented using
graphs or intervals?

Graph of 𝑓(𝑥), interval [𝑎, 𝑏] Visual/geometric representation
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ESSENCIALS
OF

FUNCTIONS

What?

Why?

When?

Where?

Who?

How?

Definition, Domain,
Codomain, & Range

Types

Properties

Importance

Analyze Relationships
Between Variables

Applications

Key Mathematicians

Representation

Linear: f(x) = m*x + b

Quadratic: f(x) = a*x^2 + b*x + c

Polynomial: f(x) = a_n*x^n + ... + a_0

Injective (One-to-One)

Surjective (Onto)

Bijective (One-to-One & Onto)

Continuous

Monotone (Increasing/Decreasing)

Modeling, Prediction, &
Problem Solving

Physics & Engineering:
motion, circuits, thermodynamics

Economics & Finance:
interest, growth, supply-demand

Daily Life:
fuel use, battery decay, cooking temp-time

Mining & Resources: Ore production,
Mineral concentration, Total Cost, Volume

Equations, Tables,
Graphs, & Intervals

Figure 3.1: Detailed 5W+1H for Functions

apples you put in.

Figure 3.2: Analogies of Juice Machine to Understand About Function

The rule is clear: each input has exactly one output.

• If you put in 2 apples → you get 2 glasses of juice.

• If you put in 3 apples → you get 3 glasses of juice.

This is very similar to the concept of a single-variable function in mathematics. Assume a
Linear Function (simple juice machine) as;

𝑓(𝑥) = 2𝑥

Meaning: for every 𝑥 (number of apples), the output is twice the input. Therefore if the Input:
𝑥 = 3 →Output: 𝑓(3) = 6.
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In General, A function 𝑓 from set 𝑋 to set 𝑌 is a rule that assigns exactly one element of 𝑌 to
each element of 𝑋. Formally:

𝑓 ∶ 𝑋 → 𝑌 such that ∀𝑥 ∈ 𝑋, ∃!𝑦 ∈ 𝑌 with 𝑦 = 𝑓(𝑥)

• Domain: the set of all inputs 𝑋

• Range: the set of all outputs 𝑌

This definition ensures that every input has one and only one output, which distinguishes func-
tions from more general relations. For example, consider 𝑓(𝑥) = 𝑥2 with domain ℝ. Each real
number 𝑥 is mapped to a single nonnegative real number 𝑦 = 𝑥2. In this case, the domain is ℝ
and the range is ℝ≥0.

3.2 Types of Functions

Functions are fundamental tools inmathematics that describe the relationship between two quan-
tities, typically denoted as an input 𝑥 and an output 𝑓(𝑥). Each type of function has its own char-
acteristics, shape, and application in real-world problems. Understanding these different types
of functions is crucial not only in pure mathematics but also in various applied fields such as
engineering, economics, physics, and mining engineering, where they are used to model growth,
decay, oscillations, and relationships between variables.

Broadly, functions can be categorized into several groups, such as algebraic functions (linear,
quadratic, polynomial), transcendental functions (exponential and logarithmic), and trigonomet-
ric functions (sine, cosine, tangent).

3.2.1 Algebraic

Algebraic functions (Figure Figure 3.3) are functions that can be expressed using a finite number
of algebraic operations such as addition, subtraction, multiplication, division, and raising to
a power. These functions form the foundation of many mathematical models and are widely
applied in real-life problem solving.

The main types of algebraic functions include:

• Linear Function: 𝑓(𝑥) = 𝑚𝑥 + 𝑏, which produce straight-line graphs and represent
constant rates of change.

• Quadratic Function: 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, which generate parabolic curves and are
often used to model acceleration, projectile motion, or optimization problems.

• Polynomial Function: 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎0 , which extend the idea of linear and
quadratic functions to higher degrees, allowing the modeling of more complex relation-
ships.
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Figure 3.3: Algebraic Functions: Linear, Quadratic, and Polynomial (Side by Side)
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3.2.2 Transcendental Functions

Transcendental functions (Figure Figure 3.4) are functions that cannot be expressed as finite
combinations of algebraic operations. Unlike algebraic functions, they involve processes such
as infinite series, exponentiation, and logarithms. These functions play a vital role in describing
natural growth, decay, and scaling phenomena.

• Exponential Function: 𝑓(𝑥) = 𝑎𝑥 are used to model rapid growth or decay, such as in
population dynamics, radioactive decay, and compound interest.

• Logarithmic Function: 𝑓(𝑥) = log𝑎 𝑥 serve as the inverse of exponentials, commonly
applied in measuring relative change, sound intensity (decibels), pH in chemistry, and
data compression in computer science.
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Exponential	f(x)=2^x Logarithmic	f(x)=log₂(x)

x

f(
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Figure 3.4: Exponential and Logarithmic Functions

3.2.3 Trigonometric Functions

The trigonometric functions 𝑓(𝑥) = sin𝑥, cos𝑥, tan𝑥 describe the relationships between an-
gles and the unit circle. They are fundamental in mathematics, physics, and engineering because
they naturally model oscillations, waves, and circular motion. These functions are widely
used in areas such as signal processing, alternating current circuits, sound and light waves, and
applied fields like surveying and mining for modeling cyclic or repetitive patterns (see Figure
Figure 3.5).
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• Sine (sin𝑥): Range [−1, 1], period 2𝜋, zeros at 0∘, 180∘, 360∘.
Special values: sin 30∘ = 1

2 , sin 45∘ =
√

2
2 , sin 60∘ =

√
3

2

• Cosine (cos𝑥): Range [−1, 1], period 2𝜋, zeros at 90∘, 270∘.
Special values: cos 30∘ =

√
3

2 , cos 45∘ =
√

2
2 , cos 60∘ = 1

2

• Tangent (tan𝑥): Period 𝜋, undefined at 90∘, 270∘.
Special values: tan 30∘ = 1√

3 , tan 45∘ = 1, tan 60∘ =
√

3

0° 30° 45° 60° 90° 180° 270° 360°

−4

−2

0

2

4

sin(x) cos(x) tan(x)

Angle	(degrees)

f(
x)

Figure 3.5: Trigonometric Functions: sin(x), cos(x), tan(x) with Special Angles

In trigonometry, certain angles are called special angles because their sine, cosine, and tangent
values can be expressed in simple radical forms. These angles — such as 0∘, 30∘, 45∘, 60∘, and
90∘ —are frequently used inmathematics, physics, and engineering for simplifying calculations.

3.3 Properties

Functions can be understood not only from their formulas, but also from the properties they
possess. These properties describe how inputs and outputs are related, and how the function be-
haves across its domain and codomain (Figure Figure 3.6). Understanding these characteristics
helps in identifying whether a function is one-to-one, onto, continuous, or monotone, which are
fundamental concepts in both pure and applied mathematics.
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Figure 3.6: Function Properties: Injective, Surjective, Bijective, Continuous, Monotone
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3.3.1 Injective (One-to-One)

A function is called injective if different inputs always produce different outputs. In other
words, no two distinct values in the domain are mapped to the same value in the codomain.
For example, 𝑓(𝑥) = 2𝑥 + 3 is injective because every input corresponds to a unique output,
whereas 𝑓(𝑥) = 𝑥2 is not injective over the real numbers, since both 2 and −2 map to the same
value, 4. Understanding injective functions is important in applications where each output must
correspond to a unique condition, such as tracking ore quality measurements in mining.

3.3.2 Surjective (Onto)

A function is surjective if every element in the codomain is “covered” by the function, meaning
each possible output has at least one pre-image in the domain. For instance, 𝑓(𝑥) = 𝑥3 from
ℝ to ℝ is surjective, while 𝑓(𝑥) = 𝑒𝑥 is not surjective over all real numbers because it cannot
produce negative values. Surjective functions are useful when it is essential that all potential
outcomes are achievable, such as ensuring full coverage of production or resource allocation
scenarios.

3.3.3 Bijective

When a function is both injective and surjective, it is bijective, establishing a perfect one-
to-one correspondence between domain and codomain. This means each element in the do-
main is paired with exactly one unique element in the codomain, and every element in the
codomain is covered. Every output comes from exactly one input, and an inverse function al-
ways exists, allowing us to reverse the mapping easily. For example, 𝑓(𝑥) = 𝑥 + 5 is bijective,
because no two inputs give the same output and every possible output can be reached.

In practice, bijective functions are valuable in simulations and data transformations, where each
output needs to be traced back to a unique input without ambiguity. They ensure that infor-
mation is neither lost nor duplicated, making processes reversible and predictable.

3.3.4 Continuous

A function is continuous if its graph can be drawn without lifting the pen. Formally, 𝑓 is
continuous at 𝑥 = 𝑐 if lim𝑥→𝑐 𝑓(𝑥) = 𝑓(𝑐). An example is 𝑓(𝑥) = sin𝑥, continuous for all
real numbers, while 𝑓(𝑥) = 1/𝑥 is discontinuous at 𝑥 = 0. Continuity is crucial for modeling
systems with predictable behavior, such as smooth motion of machinery or fluid flow in mining
operations.

3.3.5 Monotone

Functions can also bemonotone, consistently increasing or decreasing. A monotone increasing
function ensures that larger inputs always produce larger outputs, while a monotone decreasing
function produces smaller outputs for larger inputs. For example, 𝑓(𝑥) = 2𝑥 is monotone
increasing, while 𝑓(𝑥) = −𝑥 is monotone decreasing. Monotone functions simplify analysis
and optimization, for instance in predicting total ore extracted over time or planning production
rates efficiently.

25



3.4. SUMMARY CHAPTER 3. ESSENCIALS OF FUNCTIONS

Table 3.2: Key Concepts of Functions

Key Concept Description Example / Application

Definition Maps each 𝑥 in domain to a unique 𝑦
in range

𝑓 ∶ 𝑥 ↦ 𝑦

Domain and Range Domain = all possible inputs, Range
= all outputs

𝑥 ∈ [0, 10], 𝑓(𝑥) ∈ [0, 100]

Linear Function Straight-line relationship 𝑓(𝑥) = 𝑚𝑥 + 𝑏
Quadratic Function Parabolic relationship 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐
Polynomial Function Sum of powers of 𝑥 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎0

3.4 Summary

Functions describe relationships between variables, showing how one quantity changes with
another. They are fundamental in calculus as they provide mathematical models for dynamic
systems, patterns, and processes across science, engineering, and economics. A proper under-
standing of functions requires knowledge of their domain, range, types, and behavior. An
overview of the key concepts, descriptions, and applications is given in Table 3.2.

3.5 Youtube

\newline \href{https://youtu.be/cj8fZb5CS5A}{Click here to watch the video}

3.6 Applications

References
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Table 3.3: Applications of Functions in Real Life and Mining

Description Example_Function Example_Output

Science & Engineering

Science & Engineering Modeling position of moving object 𝑠(𝑡) = 5𝑡 At t=3 s → s(3)=15 m
Science & Engineering Modeling velocity of moving object 𝑣(𝑡) = 2𝑡 At t=4 s → v(4)=8 m/s

Economics & Finance

Economics & Finance Supply-demand curves 𝑃(𝑥) = 50 + 2𝑥 Selling 10 items →
P(10)=70

Economics & Finance Compound interest calculation 𝐴(𝑡) = 𝑃(1 + 𝑟)𝑡 Principal $1000, 5%
annual, 3 years →
$1157.63

Daily Life

Daily Life Temperature conversion 𝐹(𝐶) = 9/5𝐶 + 32 25°C → 77°F
Daily Life Daily spending tracking 𝑆(𝑑) = 10𝑑 + 5 Day 7 → $75

Mining & Resources

Mining & Resources Ore production rate 𝑄(𝑡) = 1000 + 50𝑡 After 5 days → Q(5)=1250
tons

Mining & Resources Mineral concentration 𝐶(𝑥) = 0.8𝑥 + 5 x=10 → C(10)=13%
Mining & Resources Operational cost 𝐶𝑜𝑠𝑡(𝑞) = 5000 + 20𝑞 Produce 100 units →

Cost(100)=$7000
Mining & Resources Heap volume 𝑉 (𝐴) = 2𝐴 + 100 Area=50 m² → V(50)=200

m³
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Chapter 4

Operations on Functions

In the previous chapter Essentials of Functions, we explored the foundational concepts of
functions—how they relate inputs to outputs, their domains and ranges, and the different types
such as linear, quadratic, exponential, and logarithmic functions. Understanding these basic
properties allows us to describe mathematical and real-world relationships systematically.

In this chapter, we extend that understanding by studying Operations on Functions, which
involve combining two or more functions to create a new one. These operations allow us to
model more complex relationships, solve optimization problems, and represent multi-step pro-
cesses commonly found in engineering, business, and natural sciences. Essentially, operations
on functions form the bridge between simple mathematical expressions and real-world systems
modeling. Through addition, subtraction, multiplication, division, and composition of functions,
we can represent how different processes interact with one another — for example, how pro-
duction cost depends on both labor efficiency and material usage, or how temperature change
affects reaction rates in thermodynamics.

This Figure 4.1 will cover:

• The definition of operations on functions

• The types of operations, including addition, subtraction, multiplication, division, and
composition

• The purpose and importance of using these operations in modeling and analysis

• Applications in various fields such as engineering, mining, business, and metallurgy

By the end of this chapter, you will be able to combine functions effectively and interpret their
interactions within real-world contexts.

4.1 Definition

Operations on functions involve combining two or more functions to create a new one, much like
mixing ingredients to make a new recipe. Imagine you have two machines — one that squeezes
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OPERATIONS
ON

FUNCTIONS

Definition

Types of Operations

Applications

An operation on functions combines two or
more functions to form a new one.

Addition: (f+g)(x) = f(x) + g(x)

Subtraction: (f−g)(x) = f(x) − g(x)

Multiplication: (f×g)(x) = f(x) × g(x)

Division: (f/g)(x) = f(x) / g(x)

Composition: (f∘g)(x) = f(g(x))

Greenhouse Temperature: Solar + Heater

Net Profit : Revenue − Cost

Energy: Power/unit × Number of Units

Engine Temp ÷ Cooling Efficiency

Distance : f(Acceleration from Throttle)

Figure 4.1: Operations on Functions with Real-World Examples

oranges into juice and another that adds sugar and ice. When you connect them, you get a
new machine that produces sweet orange juice. Likewise, in mathematics, when two or more
functions are combined (through addition, subtraction, multiplication, division, or composition),
they create a new function with new behavior and properties.

4.2 Types of Operations

Mathematical operations on functions allow us to combine or manipulate functions to form new
ones. Functions can be combined or manipulated in several ways to form new functions. These
operations are essential in modeling, analysis, and problem-solving in mathematics, science,
engineering, and business.

4.2.1 Addition

Addition is a fundamental operation on functions, where the outputs of two functions are com-
bined for the same input to produce a new function. Think of it like this: imagine twomachines
one makes orange juice 𝑓(𝑥) and the other makes sugar syrup 𝑔(𝑥). By combining them, you
get a new machine producing sweet orange juice, which reflects the sum of their individual
outputs.

Example:

Suppose we have two functions:
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𝑓(𝑥) = 2𝑥 + 3,
𝑔(𝑥) = 𝑥2. (4.1)

Solution

To find the sum of the two functions (4.1), we add their corresponding expressions as
follows:

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)
= (2𝑥 + 3) + 𝑥2

= 𝑥2 + 2𝑥 + 3
(4.2)

Equation (4.2) shows that adding two functions produces a new function that combines
the effects of both.

Visualization

To gain a clearer understanding of the process of function addition, the following visual-
ization illustrates how the functions 𝑓(𝑥) = 2𝑥 + 3 and 𝑔(𝑥) = 𝑥2 interact. By plotting
both functions along with their sum (𝑓 +𝑔)(𝑥), we can observe how the resulting function
combines the linear growth of 𝑓(𝑥) with the quadratic behavior of 𝑔(𝑥).
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f(x)	=	2x	+	3 g(x)	=	x² (f	+	g)(x)	=	x²	+	2x	+	3

x

y

Figure 4.2: Visualisasi Penjumlahan Fungsi: f(x) = 2x + 3 dan g(x) = x²
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4.2.2 Subtraction

Subtraction is similar to addition but involves finding the difference between the outputs of
two functions for the same input. Analogy: imagine the orange juice machine 𝑓(𝑥) and the
sugar syrup machine 𝑔(𝑥). Subtracting them gives a machine producing juice with reduced
sweetness, reflecting the difference of their contributions.

Example:

Suppose we have two functions:

𝑓(𝑥) = 5𝑥,
𝑔(𝑥) = 2𝑥. (4.3)

Solution

To find the difference of the two functions (4.3):, we subtract their corresponding expres-
sions as follows:

(𝑓 − 𝑔)(𝑥) = 𝑓(𝑥) − 𝑔(𝑥)
= 5𝑥 − 2𝑥
= 3𝑥

(4.4)

Equation (4.4) shows that the difference between two functions produces a new function
that represents the subtraction of 𝑔(𝑥) from 𝑓(𝑥).

Visualization

Before visualizing the subtraction of two functions, it is essential to understand that this
operation involves determining the difference between their respective output values for
each corresponding input. This process reveals how one function behaves relative to
another, allowing us to analyze the resulting change or rate of difference between them.
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Figure 4.3: Graphical Representation of Function Subtraction: f(x) = 5x and g(x) = 2x

4.2.3 Multiplication

Multiplication combines two functions bymultiplying their outputs for the same input. Analogy:
imagine the orange juice machine 𝑓(𝑥) and a sugar syrup machine 𝑔(𝑥). Multiplying them
produces a machine that outputs the product of juice and syrup concentration, enhancing
the effect multiplicatively.

Example:

Suppose we have two functions:

𝑓(𝑥) = 𝑥 + 1,
𝑔(𝑥) = 2𝑥. (4.5)

Solution

To find the product of the two functions (4.5), wemultiply their corresponding expressions
as follows:
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(𝑓 ⋅ 𝑔)(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥)
= (𝑥 + 1)(2𝑥)
= 2𝑥2 + 2𝑥

(4.6)

Equation 4.6 shows that multiplying two functions combines their outputs multiplica-
tively, producing a new function that scales both effects together.

Visualization

Before visualizing the multiplication of two functions, it is important to note that this
operation involves combining the output values of both functions through pointwise mul-
tiplication.
The resulting product function illustrates how the interaction between the two functions
amplifies or reduces their respective magnitudes across the domain.
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Figure 4.4: Graphical Representation of Function Multiplication: f(x) = x + 1 and g(x) =
2x

4.2.4 Division

Division forms a new function by dividing the output of one function by another, provided the
denominator is not zero. Analogy: imagine the orange juice machine 𝑓(𝑥) and a syrup machine
𝑔(𝑥). Dividing them produces a machine that controls sweetness ratio, balancing the two
contributions.
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Example:

Suppose we have two functions:

𝑓(𝑥) = 𝑥2 + 4,
𝑔(𝑥) = 2𝑥. (4.7)

Solution

To find the quotient of the two functions 4.7, we divide their corresponding expressions
as follows:

(𝑓
𝑔 ) (𝑥) = 𝑓(𝑥)

𝑔(𝑥) , 𝑔(𝑥) ≠ 0

= 𝑥2 + 4
2𝑥

= 𝑥2

2𝑥 + 4
2𝑥

= 𝑥
2 + 2

𝑥, 𝑥 ≠ 0

(4.8)

Equation 4.8 shows that dividing two functions produces a new function that represents
the ratio of 𝑓(𝑥) to 𝑔(𝑥), provided 𝑔(𝑥) ≠ 0.

Visualization

Division of functions involves determining the ratio of two corresponding outputs, pro-
vided that the denominator function is non-zero. This operation produces a new function
that illustrates how the numerator’s growth rate compares to that of the denominator across
the domain.
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Figure 4.5: Graphical Representation of Function Division: f(x) = x² + 4 and g(x) = 2x

4.2.5 Composition

Composition involves using the output of one function as the input of another. Analogy: imagine
the orange juice machine 𝑔(𝑥) feeds its juice into a blender 𝑓(𝑥). The new machine produces
a blended juice whose output depends on both machines in sequence.

Example:

Suppose we have two functions:

𝑓(𝑥) = 𝑥 + 1,
𝑔(𝑥) = 𝑥2. (4.9)

Solution

To find the composition of the two functions 4.9, we substitute 𝑔(𝑥) into 𝑓(𝑥) as follows:

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥))
= 𝑔(𝑥) + 1
= 𝑥2 + 1

(4.10)
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Equation 4.10 shows that the composition (𝑓 ∘ 𝑔)(𝑥) produces a new function where the
output of 𝑔(𝑥) becomes the input of 𝑓(𝑥).

Visualization

Function composition involves applying one function to the result of another. In this
case, the output of 𝑔(𝑥) becomes the input to 𝑓(𝑥), forming a new composite function
(𝑓 ∘𝑔)(𝑥) = 𝑓(𝑔(𝑥)). This operation demonstrates how sequential transformations affect
the shape of the resulting function.

−4 −2 0 2 4
−5

0

5

10

15

20

25

30

f(x)	=	x	+	1 g(x)	=	x² (f	∘	g)(x)	=	x²	+	1

x

y

Figure 4.6: Visualization of Function Composition: f(x) = x + 1 and g(x) = x²

4.3 Real-World Applications

4.3.1 A Car Engine

A car engine generates heat while operating. Without a cooling system, the engine temperature
rises continuously, which can damage components. We want to model the actual engine tem-
perature considering the effect of the cooling system. This is a real example of combining
functions, where multiple factors are represented in a single equation.
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Function Definitions

1. Engine Temperature without Cooling

The engine generates heat over time: 𝑓(𝑡) = 2𝑡2 + 30

• 𝑡: time the engine runs (minutes)

• 𝑓(𝑡): engine temperature (°C) without cooling

• Interpretation: temperature rises quadratically as heat increases faster over time.

2. Cooling System Efficiency

The cooling system reduces heat, but efficiency decreases over time: 𝑔(𝑡) = 0.5𝑡 + 1

• 𝑔(𝑡): cooling factor (larger = more effective)

• As 𝑡 increases, cooling efficiency becomes relatively weaker compared to engine heat.

Combining Functions

The actual engine temperature 𝑇 (𝑡) can be modeled as engine temperature divided by cooling
efficiency:

𝑇 (𝑡) = 𝑓(𝑡)
𝑔(𝑡)

Substitute the functions:

𝑇 (𝑡) = 2𝑡2+30
0.5𝑡+1

Simplification

Step by step:

1. Factor out constants where possible: 𝑇 (𝑡) = 2(𝑡2+15)
0.5𝑡+1

2. Multiply numerator and denominator by 2 to simplify: 𝑇 (𝑡) = 4(𝑡2+15)
𝑡+2

Domain restriction: 𝑔(𝑡) ≠ 0 ⇒ 𝑡 ≠ −2 (physically irrelevant since 𝑡 ≥ 0).

Interpretation

1. At small 𝑡, cooling is effective → engine temperature remains moderate.

2. As 𝑡 increases, the effect of cooling diminishes relative to engine heat → temperature
rises faster.

3. This model shows the interaction between two factors (engine heat and cooling effi-
ciency) mathematically, not just from empirical observation.
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Applications

• Cooling System Design: Estimate the cooling capacity needed to maintain safe temper-
atures.

• Engine Failure Prediction: Determine when engine temperature may become too high.

• Simulation & Optimization: Test various operation times, efficiency, or enhanced cool-
ing without real-world experiments.

4.3.2 Energy and Metallurgy

In metallurgy, energy efficiency and chemical reactions are critical for designing furnaces and
reactors. By combining functions, engineers can model heat generation, fuel consumption,
and reaction progress, and optimize for efficiency or yield.

Combustion in a Blast Furnace

1. Heat Generated by Fuel Combustion

The heat produced 𝑄𝑓 depends on the amount of fuel burned 𝑚𝑓 :

𝑄𝑓(𝑚𝑓) = 30𝑚𝑓 (MJ/kg of fuel)

• 𝑚𝑓 : mass of fuel burned (kg)

• 𝑄𝑓 : total heat generated (MJ)

2. Heat Required for Ore Reduction

The heat needed to reduce iron ore 𝑄𝑟 depends on the mass of ore 𝑚𝑜:

𝑄𝑟(𝑚𝑜) = 25𝑚𝑜 (MJ/kg of ore)

• 𝑚𝑜: mass of ore processed (kg)

• 𝑄𝑟: energy required for the reduction reaction (MJ)

Energy Balance and Efficiency

The process efficiency 𝜂 can be modeled as the ratio of useful energy to energy supplied:

𝜂(𝑚𝑓 , 𝑚𝑜) = 𝑄𝑟(𝑚𝑜)
𝑄𝑓(𝑚𝑓) = 25𝑚𝑜

30𝑚𝑓

• To achieve 100% energy efficiency, set 𝜂 = 1: 25𝑚𝑜 = 30𝑚𝑓 ⟹ 𝑚𝑓 = 25
30𝑚𝑜 =

0.833𝑚𝑜
• This means for every 1 kg of ore, we need 0.833 kg of fuel for an ideal energy balance.
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Table 4.1: Real-World Applications of Function Operations

Operation Mathematical_Form Real_World_Example Description

Addition (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) Greenhouse temperature: solar heating + heater Total temperature = contributions from
multiple heat sources

Subtraction (𝑓 − 𝑔)(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) Net profit: revenue − cost Profit = Revenue minus Cost, representing net
gain

Multiplication (𝑓 ⋅ 𝑔)(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥) Energy production: power per unit × number of
units

Total energy produced = power output ×
number of units

Division (𝑓/𝑔)(𝑥) = 𝑓(𝑥)/𝑔(𝑥) Engine temperature per cooling efficiency:
heat ÷ cooling factor

Actual temperature considering cooling
efficiency

Composition (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) Car speed control: distance = f(acceleration
from throttle)

Output of one process depends on the output of
another function

Interpretation

• 𝜂 < 1: fuel is overused→ excess heat, higher cost.

• 𝜂 > 1: fuel is insufficient→ reaction incomplete, lower yield.

• By combining 𝑄𝑓 and 𝑄𝑟 functions, we can optimize fuel usage and improve furnace
efficiency.

Applications

• Metallurgy: Optimize fuel consumption for smelting or reduction reactions.

• Chemical Engineering: Balance energy inputs for industrial reactors.

• Sustainable Design: Reduce fuel costs and emissions by maximizing efficiency.

4.3.3 Others

Functions are widely used to model real-world systems. Often, we need to combine multiple
functions to understand how different factors interact. The Table 4.1 provides practical exam-
ples for each type of function operation—addition, subtraction, multiplication, division, and
composition—along with their interpretations.

References

40



Chapter 5

Limits of Functions

In the previous chapter Operations on Functions, we explored how to combine functions through
addition, subtraction, multiplication, division, and composition. These operations allowed us to
model multi-step processes and represent interactions between different mathematical and real-
world quantities.

In this chapter (See, Figure 5.1), we extend that understanding by studyingLimits of Functions,
which analyze the behavior of functions as their inputs approach specific points or infinity.
Limits are a fundamental concept in calculus, forming the foundation for continuity, derivatives,
and integrals. They allow us to rigorously describe how functions behave near critical points,
handle discontinuities, and model phenomena where changes are instantaneous or unbounded.

LIMITS OF FUNCTIONS

Review: Concept of a Limit

Basic Limits

Evaluation Techniques

Special Limits

Discontinuities & One-Sided Limits

Limits at Infinity & Asymptotes

Applications

Direct Substitution

Factoring / Simplifying

Rationalization (Conjugate Method)

Dividing by Highest Power of x

LHopital Rule

Trigonometric: lim x->0 sin(x)/x = 1

Exponential: lim x->0 (1+x)^(1/x) = e

Logarithmic: lim x->infty (ln x)/x = 0

Trig Variants: tan(x)/x, (1-cos x)/x

Left-hand Limit (x -> a^-)

Right-hand Limit (x -> a^+)

Jump / Infinite / Removable

Horizontal Asymptotes

Growth Comparison: poly, exp, log

Instantaneous Velocity

Marginal Cost / Revenue

Population Growth

Cooling / Heating Rate

Chemical Reactions

Figure 5.1: Limits of Functions — Concept, Techniques, and Applications
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5.1 Review

Before diving into formal definitions, let’s use an analogy to understand what a limit is. Imagine
you are driving a car toward a stop sign. As you get closer, your speed gradually decreases,
approaching zero. You never jump from a high speed to zero instantly—the approach is smooth
and continuous. Similarly, in mathematics, a limit describes the value a function is approaching
as the input gets closer to a particular point, even if the function doesn’t exactly reach that value
at the point itself.

Watch here: The limit of a function

This animation (Figure 5.2) illustrates this concept by showing a car approaching a stop sign
over time. The distance to the stop sign is represented by the function 𝑑(𝑡) = 10𝑒−0.3𝑡, which
decreases exponentially, approaching zero as time increases. The visualization highlights how
the car’s distance diminishes gradually, making the idea of a limit intuitive and easy to grasp.
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Figure 5.2: Animated Simulation: Car Approaching Stop Sign

Explanation of the Graph: (𝑑(𝑡) = 10𝑒−0.3𝑡

The graph (Figure 5.2) illustrates the concept of a mathematical limit, showing how
the car’s distance to a stop sign decreases over time and approaches zero without ever
becoming negative.
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• Blue line: shows the car’s distance to the stop sign over time.

• Blue point: represents the car’s position at each moment, moving down along the
function.

• Red dashed line: the stop sign, acting as a horizontal asymptote at 𝑦 = 0.

• Function behavior:

– Exponentially decreasing: the distance drops quickly at first, then gradually
approaches zero.

– Always decreasing → the car never moves away from the stop sign.

• Limit: lim𝑡→∞ 𝑑(𝑡) = 0 → the car approaches the stop sign but never passes it.

5.2 Basic Limits

The limit of a function describes the behavior of the function as the input approaches a particular
point. Formally, the limit of a function 𝑓(𝑥) as 𝑥 → 𝑎 is written as:

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿

This means that as 𝑥 gets closer to 𝑎, 𝑓(𝑥) gets closer to 𝐿.
Example:

𝑓(𝑥) = 2𝑥 + 3
lim
𝑥→1

𝑓(𝑥) = 2(1) + 3 = 5

Notes:

• The limit does not have to equal the function’s value at that point.

• If 𝑓(𝑎) exists, the limit may equal 𝑓(𝑎). If not, the limit can still exist.

5.3 Evaluation Techniques

In calculus, understanding how to evaluate limits is essential for analyzing the behavior of func-
tions near specific points or as they approach infinity. Various techniques are used to simplify
complex expressions, handle indeterminate forms, and determine whether a limit exists or di-
verges. These methods form the foundation for deeper topics such as continuity, derivatives,
and integrals.
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The following section presents several key techniques commonly used in evaluating limits, in-
cluding direct substitution, factoring, rationalization, simplifying complex fractions, and apply-
ing special limit theorems. Each technique helps to reveal the underlying structure of a function
and ensures accurate computation of limits in different contexts.

5.3.1 Direct Substitution

If 𝑓(𝑥) is continuous at 𝑥 = 𝑎, then:

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)

Example:
lim
𝑥→2

(3𝑥 + 1) = 3(2) + 1 = 7

5.3.2 Factoring and Simplifying

Used when substitution gives an indeterminate form 0/0.
Example:

lim
𝑥→2

𝑥2 − 4
𝑥 − 2

Factor the numerator:

(𝑥 − 2)(𝑥 + 2)
𝑥 − 2

Cancel (𝑥 − 2), then substitute:

lim
𝑥→2

(𝑥 + 2) = 4

5.3.3 Rationalizing

Rationalizing (Conjugate Method) used when square roots cause indeterminate forms.

Example:

lim
𝑥→0

√𝑥 + 4 − 2
𝑥

Multiply by the conjugate:
√𝑥 + 4 − 2

𝑥 ⋅
√𝑥 + 4 + 2√𝑥 + 4 + 2 = 𝑥

𝑥(√𝑥 + 4 + 2) = 1√𝑥 + 4 + 2
Then substitute 𝑥 = 0:

lim
𝑥→0

1√
4 + 2

= 1
4
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5.3.4 Dividing by the Highest Power of 𝑥

Used for limits at infinity with rational functions.

Example:

lim
𝑥→∞

3𝑥2 + 2
𝑥2 + 5

Divide numerator and denominator by 𝑥2:

3 + 2
𝑥2

1 + 5
𝑥2

→ 3
1 = 3

5.3.5 L’Hôpital’s Rule

Used for indeterminate forms 0
0 or ∞

∞ . If lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥) gives 0

0 or ∞
∞ , then:

lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥) = lim

𝑥→𝑎
𝑓 ′(𝑥)
𝑔′(𝑥)

Example:

lim
𝑥→1

𝑥2 − 1
𝑥 − 1

At $x = 14:

12 − 1
1 − 1 = 0

0
This expression results in an indeterminate form, meaning the limit cannot be directly evalu-
ated by simple substitution.

Therefore, differentiate numerator and denominator:

𝑑
𝑑𝑥(𝑥2 − 1) = 2𝑥, 𝑑

𝑑𝑥(𝑥 − 1) = 1

Then:
lim
𝑥→1

2𝑥
1 = 2

5.4 Special Limits

Special limits are common patterns that appear frequently in calculus. They often involve
trigonometric, exponential, or logarithmic functions that have well-known limit results. Un-
derstanding these helps simplify many limit problems quickly.
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5.4.1 Trigonometric Limit

lim𝑥→0
sin𝑥

𝑥

This is one of the most fundamental limits in calculus.

lim
𝑥→0

sin𝑥
𝑥 = 1

Reasoning:

As 𝑥 approaches 0, both sin𝑥 and 𝑥 approach 0 at the same rate. Graphically, the sine curve
and the line 𝑦 = 𝑥 are nearly identical near the origin.

Variants:
lim
𝑥→0

tan𝑥
𝑥 = 1, lim

𝑥→0
1 − cos𝑥

𝑥 = 0

5.4.2 Exponential Limit

lim
𝑥→0

(1 + 𝑥)1/𝑥

This limit defines themathematical constant 𝑒 (Euler’s number).

lim
𝑥→0

(1 + 𝑥)1/𝑥 = 𝑒

Alternative form:

lim
𝑛→∞

(1 + 1
𝑛)

𝑛
= 𝑒

Interpretation: This expression arises naturally in compound interest and growth models, it
represents continuous growth where compounding occurs infinitely often.

5.4.3 Exponential Functions

For any real number 𝑘:

lim
𝑥→0

𝑒𝑘𝑥 = 1

since 𝑒𝑘𝑥 → 𝑒0 = 1.

5.4.4 Logarithmic Functions

lim
𝑥→0+

ln(1 + 𝑥) = 0, lim
𝑥→∞

ln𝑥
𝑥 = 0
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5.4.5 Trigonometric Functions

lim
𝑥→0

sin(𝑘𝑥)
𝑥 = 𝑘, lim

𝑥→0
1 − cos(𝑘𝑥)

𝑥2 = 𝑘2

2

5.5 Discontinuities

5.5.1 One-Sided Limits

Left-hand limit (approaching from the left):

lim
𝑥→𝑎− 𝑓(𝑥) = 𝐿

The function approaches 𝐿 as 𝑥 approaches 𝑎 from the left (𝑥 < 𝑎).
Right-hand limit (approaching from the right):

lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿

The function approaches 𝐿 as 𝑥 approaches 𝑎 from the right (𝑥 > 𝑎).
Limit exists if:

lim
𝑥→𝑎− 𝑓(𝑥) = lim

𝑥→𝑎+
𝑓(𝑥)

Example:

𝑓(𝑥) = {𝑥 + 2 𝑥 < 1
3𝑥 𝑥 ≥ 1

• lim𝑥→1− 𝑓(𝑥) = 1 + 2 = 3

• lim𝑥→1+ 𝑓(𝑥) = 3(1) = 3

• So, lim𝑥→1 𝑓(𝑥) = 3

5.5.2 Infinite Limits

Infinite Limits (Vertical Asymptote) occur when the function grows without bound as it ap-
proaches a certain point. We are asking: “What happens to 𝑓(𝑥) as 𝑥 gets close to some point
𝑎?”

lim
𝑥→𝑎

𝑓(𝑥) = ∞ or − ∞

Example:

𝑓(𝑥) = 1
(𝑥 − 2)2

47



5.5. DISCONTINUITIES CHAPTER 5. LIMITS OF FUNCTIONS

f(1) = 3
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Function Part

Left (x < 1)

Right (x >= 1)

Piecewise function: f(x) = { x+2 (x < 1);  3x (x >= 1) }
Arrows show approach from left (blue) and right (red)

Visualization of One−Sided Limits for f(x)

Figure 5.3: Limits of Functions — Concept, Techniques, and Applications
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lim
𝑥→2

𝑓(𝑥) = ∞

This shows the function blows up as 𝑥 approaches 2.

x = 2 −> Vertical Asymptote

0

50

100

150

200

0 1 2 3 4

x

f(
x)

As x approaches 2, f(x) increases without bound

Infinite Limit Example:  f(x) = 1 (x − 2)2

Figure 5.4: Vertical Asymptote

5.5.3 Limits at Infinity

These describe the end behavior of a function as 𝑥 becomes very large (𝑥 → ∞) or very small
(𝑥 → −∞). We are asking: “What value does 𝑓(𝑥) approach as 𝑥 goes to infinity?”

Consider the function:

𝑓(𝑥) = 3𝑥2 + 2
𝑥2 + 5

The degree of the numerator = 2, and the degree of the denominator = 2. ⇒ The degrees are
the same. Take the coefficients of the highest-degree terms: Numerator= 3, Denominator= 1.
Therefore:

lim
𝑥→∞

𝑓(𝑥) = 3
1 = 3
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Step-by-step calculation (dividing by 𝑥2):

3𝑥2 + 2
𝑥2 + 5 = 3 + 2

𝑥2

1 + 5
𝑥2

As 𝑥 → ∞, every term containing 1
𝑥2 approaches 0. Thus, we are left with:

3
1 = 3

For 𝑥 → −∞: The same logic applies, since 2
𝑥2 → 0 and 5

𝑥2 → 0.
Therefore:

lim
𝑥→−∞

𝑓(𝑥) = 3

*Conclusion: The graph of the function has a horizontal asymptote** at 𝑦 = 3 in both direc-
tions.

y = 3 (Horizontal Asymptote)

1

2

3

−10 −5 0 5 10

x

f(
x)

As x −> ±large, f(x) −> 3

End Behavior of  f(x) =
3x2 + 2

x2 + 5

Figure 5.5: Horizontal Asymptote

5.5.4 Growth Comparison

As 𝑥 → ∞, some functions growmuch faster than others. Understanding growth comparison
is essential to:
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• Evaluate limits at infinity,

• Identify horizontal asymptotes, and

• Determine which function dominates in complex expressions.

In general, the order of growth from slowest to fastest is:

ln(𝑥) ≪ 𝑥𝑎 ≪ 𝑎𝑥 ≪ 𝑥! ≪ 𝑥𝑥

or verbally: Logarithmic < Polynomial < Exponential < Factorial < Power
Tower

Function Type Example Growth as 𝑥 → ∞ Notes

Logarithmic ln(𝑥) Slowest growth Increases
unbound-
edly but
very
slowly

Polynomial 𝑥2, 𝑥3, 𝑥𝑛 Moderate growth Dominates
logarith-
mic
functions

Exponential 2𝑥, 𝑒𝑥, 10𝑥 Fast growth Always
beats any
polyno-
mial

Factorial 𝑥! Very fast Super-
exponential
growth

Power Tower 𝑥𝑥, 𝑎𝑥2 Extremely fast Grows
faster than
all others

5.6 Applications

The concept of instantaneous velocity comes directly from the derivative of a function— a core
application of limits and differential calculus. Suppose the position of an object moving along
a straight line is given by a function:

𝑠 = 𝑓(𝑡)

where:
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Figure 5.6: Extended Growth Comparison

• 𝑠 = position (in meters, for example)

• 𝑡 = time (in seconds)

The average velocity of the object between two points in time 𝑡 and 𝑡 + ℎ is defined as the
change in position divided by the change in time:

𝑣avg = change in position
change in time

= 𝑓(𝑡 + ℎ) − 𝑓(𝑡)
ℎ

This formula represents the average rate of change of the function 𝑓(𝑡) over the interval [𝑡, 𝑡+
ℎ].

• If ℎ is large, 𝑣avg gives only a coarse estimate of the object’s motion.
• If ℎ is small, 𝑣avg becomes a more accurate approximation of how fast the object is moving
at time 𝑡.

To find the exact velocity at a single instant, we let the time interval ℎ approach zero. This
leads to the limit definition of the derivative:

𝑣(𝑡) = lim
ℎ→0

𝑓(𝑡 + ℎ) − 𝑓(𝑡)
ℎ
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Thus, instantaneous velocity is defined as the derivative of the position function:

𝑣(𝑡) = 𝑓 ′(𝑡)

Geometrically, the expression

𝑓(𝑡 + ℎ) − 𝑓(𝑡)
ℎ

represents the slope of the secant line connecting the points (𝑡, 𝑓(𝑡)) and (𝑡 + ℎ, 𝑓(𝑡 + ℎ)) on
the graph of 𝑠 = 𝑓(𝑡).
As ℎ → 0, the two points move closer together, and the secant line approaches the tangent line
at (𝑡, 𝑓(𝑡)). The slope of this tangent line gives the instantaneous velocity at that point.
From a physical standpoint:

• If 𝑣(𝑡) > 0, the position 𝑠 increases — the object moves forward.
• If 𝑣(𝑡) < 0, the position 𝑠 decreases — the object moves backward.
• If 𝑣(𝑡) = 0, the object is momentarily at rest.

Thus, the derivative 𝑓 ′(𝑡) provides not only the speed but also the direction of motion.
Let the position of an object be defined by:

𝑓(𝑡) = 𝑡2 + 3𝑡

Then the instantaneous velocity is the derivative:

𝑣(𝑡) = 𝑓 ′(𝑡) = 2𝑡 + 3

To find the velocity at 𝑡 = 4 seconds:

𝑣(4) = 2(4) + 3 = 11

Hence, at 𝑡 = 4 seconds, the instantaneous velocity is 11 m/s.
If we plot 𝑠 = 𝑓(𝑡), the instantaneous velocity at time 𝑡 is represented by the slope of the
tangent line to the curve.

As ℎ decreases, the secant line connecting (𝑡, 𝑓(𝑡)) and (𝑡 + ℎ, 𝑓(𝑡 + ℎ)) becomes nearly
identical to the tangent line — showing how the limit process captures the instantaneous rate
of change.

References
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Chapter 6

Differential

In the previous chapter Limits of Functions, we built a rigorous foundation for understanding
how functions behave near specific points, using the concept of limits to describe continuity and
instantaneous change. This foundation naturally leads to the study of derivatives, one of the
core ideas in differential calculus. In this chapter (see Figure 6.1), we introduce the derivative
from a purely theoretical perspective, focusing on its formulation, interpretation as a limit, and
the mathematical rules that allow us to compute derivatives efficiently. No applications are
discussed here — our attention is fully on the concepts, definitions, and techniques essential for
mastering differential calculus.

We explore:

• the limit-based definition of the derivative,
• alternative forms of the difference quotient,
• the geometric interpretation as the slope of a tangent line,
• rules of differentiation (power rule, product rule, quotient rule, chain rule),
• derivatives of elementary functions,
• implicit and logarithmic differentiation, = higher-order derivatives and their analytical
meaning.

This chapter forms the theoretical backbone for later work involving differential equations, op-
timization, and applied modeling.

6.1 Concept of Derivative

The concept of the derivative describes how a function changes at a specific point. It provides
a way to measure the instantaneous rate of change of a function and serves as the foundation
of calculus.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/1bH_ukYn81c?si=XqeGqLiynmFwctYw
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DERIVATIVES
(DIFFERENTIALS)

Concept of Derivative

Differentiation Rules

Elementary Function Derivatives

Implicit and Logarithmic Diff.

Higher-Order Derivatives

Limit Definition of Derivative

Geometric Meaning:
Slope of Tangent Line

Difference Quotients:
Forward, Backward, Central

Power Rule

Product Rule

Quotient Rule

Chain Rule

Trigonometric Derivatives

Exponential Derivatives

Logarithmic Derivatives

Implicit Differentiation

Logarithmic Differentiation

Second Derivative

Higher Order Derivatives

Figure 6.1: Derivatives — Concepts and Differentiation Techniques

According to the Video above, we explore the derivative through three interconnected perspec-
tives: the limit definition limℎ→0

𝑓(𝑥0+ℎ)−𝑓(𝑥0)
ℎ , the geometric meaning of how secant lines

approach the tangent line, and the role of the difference quotient in capturing the function’s
average rate of change before it becomes instantaneous.

Understanding the derivative begins with understanding how a function changes. Instead of
looking at an entire curve at once, we first ask a simpler question: How fast does the function
change between two points? To measure this, we compute the difference quotient:

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ ,

which represents the average rate of change over the interval from 𝑥 to 𝑥 + ℎ. Geometrically,
this value corresponds to the slope of the secant line connecting the two points on the graph.
However, the derivative is not about the average rate of change— it measures the instantaneous
rate of change at a single point. To capture that, we let the second point move closer by making
ℎ smaller.

As ℎ → 0:

• the secant line begins to rotate,

• its slope changes,

• and it gradually approaches the unique line that just touches the curve at one point.

This limiting line is the tangent line, and its slope is defined as the derivative:
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𝑓 ′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ .

The following animation visually demonstrates this process. As the value of ℎ decreases, the
secant line approaches the tangent line, illustrating how the concept of a derivative emerges from
the limit of the difference quotient.
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Key Insights

• The secant line represents the average rate of change of the function over a finite interval
ℎ.

• As ℎ becomes smaller, the secant line rotates and approaches the tangent line—illustrating
how the derivative is defined as a limit.

• The moving point (𝑥0 + ℎ, 𝑓(𝑥0 + ℎ)) shows how the function behaves near 𝑥0, giving
an intuitive view of the idea of “approaching.”

• The tangent line in the graph represents the instantaneous rate of change at 𝑥0, which is
the value of the derivative.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/a2GJRljYhUc?si=09j3BX1z79Iylyzt
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6.2 Differentiation Rules

The following rules allow us to differentiate functions efficiently without using the limit defini-
tion.

6.2.1 Constant Rule

If 𝑐 is a constant:
𝑑

𝑑𝑥(𝑐) = 0

6.2.2 Power Rule

For 𝑓(𝑥) = 𝑥𝑛:
𝑑

𝑑𝑥(𝑥𝑛) = 𝑛𝑥𝑛−1

Example ~ Differentiate:

𝑓(𝑥) = 5𝑥7 − 3𝑥3 + 2

Solution:

𝑓 ′(𝑥) = 35𝑥6 − 9𝑥2

6.2.3 Constant Multiple Rule

𝑑
𝑑𝑥[𝑐𝑓(𝑥)] = 𝑐𝑓 ′(𝑥)

6.2.4 Sum and Difference Rule

𝑑
𝑑𝑥[𝑓(𝑥) ± 𝑔(𝑥)] = 𝑓 ′(𝑥) ± 𝑔′(𝑥)

6.2.5 Product Rule

If 𝑦 = 𝑢(𝑥)𝑣(𝑥):
𝑦′ = 𝑢′𝑣 + 𝑢𝑣′

Example ~ Product Rule:

𝑦 = (3𝑥2 + 1)(𝑥3 − 4)
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Solution:
Let 𝑢 = 3𝑥2 + 1, 𝑢′ = 6𝑥
Let 𝑣 = 𝑥3 − 4, 𝑣′ = 3𝑥2

𝑦′ = 𝑢′𝑣 + 𝑢𝑣′

𝑦′ = 6𝑥(𝑥3 − 4) + (3𝑥2 + 1)(3𝑥2)

𝑦′ = 15𝑥4 + 3𝑥2 − 24𝑥

6.2.6 Quotient Rule

If 𝑦 = 𝑢
𝑣 :

𝑦′ = 𝑢′𝑣 − 𝑢𝑣′

𝑣2

Example ~ Quotient Rule

𝑦 = 𝑥2 + 1
𝑥 − 3

Solution:

𝑦′ = 2𝑥(𝑥 − 3) − (𝑥2 + 1)
(𝑥 − 3)2

6.2.7 Chain Rule

If 𝑦 = 𝑓(𝑔(𝑥)):
𝑑𝑦
𝑑𝑥 = 𝑓 ′(𝑔(𝑥)) ⋅ 𝑔′(𝑥)

Example 4 ~ Chain Rule:

𝑓(𝑥) = √3𝑥2 + 5

Rewrite:
𝑓(𝑥) = (3𝑥2 + 5)1/2

𝑓 ′(𝑥) = 1
2(3𝑥2 + 5)−1/2 ⋅ 6𝑥

𝑓 ′(𝑥) = 3𝑥√
3𝑥2 + 5
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6.3 Elementary Function Derivatives

6.3.1 Exponential Functions

𝑑
𝑑𝑥(𝑒𝑥) = 𝑒𝑥

𝑑
𝑑𝑥(𝑎𝑥) = 𝑎𝑥 ln(𝑎)

6.3.2 Logarithmic Functions

𝑑
𝑑𝑥(ln𝑥) = 1

𝑥
𝑑

𝑑𝑥(log𝑎 𝑥) = 1
𝑥 ln(𝑎)

Example ~Logarithmic Differentiation

𝑦 = (𝑥2 + 1)√𝑥(3𝑥 − 5)

Take logs:

ln 𝑦 = ln(𝑥2 + 1) + 1
2 ln𝑥 + ln(3𝑥 − 5)

Differentiate:
𝑦′

𝑦 = 2𝑥
𝑥2 + 1 + 1

2𝑥 + 3
3𝑥 − 5

Thus:
𝑦′ = (𝑥2 + 1)√𝑥(3𝑥 − 5) ( 2𝑥

𝑥2 + 1 + 1
2𝑥 + 3

3𝑥 − 5)

6.3.3 Trigonometric Functions

𝑑
𝑑𝑥(sin𝑥) = cos𝑥
𝑑

𝑑𝑥(cos𝑥) = − sin𝑥
𝑑

𝑑𝑥(tan𝑥) = sec2 𝑥

6.3.4 Inverse Trigonometric Functions

𝑑
𝑑𝑥(arcsin𝑥) = 1√

1 − 𝑥2

𝑑
𝑑𝑥(arctan𝑥) = 1

1 + 𝑥2
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6.4 Implicit Differentiation

Implicit differentiation is used when the relationship between 𝑥 and 𝑦 is not explicitly written
as 𝑦 = 𝑓(𝑥).
Example 1 ~ Implicit Differentiation:

𝑥2 + 𝑦2 = 25

Differentiate both sides:

2𝑥 + 2𝑦 𝑑𝑦
𝑑𝑥 = 0

Thus: 𝑑𝑦
𝑑𝑥 = −𝑥

𝑦

Example 2 ~ Implicit Differentiation:

𝑥3 + 𝑦3 = 9𝑥𝑦

Differentiate:
3𝑥2 + 3𝑦2𝑦′ = 9(𝑦 + 𝑥𝑦′)

Group terms:
(3𝑦2 − 9𝑥)𝑦′ = 9𝑦 − 3𝑥2

Thus:

𝑦′ = 9𝑦 − 3𝑥2

3𝑦2 − 9𝑥

6.5 Logarithmic Differentiation

Logarithmic differentiation is especially useful for:

• variable exponents such as 𝑥𝑥

• products of multiple factors

• complicated quotients

Example:

𝑦 = 𝑥𝑥

Take the natural logarithm:
ln 𝑦 = 𝑥 ln𝑥
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Differentiate:
𝑦′

𝑦 = ln𝑥 + 1

Thus:
𝑦′ = 𝑥𝑥(ln𝑥 + 1)

6.6 Higher-Order Derivatives

Higher-order derivatives are obtained by repeatedly differentiating a function.

• First derivative: 𝑦′

• Second derivative:

𝑦″ = 𝑑2𝑦
𝑑𝑥2

• Third derivative:

𝑦‴ = 𝑑3𝑦
𝑑𝑥3

• 𝑛-th derivative:
𝑦(𝑛)

Example 1 ~ Higher-Order Derivatives:

If 𝑦 = 𝑥4:

• 𝑦′ = 4𝑥3

• 𝑦″ = 12𝑥2

• 𝑦‴ = 24𝑥

• 𝑦(4) = 24

Example 2 ~ Higher-Order Derivatives:

𝑦 = 𝑒2𝑥

First derivative:
𝑦′ = 2𝑒2𝑥

Second derivative:
𝑦″ = 4𝑒2𝑥

𝑛-th derivative:
𝑦(𝑛) = 2𝑛𝑒2𝑥

## References {-}
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Chapter 7

Appllied of Differentials

Differentials are not merely mathematical concepts found in textbooks—they are powerful an-
alytical tools for understanding real-world change. Through the fundamental ideas of rates of
change and local approximations of functions, differentials help us predict, measure, and opti-
mize various phenomena in everyday life as well as in professional fields [4], [5].

The video below takes us through real-world applications of differential concepts—showing
how ideas about change and approximation appear in object motion, temperature variation, fluid
flow, population dynamics, and various technical processes in engineering and science. By
exploring these examples, we can appreciate that differentials are not merely formulas, but the
foundation for precise analysis and informed decision-making..

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/mntut9RfiIw?si=dRgVCaqK354ND1GH

7.1 Derivatives in Metallurgy

7.1.1 Carbon Diffusion Function

We want to model the carbon concentration 𝐶(𝑥) as a function of depth 𝑥. Let us derive this
systematically.

1. Observing the Data Pattern

Given data:

Depth 𝑥 (mm) Carbon (%)

0.5 0.2
1.0 0.8
1.5 1.8

To identify the type of function, examine ratios:
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• Ratio of carbon increase for doubling depth:

𝐶(1.0)
𝐶(0.5) = 0.8

0.2 = 4

• Ratio of carbon increase for tripling depth:

𝐶(1.5)
𝐶(0.5) = 1.8

0.2 = 9

These ratios suggest a power-law relationship:

𝐶(𝑥) ∝ 𝑥𝑛

where 𝑛 is the exponent to be determined.

2. Determining the Exponent

Assume the general form:

𝐶(𝑥) = 𝑘𝑥𝑛

Using the data points (𝑥1, 𝐶1) = (0.5, 0.2) and (𝑥2, 𝐶2) = (1.0, 0.8):

𝐶2/𝐶1 = (𝑥2/𝑥1)𝑛

Substitute the values:

0.8
0.2 = (1.0

0.5)
𝑛

4 = 2𝑛

Taking logarithm base 2:

log2 4 = log2 2𝑛 ⟹ 2 = 𝑛

Thus, the exponent is 𝑛 = 2, confirming a quadratic relationship:

𝐶(𝑥) = 𝑘𝑥2

3. Determining the Coefficient

Use any data point to solve for 𝑘, e.g., 𝑥 = 1.0 mm, 𝐶 = 0.8:

0.8 = 𝑘(1.0)2 ⟹ 𝑘 = 0.8

4. Final Model

The carbon concentration as a function of depth is:
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𝐶(𝑥) = 0.8𝑥2

This mathematically derived function reproduces the observed quadratic increase of carbon with
depth and can be used to predict concentration at other depths.

5. Derivative and Rate of Change

The rate of change is given by the derivative using the power rule:

𝐶′(𝑥) = 𝑑
𝑑𝑥[0.8𝑥2] = 2 ⋅ 0.8 ⋅ 𝑥 = 1.6𝑥

This derivative indicates how fast carbon concentration increases with depth, which is essential
for understanding hardness and diffusion behavior.
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7.1.2 Porosity Evolution

During the heating stage of a thermal treatment process (such as sintering or annealing), the
porosity of a material changes due to densification, grain growth, or diffusion-driven mecha-
nisms. The objectives of this study are to:

1. Model the evolution of porosity 𝑃(𝑡) as a function of time 𝑡 and/or temperature 𝑇 (𝑡).
2. Determine the rate of change (derivative) of porosity with respect to time.
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3. Evaluate the suitability of simple models (linear and exponential) and examine the direct
relationship between porosity and temperature.

Provided Data

Time 𝑡 (min) Porosity 𝑃(𝑡) Temperature 𝑇 (𝑡) (°C)
0 0.30 800
10 0.28 830
20 0.26 860

Note: The dataset consists of three measurement points within a 0–20 minute interval, during
which the temperature increases from 800 °C to 860 °C.

Density model:

𝜌(𝑡) = 𝑃(𝑡) 𝑇 (𝑡)

Derivative of Pruduct Rule:

𝜌′(𝑡) = 𝑃 ′(𝑡)𝑇 (𝑡) + 𝑃(𝑡)𝑇 ′(𝑡)

Your Task: Shows how pellet density changes as porosity decreases and temperature rises.

7.1.3 Strength vs Density

A materials laboratory is performing a heat-treatment experiment on a steel sample. During
heating, themechanical properties of thematerial change over time, particularly tensile strength
and density.

The researchers recorded the following measurements:

Time 𝑡 (min) Strength 𝜎 (MPa) Density 𝜌 (g/cm³)

0 380 7.90
30 410 7.85
60 440 7.80

They want to compute the specific strength, defined as:

𝑅(𝑡) = 𝜎(𝑡)
𝜌(𝑡)

Use Derivative Quotient Rule:

𝑅′(𝑡) = 𝜎′(𝑡)𝜌(𝑡) − 𝜎(𝑡)𝜌′(𝑡)
[𝜌(𝑡)]2

Your Task: Shows how efficiently strength improves compared to weight reduction.
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7.1.4 Thermal Grain Growth

A materials research group studies grain growth in a metal during annealing. They report effec-
tive annealing time and grain size at three furnace temperatures:

Temperature 𝑇 (°C) Effective Time 𝑡 (min) Grain Size 𝑑 (µm)

600 8 12
650 12 15
700 20 19

Grain growth during annealing is often modeled by a time-power law (at a fixed temperature):

𝑑(𝑡) = 𝑘 𝑡𝑛

where 𝑘 and 𝑛 are material- and temperature-dependent constants. Temperature itself typically
influences the kinetics through an Arrhenius factor in 𝑘:

𝑘(𝑇 ) = 𝑘0 exp(− 𝑄
𝑅𝑇 ) ,

with 𝑄 the activation energy, 𝑅 the gas constant, and 𝑇 the absolute temperature (K).

Empirical models:

• Time depends on temperature:

𝑡 = 2𝑇 3

• Grain size depends on time:

𝑑 = 𝑘 𝑡1/2

Derivative (Chain Rule):

𝑑𝑑
𝑑𝑇 = 𝑑𝑑

𝑑𝑡 × 𝑑𝑡
𝑑𝑇

Your Task: Shows how grain size changes when annealing temperature changes.

7.1.5 Molten Metal Vibration

Data:
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Time t (s) Position x (mm)

0.00 0
0.02 4.3
0.04 3.1
0.06 -2.5

Fitted oscillation model:

𝑥(𝑡) = 5 sin(60𝑡)

Derivative Trigonometric:

Velocity:

𝑥′(𝑡) = 300 cos(60𝑡)

Your Task: Tells how fast molten metal is moving inside the furnace.

7.1.6 Cooling Curve of Hot Steel

Data:

Time t (s) Temperature T (°C)

0 900
20 800
40 710
60 630

Cooling model:

𝑇 (𝑡) = 900𝑒−0.03𝑡

Derivative Exponential:

𝑇 ′(𝑡) = −27𝑒−0.03𝑡

Your Task: Shows the cooling rate, which affects final microstructure.

7.1.7 Gold Leaching Concentration

Data:

68



CHAPTER 7. APPLLIED OF DIFFERENTIALS 7.1. DERIVATIVES IN METALLURGY

Time t (h) Gold in Solution C (mg/L)

0 0
1 27
2 36
3 41

Fitted model:

𝐶(𝑡) = ln(1 + 4𝑡)

Derivative of Logarithmic:

𝐶′(𝑡) = 4
1 + 4𝑡

Your Task: Shows how fast gold dissolves over time.

7.1.8 Ball Motion in Ball Mill

Data (Position):

Time t (s) x (cm)

0.0 0.0
0.1 1.5
0.2 0.0
0.3 -1.5

Fitted motion model:

𝑥(𝑡) = 2 sin(10𝑡)

Velocity:

𝑥′(𝑡) = 20 cos(10𝑡)

Acceleration:
𝑥″(𝑡) = −200 sin(10𝑡)

Your Task: Acceleration determines grinding impact energy.
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7.2 Derivatives in Petroleum

7.2.1 Reservoir Pressure and Porosity

A petroleum company has collected the following reservoir data:

Depth 𝑥 (m) Pressure 𝑃 (MPa) Notes

500 15 Shallow zone
1000 25 Mid zone
1500 40 Deep zone

The porosity of the reservoir decreases with depth due to compaction.

7.2.2 Pressure Function

From the data, pressure increases faster than linear with depth.
We use a power-law model:

𝑃(𝑥) = 0.01 𝑥1.3 (MPa)

Derivative:

𝑃 ′(𝑥) = 𝑑
𝑑𝑥 (0.01𝑥1.3) = 0.013 𝑥0.3

This indicates the rate of pressure increase with depth.

7.2.3 Porosity Function

Assume porosity decreases linearly with depth:

𝜙(𝑥) = 0.25 − 0.00005 𝑥

Derivative:

𝜙′(𝑥) = −0.00005

Indicating a constant decrease in porosity per meter.
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7.2.4 Economic Value Function

Economic value per barrel depends on pressure:

𝑉 (𝑃) = 10𝑃 2 (USD per barrel)

Using the chain rule:

𝑑𝑉
𝑑𝑥 = 𝑑𝑉

𝑑𝑃 ⋅ 𝑑𝑃
𝑑𝑥 = 20𝑃(𝑥) 𝑃 ′(𝑥)

Substitute values:

𝑑𝑉
𝑑𝑥 = 20(0.01𝑥1.3)(0.013𝑥0.3) ≈ 0.0026 𝑥1.6

7.2.5 Total Reservoir Value per Meter

Assume fluid volume per meter is proportional to porosity:

𝑇 (𝑥) = 1000 𝜙(𝑥)

Total value per meter:

𝑊(𝑥) = 𝑉 (𝑃(𝑥)) 𝑇 (𝑥) = 1000 𝑃(𝑥)2 𝜙(𝑥)

Derivative:

𝑊 ′(𝑥) = 1000 [2𝑃(𝑥)𝑃 ′(𝑥)𝜙(𝑥) + 𝑃(𝑥)2𝜙′(𝑥)]

= 1000 [2(0.01𝑥1.3)(0.013𝑥0.3)(0.25 − 0.00005𝑥) + (0.01𝑥1.3)2(−0.00005)]

= 0.065 𝑥1.6 − 0.00051 𝑥2.6

7.2.6 Reservoir Flow Analysis

Observed Data

Depth 𝑥 (m) Pressure (MPa) Temp (°C) Mobility (Pa·s)

500 15 60 0.12
700 20 70 0.10
1000 28 85 0.08
1300 35 100 0.06
1500 40 115 0.05
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Pressure Function

Assume sinusoidal heterogeneity:

𝑃(𝑥) = 25 + 15 sin( 𝜋𝑥
2000)

Temperature Function

Assume logarithmic increase:

𝑇 (𝑥) = 10 + 17 ln(𝑥)

Oil Mobility Function

Assume exponential decay:

𝜇(𝑥) = 0.15𝑒−0.0007𝑥

Total Effective Flow

𝐹(𝑥) = 𝑃(𝑥)
𝜇(𝑥) cos(𝑇 (𝑥)𝜋

180 )

7.3 Derivatives in Mining

7.3.1 Ore Grade and Density

Depth 𝑥 (m) Ore Grade (%) Notes

50 0.8 Upper layer
100 1.6 Mid layer
150 3.6 Deep layer

7.3.2 Ore Grade Function

𝐺(𝑥) = 0.00637 𝑥1.2

Derivative:

𝐺′(𝑥) = 0.00764 𝑥0.2
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7.3.3 Ore Density Function

𝜌(𝑥) = 2.7 − 0.002𝑥

Derivative:

𝜌′(𝑥) = −0.002

7.3.4 Economic Value Function

𝑉 (𝐺) = 50𝐺2

Chain rule:

𝑑𝑉
𝑑𝑥 = 100 𝐺(𝑥) 𝐺′(𝑥) ≈ 0.00486 𝑥1.4

7.3.5 Total Ore Value per Meter

𝑇 (𝑥) = 10𝜌(𝑥)

𝑊(𝑥) = 500𝐺(𝑥)2𝜌(𝑥)

Derivative:

𝑊 ′(𝑥) ≈ 0.1314 𝑥1.4 − 0.0405 𝑥2.4

7.3.6 Copper Grade and Profit Analysis

Copper Grade Model

Model 𝐶(𝑥) using power-law (choose parameters based on regression):

𝐶(𝑥) = 𝑎𝑥𝑏

Derivative:

𝐶′(𝑥) = 𝑎𝑏𝑥𝑏−1
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Extraction Cost

𝐾(𝑥) = 20 + 0.5𝑥

Derivative:

𝐾′(𝑥) = 0.5

Profit Per Ton

𝑃(𝑥) = 100 𝐶(𝑥) − 𝐾(𝑥)

Derivative:

𝑃 ′(𝑥) = 100 𝐶′(𝑥) − 0.5

Total Profit Per Meter

𝑇 (𝑥) = 50 − 0.2𝑥

𝑇 𝑃 (𝑥) = 𝑃(𝑥)𝑇 (𝑥)

Derivative:

𝑇 𝑃 ′(𝑥) = 𝑃 ′(𝑥)𝑇 (𝑥) + 𝑃(𝑥)𝑇 ′(𝑥)

7.3.7 Groundwater Flow

Water Table Height

𝐻(𝑥) = 10 + 2 sin( 𝜋𝑥
100)

Derivative:

𝐻′(𝑥) = 2 𝜋
100 cos( 𝜋𝑥

100)

Slope Function

𝜃(𝑥) = 5 + 0.5 ln(𝑥)

Derivative:

𝜃′(𝑥) = 0.5
𝑥
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Infiltration Efficiency

𝐸(𝑥) = 0.9𝑒−0.02𝑥

Derivative:

𝐸′(𝑥) = −0.018𝑒−0.02𝑥

Total Infiltration

𝐹(𝑥) = 𝐻(𝑥) 𝐸(𝑥) cos(𝜃(𝑥)𝜋
180 )

7.4 References
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Chapter 8

Integrals

Integration is one of the two central operations in calculus, alongside differentiation. While
differentiation measures instantaneous change, integration measures accumulated quantity.
In simple terms, an integral adds up infinitely many tiny pieces to form a total [4].

8.1 Illustrations for Integrals

Imagine dividing a quantity into extremely small parts—lengths, areas, volumes, masses, or any
measurable quantities. An integral is the limit of the sum of these tiny parts [6]. The integral
symbol ∫ was introduced by Leibniz and resembles an elongated “S”, meaning “sum” [7].

Components:

• ∫ : integral (sum) symbol

• 𝑓(𝑥) : function being integrated

• 𝑑𝑥 : infinitesimally small change in 𝑥 [8]
• 𝑎, 𝑏 : lower and upper bounds (for definite integrals)

Example:

∫
3

0
𝑥.𝑑𝑥
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0 0.5 1 1.5 2 2.5 3
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f(x)	=	x
Area

Area	Under	the	Curve	f(x)	=	x

x

f(
x)

General formula:

∫ 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1

𝑛 + 1 + 𝐶

Apply for ( n = 1 ):

∫ 𝑥 𝑑𝑥 = 𝑥2

2

Evaluate the definite integral:

∫
3

0
𝑥 𝑑𝑥 = [𝑥2

2 ]
3

0

= 32

2 − 02

2

= 9
2 = 4.5

In General a function 𝑓(𝑥), we approximate the area under the curve using rectangles of width
Δ𝑥:
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Approximate Area ≈
𝑛

∑
𝑖=1

𝑓(𝑥𝑖)Δ𝑥

As the rectangles become thinner (Δ𝑥 → 0), the approximation becomes exact:

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = lim

𝑛→∞

𝑛
∑
𝑖=1

𝑓(𝑥𝑖)Δ𝑥

This is called a definite integral.

8.2 Two Types of Integrals

8.2.1 Indefinite Integral

An indefinite integral represents a family of functions whose derivative is 𝑓(𝑥) [4] [6]:

∫ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝐶

where 𝐹 ′(𝑥) = 𝑓(𝑥) and 𝐶 is the constant of integration. This is the reverse process of differ-
entiation [8]. Therefore, the most important link between derivatives and integrals is:

𝑑
𝑑𝑥 (∫ 𝑓(𝑡) 𝑑𝑡) = 𝑓(𝑥)

8.2.2 Definite Integral

A definite integral computes the actual numerical value of accumulated area or quantity be-
tween 𝑥 = 𝑎 and 𝑥 = 𝑏 [9]:

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)

It has no “+𝐶” because the value is a number, not a function [10].

8.3 Area in Single Function

When we want to compute the area bounded by a single function 𝑦 = 𝑓(𝑥) over a certain
interval, we use the definite integral [11]. This is one of the most important ideas in calculus
because it allows us to measure areas under curves that are not simple geometric shapes [12].
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8.3.1 Parabola

Compute the area under:

𝑓(𝑥) = 𝑥2

on the interval 0 ≤ 𝑥 ≤ 2.

𝐴 = ∫
2

0
𝑥2 𝑑𝑥

Integrating:

∫ 𝑥2 𝑑𝑥 = 𝑥3

3

Substitute the bounds:

𝐴 = [𝑥3

3 ]
2

0
= 8

3

Final Answer:

𝐴 = 8
3

8.3.2 Linear Function

Find the area under:

𝑓(𝑥) = −𝑥 + 4

from 𝑥 = 0 to 𝑥 = 4.

𝐴 = ∫
4

0
(−𝑥 + 4) 𝑑𝑥

Integrate:

∫(−𝑥 + 4) 𝑑𝑥 = −𝑥2

2 + 4𝑥

Substitute:

𝐴 = [−𝑥2

2 + 4𝑥]
4

0
= 8
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Final Answer:

𝐴 = 8

8.3.3 Function Crossing the x-axis

Consider:

𝑓(𝑥) = 𝑥 − 2

on [0, 4].
The function changes sign at 𝑥 = 2.
Thus:

𝐴 = ∫
2

0
|𝑥 − 2| 𝑑𝑥 + ∫

4

2
|𝑥 − 2| 𝑑𝑥

For 0 ≤ 𝑥 < 2:

|𝑥 − 2| = 2 − 𝑥

For 2 ≤ 𝑥 ≤ 4:

|𝑥 − 2| = 𝑥 − 2

Compute each:

𝐴1 = ∫
2

0
(2 − 𝑥) 𝑑𝑥 = 2

𝐴2 = ∫
4

2
(𝑥 − 2) 𝑑𝑥 = 2

Total area:

𝐴 = 2 + 2 = 4

Final Answer:

𝐴 = 4
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8.3.4 Visual Explanation (Video 3)

The following video helps visualize area under a curve:

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/IFlXeFwA_2A?si=BmSLZDshWSpojir0

8.4 Area in Two Function

When finding the area between two curves, we no longer measure the area under a single func-
tion. Instead, we measure the vertical distance between two functions across an interval.

8.4.1 Concept

Suppose we have two functions:

• 𝑓(𝑥) — the upper curve

• 𝑔(𝑥) — the lower curve

on the interval [𝑎, 𝑏]. The area between them is the accumulated difference in height:

Area = ∫
𝑏

𝑎
(𝑓(𝑥) − 𝑔(𝑥)) 𝑑𝑥

The integrand is always upper minus lower, ensuring the area remains positive.
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0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Shaded	Area
y	=	x
y	=	x^2

Area	Between	y	=	x	and	y	=	x^2	on	[0,	1]

x

y

8.4.2 Steps to Compute the Area

Problem: Find the area between the curves 𝑦 = 𝑥 and 𝑦 = 𝑥2 from 𝑥 = 0 to 𝑥 = 1.

1. Identify which function is on top
For 0 ≤ 𝑥 ≤ 1 we have 𝑥 ≥ 𝑥2.
Thus 𝑓(𝑥) = 𝑥 is the upper curve and 𝑔(𝑥) = 𝑥2 is the lower curve.

2. Find the intersection points
Solve 𝑓(𝑥) = 𝑔(𝑥):

𝑥 = 𝑥2 ⟹ 𝑥(1 − 𝑥) = 0 ⟹ 𝑥 = 0, 𝑥 = 1.

These are the bounds of the region.

3. Set up the integral
The area is

Area = ∫
1

0
(𝑓(𝑥) − 𝑔(𝑥)) 𝑑𝑥 = ∫

1

0
(𝑥 − 𝑥2) 𝑑𝑥.

4. Evaluate the definite integral
Find an antiderivative:

∫(𝑥 − 𝑥2) 𝑑𝑥 = 𝑥2

2 − 𝑥3

3 + 𝐶.
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Evaluate from 0 to 1:

Area = [𝑥2

2 − 𝑥3

3 ]
1

0

= (12

2 − 13

3 ) − (02

2 − 03

3 )

= 1
2 − 1

3

= 3
6 − 2

6

= 1
6.

Final answer:

Area = 1
6

8.4.3 Visual Explanation (Video 2)

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/fBPxOE_PmP0?si=xr1LTsfu2tsif-nu

8.5 Volume using Integral

A solid of revolution is formed when a region in the plane is rotated around a line (axis of
rotation), such as [4] [6]:

• the 𝑥-axis

• the 𝑦-axis

• any vertical or horizontal line

To compute its volume, we integrate the volume of infinitesimally thin slices [8]. In calculus,
we compute the volume of a solid using definite integrals. Common methods include: Disk
Method, Washer Method, and Shell Method [10] [9].

8.5.1 Disk Method

Used when the region touches the axis of rotation (no hole in the middle). If a region bounded
by 𝑦 = 𝑓(𝑥) is rotated around the 𝑥-axis, the volume is:
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𝑉 = ∫𝑏
𝑎 𝜋(𝑓(𝑥))2 𝑑𝑥

Each slice is a disk with:

• radius = 𝑓(𝑥)

• thickness = 𝑑𝑥

Let consider the following visualization, 𝑓(𝑥) = 𝑥2

z	=	x²	(generating	curve)

3D	Solid	of	Revolution	of	f(x)	=	x²	Rotated	About	the	z-axis

WebGL	is	not	supported	by	your	browser	-	visit	https://get.webgl.org	for	more	info

8.5.2 Washer Method

Used when there is a gap between the region and the axis of rotation, producing a “hole”. If the
outer radius is 𝑅(𝑥) and the inner radius is 𝑟(𝑥), the volume is:

𝑉 = ∫𝑏
𝑎 𝜋 [𝑅(𝑥)2 − 𝑟(𝑥)2] 𝑑𝑥
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3D	Washer	Method	Rotated	About	the	z-axis

WebGL	is	not	supported	by	your	browser	-	visit	https://get.webgl.org	for	more	info

This represents: Outer disk area minus inner disk area

8.5.3 Shell Method

Useful when rotating around the 𝑦-axis or when the function is easier to express in terms of 𝑥.
If the region is rotated around the 𝑦-axis, the volume is:

𝑉 = ∫𝑏
𝑎 2𝜋𝑥 𝑓(𝑥) 𝑑𝑥

Each slice is a hollow cylindrical shell with:

• radius = 𝑥

• height = 𝑓(𝑥)

• thickness = 𝑑𝑥
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3D	Hemisphere	(Upper	Half	of	Sphere)

WebGL	is	not	supported	by	your	browser	-	visit	https://get.webgl.org	for	more	info

8.6 Example Problem

Find the volume of the solid obtained by rotating the region bounded by
𝑦 = 𝑥2 and 𝑦 = 0, for 0 ≤ 𝑥 ≤ 1, around the x-axis.
Solution:

Because we revolve around the x-axis, we use the Disk Method.

• Volume formula using disk method: 𝑉 = 𝜋 ∫1
0 (𝑥2)2 𝑑𝑥

• Simplify the integrand: 𝑉 = 𝜋 ∫1
0 𝑥4 𝑑𝑥

• Evaluate the integral: 𝑉 = 𝜋 [𝑥5
5 ]

1

0
• Final answer: 𝑉 = 𝜋

5

Therefore, the volume of the solid is: 𝜋
5

8.6.1 Visual Explanation (Video 3)

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/DZQy2RDaSW4?si=gVJJ0bGegUZ4z83W
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Chapter 9

Appllied of Integrals

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/mntut9RfiIw?si=y151tk6TLIqGQ_Ik

9.1 Summary Applied of Integrals

Transcendental functions are those that cannot be expressed as finite polynomials, encom-
passing exponential, logarithmic, trigonometric, and inverse trigonometric functions. They
play a pivotal role in mathematics, physics, engineering, and the applied sciences by modeling
complex natural and engineered phenomena. Key types, descriptions, and example applications
are summarized in Table 9.1.

References

Table 9.1: Definite Integrals

KeyConcept Description ExampleApplication

Definite Integral Total accumulation of a quantity over interval
[𝑎, 𝑏]: ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥
Area under curve: ∫2

0 𝑥2𝑑𝑥 = 8
3

Area Under a Curve Calculates area between function and x-axis Same as above
Physical Applications Integrals for work, mass, charge, revenue Mass: 𝑀 = ∫𝑏

𝑎 𝜌(𝑥)𝑑𝑥, Work:

𝑊 = ∫𝑏
𝑎 𝐹(𝑥)𝑑𝑥
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Chapter 10

Transcendental Functions

10.1 Transcendental Functions

Transcendental functions are functions that cannot be expressed as finite polynomials. They
include exponential, logarithmic, trigonometric, and inverse trigonometric functions, and
are essential in advanced mathematics, physics, engineering, and applied sciences for model-
ing complex phenomena. Transcendental functions are used to model complex phenomena in
science and engineering in the table Table 10.1.
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Table 10.1: Special Functions

KeyConcept Description ExampleApplication

Exponential Functions 𝑓(𝑥) = 𝑒𝑥 or 𝑎𝑥, model growth and decay RC circuit voltage: 𝑉 (𝑡) = 𝑉0(1 − 𝑒−𝑡/𝑅𝐶)
Logarithmic Functions 𝑓(𝑥) = ln𝑥 or log𝑎 𝑥, used in scaling Measuring pH, sound intensity
Trigonometric Functions 𝑓(𝑥) = sin𝑥, cos𝑥, tan𝑥, model periodic

behavior
Wave motion: 𝑦(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡)

Inverse Trigonometric Functions 𝑓(𝑥) = arcsin𝑥, arccos𝑥, arctan𝑥, solving
angles

Population oscillations:
𝑃(𝑡) = 𝑃avg + 𝐴 cos(𝜔𝑡 + 𝜙)
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