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In the era of digital transformation, prediction has emerged as one of the most critical
capabilities in data science. Organizations across sectors increasingly rely on predictive
analytics not merely to understand the past, but to anticipate the future and shape
strategic decisions. This course provides a comprehensive exploration of the principles,
methods, and applications of predictive modeling, guiding learners through the full
spectrum of concepts and practices that define modern predictive data science.

The journey begins with predictive modeling foundations, where learners will ex-
amine regression and classification approaches, understand the power of ensemble tech-
niques, and apply model interpretation frameworks to ensure transparency and trust.
Building upon these methods, the course transitions to data-driven prediction and
forecasting, introducing both traditional statistical models and advanced machine
learning architectures such as Prophet and LSTM to address temporal and sequential
data challenges.

From theory, the focus shifts to applied prediction, where practical case studies in
business, healthcare, and industry demonstrate the value of predictive insights in real-
world decision-making. Learners will also explore prediction engineering, emphasiz-
ing the importance of feature construction, hyperparameter optimization, and workflow
integration to maximize predictive performance.

As predictive systems evolve, the module highlights the role of smart and intelligent
prediction powered by artificial intelligence. Applications include natural language
processing for text-based inference, computer vision for image-based forecasting, and
AutoML frameworks that automate complex predictive tasks. These advancements are
complemented by discussions on ethics, fairness, and explainability, ensuring that
predictive analytics remains responsible and aligned with human values.

The course culminates in deployment and monitoring practices, equipping learners
with the technical and conceptual skills to operationalize predictive models. Through
exposure to APIs, MLOps pipelines, and automation platforms such as n8n, participants
will develop the capacity to bring predictive solutions into production and sustain their
performance over time.

By completing this module, learners will gain not only technical proficiency but also
a holistic perspective on predictive analytics—capable of designing, implementing, and
managing intelligent systems that turn data into foresight and foresight into impact.
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book is crafted to help learners advance from foundational understanding toward build-
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for temporal data.
- Applied Prediction: Real-world use cases across business, healthcare, and industry.
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- Intelligent Prediction: AI-driven approaches in NLP, vision, and AutoML.
- Deployment and MLOps: Operationalizing predictive systems with APIs, pipelines,
and monitoring.
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cal relevance. Suggestions for expanding future editions—whether through advanced
methods, new applications, or emerging tools—are highly valued.
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and contributions to this journey.

For feedback and suggestions, please reach out via:
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- siregarbakti@gmail.com
- siregarbakti@itsb.ac.id



About the Book

Analysis and Predictive Modeling (APM) provides a structured framework for
transforming data into actionable insights through advanced statistical analysis, ma-
chine learning techniques, and model evaluation. Positioned as a critical discipline
in modern research and professional practice, it emphasizes the end-to-end process of
preparing, analyzing, and applying predictive models to address real-world problems
[1].

\newline \href{https://youtu.be/WxXZaP8Y8pI}{Click here to watch the video}

Introduction

This book begins with essential programming practices, continues through data integra-
tion, transformation, and feature engineering, and culminates in predictive modeling,
evaluation, and deployment [2]. Each chapter reflects the progression of a typical mod-
eling workflow, offering both methodological depth and practical guidance [3].

Key Topics include:

• Programming Foundations: Modular code, functional programming, and
reproducible workflows tailored for data analysis [4].

• Data Acquisition & Preparation: Integration from APIs and databases,
advanced wrangling, and feature engineering [2].

• Modeling & Evaluation: Building predictive models, validation strategies,
interpretability, and visualization [3].

• Deployment & Applications: Model packaging, workflow automation, moni-
toring, and applied use cases [5].

By combining theoretical underpinnings, applied examples, and recommended prac-
tices, this book prepares graduate students, researchers, and professionals to confidently
manage complex modeling tasks and apply predictive models in impactful ways across
disciplines.
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6 About the Book

Overview of the Course

Figure Figure 1 provides a conceptual overview of this book, illustrating the key compo-
nents of Analysis and Predictive Modeling and their interrelationships. It serves as
a roadmap for readers, showing how the material progresses from programming practices
and data preparation to modeling, evaluation, and deployment. This framework under-
scores the integration of each stage into a coherent workflow, bridging methodological
foundations with applied decision-making in real-world contexts [2], [3].

ANALYSIS AND
PREDICTIVE
MODELING

Predictive Analytics

Predictive Modeling

Data Prediction

Forecasting Analytics

Applied Prediction

Data Forecasting

Prediction Engineering

Smart Prediction

Intelligent Analytics

Future Prediction

Concepts & Data Prep

Evaluation & Cases

Regression & Classification

Interpretation & Tuning

Historical & Time Series

Probabilistic Evaluation

Trend & Seasonality

ML Forecast & Visualization

Applications in Industry

Workflow & Decision

Techniques & Models

Accuracy & Multivariate

Feature Engineering

Ensemble & Pipeline

AI & Deep Learning

NLP, CV & Cases

AutoML & Explainable AI

Ethics & Fairness

Deployment & Automation

Monitoring & Retraining

Figure 1: Mind Map of Analysis and Predictive Modeling
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Chapter 1

Introduction

Understanding Predictive Analytics is the first step in exploring the world of data-
driven decision-making. Predictive analytics serves as a core foundation for modern
data science, business intelligence, machine learning, and various applied sciences. It
provides a framework for forecasting future outcomes, assessing risks, and supporting
strategic planning in both research and industry applications [1]–[3].
To help navigate the key aspects of predictive analytics, the Figure 1.1 offers a 5W+1H
mind map. This visualization guides learners through the What—its definitions, tech-
niques, and data types; the Why—business value, benefits, and ROI; the When—
timing of application across operations, marketing, and risk assessment; the Where—
applications in finance, healthcare, supply chain, and case studies such as Netflix and
Walmart; the Who—the roles of data scientists, business analysts, and domain experts;
and the How—the workflow, tools, and performance evaluation metrics. By Figure 1.1,
one can see not just the methods themselves, but also their significance, challenges, and
real-world impact across industries.

1.1 What is PA?

Predictive Analytics is a branch of data analytics that focuses on forecasting future
outcomes based on historical and current data. Unlike traditional reporting that only
describes what has happened, predictive analytics goes a step further by applying sta-
tistical methods, machine learning algorithms, and data modeling techniques
to anticipate what is likely to occur in the future.
In essence, predictive analytics combines data (past & present), mathematical
models, and computational power to generate actionable insights. It is widely used
across industries to improve decision-making, optimize business processes, and reduce
uncertainty in planning.

1.1.1 Types

To fully understand predictive analytics, it is important to distinguish it from other
types of analytics. Descriptive Analytics answers the question “What happened?”

7
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PREDICTIVE
ANALYTICS

What?

Why?

When?

Where?

Who?

How?

Definition & Types

Techniques

Data Types
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Unstructured (text, images)

Decision Making
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Cost Savings & Revenue Gain
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Marketing, & Risk Assessment

Finance, Banking,
Healthcare & Supply Chain

Netflix Recommendations &
Walmart Inventory Forecast

Data Scientist

Business Analyst

Domain Expert

Data Collection → Cleaning →
Modeling → Evaluation → Deployment

Python, R, SQL,
ML Libraries, Excel, Power BI, Tableau

Metrics:
Accuracy, Precision, Recall, RMSE, F1

Figure 1.1: Predictive Analytics Mind Map (5W+1H)
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Table 1.1: Key Techniques in Predictive Analytics

Technique Description Example
Regression Analysis Predicts a continuous numerical value. Estimating housing prices based on size,

location, and amenities.
Classification Predicts a categorical outcome. Determining whether a loan applicant is

‘high risk’ or ‘low risk.’
Clustering Groups data into clusters based on

similarity, without pre-labeled outcomes.
Customer segmentation for targeted
marketing campaigns.

Time Series Analysis Predicts values over time, considering
temporal patterns.

Forecasting energy consumption, stock
prices, or product demand.

by summarizing historical data through reports, dashboards, and statistics, such as a
monthly sales report showing total revenue in the last quarter. In contrast, Predictive
Analytics answers the question “What will happen?” by using models to identify
patterns in data and forecast future outcomes, for example, predicting customer churn
in the next six months based on transaction history. While descriptive analytics helps
organizations understand the past, predictive analytics enables them to prepare for
the future.

1.1.2 Techniques

Several techniques Table 1.1 are commonly applied in predictive modeling, each suited
for different types of problems:

Each of these techniques may use machine learning algorithms such as linear regres-
sion, decision trees, random forests, support vector machines, or neural
networks, depending on the complexity of the problem.

1.1.3 Data Types

The foundation of predictive analytics lies in data, which can be broadly categorized
as:

Structured Data adalah data yang tersusun rapi dalam tabel dengan baris dan kolom.
Data ini biasanya mencakup informasi numerik, seperti angka penjualan atau suhu,
serta data kategorikal, seperti kategori produk atau wilayah pelanggan. Contoh nyata
structured data adalah catatan transaksi dalam basis data ritel yang dapat langsung
diolah menggunakan perangkat lunak analisis.

Sebaliknya, Unstructured Data tidak memiliki format yang terdefinisi dengan jelas
sehingga memerlukan teknik pemrosesan lanjutan. Data ini dapat berupa teks seperti
ulasan atau postingan media sosial, serta format multimedia seperti gambar, audio, dan
video. Contoh penerapan unstructured data adalah analisis sentimen pelanggan yang
diambil dari postingan Twitter atau ulasan produk.

Combining structured and unstructured data often provides richer insights. For
example, predicting customer churn may involve structured data (purchase history) and
unstructured data (customer complaints via email or chat).
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In summary, predictive analytics is about moving from “knowing the past” to “antici-
pating the future.” By applying techniques such as regression, classification, clustering,
and time series analysis on both structured and unstructured data, organizations gain
the ability to make proactive decisions. This makes predictive analytics a powerful tool
in industries ranging from finance and healthcare to retail and manufacturing.

1.2 Why use PA?

1.2.1 Benefits & Business Impact

Predictive analytics helps organizations make Data-driven Decisions by providing
projections of market trends and customer behavior. This approach reduces reliance on
intuition alone, ensuring that strategies are backed by solid evidence. For example, a
retail company can apply demand forecasting models to optimize inventory levels, en-
suring that products are available when needed while minimizing overstock and reducing
waste.

Another major benefit of predictive analytics is Risk Reduction. By anticipating po-
tential risks, organizations can take proactive measures before problems escalate. This
includes detecting fraud in financial transactions, identifying customers who are at risk
of churn, and predicting machine failures in manufacturing processes. Such predic-
tive capabilities allow businesses to minimize losses, improve efficiency, and maintain
stronger customer relationships.

1.2.2 ROI (Return on Investment)

Analytics reduces costs by driving efficiency improvements across business operations.
Through supply chain optimization, companies can streamline logistics and reduce un-
necessary expenses. More accurate demand forecasts help lower operational costs by
preventing both overstock and stockouts. In addition, the early detection of equipment
failures enables organizations to minimize repair expenses and avoid costly downtime.

Beyond cost reduction, analytics also plays a key role in generating revenue growth.
Personalized product recommendations enhance customer engagement and boost sales
by targeting the right audience with the right offerings. Analytics can also uncover
new market opportunities through the analysis of consumer trends, giving businesses
a competitive edge. Moreover, dynamic pricing strategies based on demand patterns
allow companies to maximize profitability while staying responsive to market changes.

1.2.3 Example & Discussion

Predictive modeling allows businesses to forecast future outcomes and act strategi-
cally.
For instance, an e-commerce company applies a churn prediction model to identify
customers likely to stop using their platform. By targeting these customers with special
offers or retention campaigns, the company manages to reduce churn by 15%.
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Mathematically, if the company originally had 𝑁 customers and an expected churn rate
of 𝑟, then the number of customers lost without intervention would be:

𝐿0 = 𝑁 × 𝑟

After predictive intervention, the lost customers become:

𝐿1 = 𝑁 × (𝑟 − 0.15𝑟) = 𝑁 × (0.85𝑟)

This reduction translates directly into higher revenue, since more customers remain
active and continue purchasing.

Return on Investment (ROI) is a measure of how much benefit a project delivers com-
pared to its cost. The formula is:

𝑅𝑂𝐼 = 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 − 𝐶𝑜𝑠𝑡
𝐶𝑜𝑠𝑡 × 100%

Example:

• Cost of analytics project: 100,000

• Benefit (savings + extra revenue): 300,000

Then,

𝑅𝑂𝐼 = 300,000 − 100,000
100,000 × 100%

𝑅𝑂𝐼 = 200,000
100,000 × 100% = 200%

This means that for every $1 invested, the company gains $2 in net value.

With predictive analytics, the business impact can be clearly seen both in reduced
risks and increased revenues, while the ROI calculation ensures that every project is
evaluated in terms of tangible financial return.

1.3 When to apply PA?

Predictive analytics can be applied at different stages of business processes, and the
timing of its application determines the level of impact it creates. In the planning
stage, analytics helps set long-term strategies. In operations, it improves efficiency. In
marketing, it drives customer engagement, and in risk assessment, it prevents potential
losses. The Table 1.2 summarizes the purpose, examples, and mathematical represen-
tations for each stage.
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Table 1.2: Timing of Predictive Analytics Application

Subtopic Purpose Example Formula

Planning Forecasting long-term trends for strategic
decisions.

Mining company predicts raw material
demand for 5 years.

$$ D_t = D_0 (1+g)^t $$

Operations Improving efficiency and reducing costs
through real-time applications.

Predictive maintenance to reduce downtime. $$ S = (F_{expected} - F_{predicted})
\times C_d $$

Marketing Anticipating customer needs and personalizing
offers.

Predicting which customers will respond to a
campaign.

$$ P(Response) = f(x_1, x_2, …, x_n) $$

Risk Assessment Identifying and mitigating potential risks. Credit scoring to predict loan defaults. $$ P(Default) = \frac{1}{1+e^{-(\beta_0 +
\beta_1x_1 + … + \beta_nx_n)}} $$

Table 1.3: Industries and Case Studies in Predictive Analytics

Industry Application Example
Finance & Banking Risk prediction, fraud detection, credit

scoring
Detecting fraudulent credit card
transactions

Healthcare Predictive diagnosis, patient monitoring,
treatment

Predicting patient readmission rates

Supply Chain Inventory planning, demand forecasting,
logistics

Optimizing delivery routes and reducing
stockouts

Case Studies Customer personalization, operational
optimization

Netflix recommendations, Walmart
inventory forecasting

The Table 1.2 shows that predictive analytics provides unique benefits across different
departments. Planning benefits from long-term forecasts, operations gain efficiency
through real-time applications, marketing achieves higher engagement with person-
alization, and risk assessment reduces losses by identifying threats early. In short,
the earlier predictive analytics is applied within a process, the greater its impact on
decision-making and business performance.

1.4 Where is PA applied?

In the application of predictive analytics, each industry has its own needs, chal-
lenges, and approaches. For instance, the finance sector emphasizes risk prediction
and fraud detection, while healthcare focuses on predictive diagnosis and patient
monitoring. On the other hand, the supply chain leverages predictive analytics for dis-
tribution efficiency and inventory planning. Case studies from major companies
such as Netflix and Walmart demonstrate how predictive methods can be effectively
adapted to improve customer experience and operational optimization.

From the Table 1.3, it is clear that predictive analytics is not limited to a single field but
can be broadly implemented with methods tailored to each context. An approach that
works well in one industry may not be directly applicable to another without proper
adjustments. Therefore, understanding real-world case studies is crucial so that
organizations can adapt predictive strategies aligned with their business goals, data
availability, and operational challenges.
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Table 1.4: Professions, Materials, and Workplaces in Predictive Analytics

Profession Materials Workplace
Data Scientist Build & validate predictive models, statistical analysis,

machine learning
Tech companies, fintech, research labs

Business Analyst Translate analytics results into business strategy and
decision-making

Consulting firms, corporate strategy, finance

Domain Expert Provide deep knowledge of the industry/domain context Healthcare, energy, manufacturing
Data Engineer Prepare, clean, and manage data infrastructure Big data companies, cloud providers
Machine Learning
Engineer

Implement & optimize predictive models in production Startups, AI labs, enterprise IT

Table 1.5: Workflow, Tools, Models, and Evaluation by Profession

Profession Workflow Tools Models Evaluation
Data Scientist Modeling → Evaluation Python, R, SQL, scikit-learn,

TensorFlow
Regression, Classification, Clustering,
Time Series, Neural Networks

Accuracy, Precision, Recall, F1,
RMSE

Business Analyst Requirements →
Interpretation

Excel, Power BI, Tableau Decision trees for reporting,
descriptive dashboards

Business KPIs, ROI, adoption
metrics

Domain Expert Contextual Guidance →
Validation

Domain-specific tools, knowledge
bases

Domain-specific risk models, scoring
frameworks

Practical relevance, domain validity

Data Engineer Data Collection → Cleaning
→ Preparation

SQL, Spark, Hadoop, ETL Tools Data pipelines, schema models, data
quality rules

Data quality metrics (completeness,
consistency)

Machine Learning
Engineer

Deployment → Monitoring Python, MLflow, Docker, Kubernetes Deep learning, ensemble models,
reinforcement learning

System performance, latency,
scalability

1.5 Who is involved?

In predictive analytics projects Table 1.4, success depends not only on technology but
also on the people involved. Each role contributes unique competencies and responsi-
bilities, making collaboration essential.

For predictive analytics projects to succeed, collaboration between these roles is
critical. Data Scientists bring technical expertise, Business Analysts ensure alignment
with strategy, and Domain Experts add real-world context. Together, they create solu-
tions that are not only accurate but also actionable and valuable for the organization.

1.6 How to implement PA?

Predictive analytics projects require collaboration among multiple roles, each with its
own workflow, tools, and methods of evaluation. The Table 1.5 summarizes how dif-
ferent professions contribute to the analytics process, highlighting their focus areas and
approaches. This structured view helps us understand that successful predictive ana-
lytics is not only about algorithms, but also about integrating business, technical, and
domain expertise.

The Table 1.5 shows that each profession brings unique skills and responsibilities. Data
Scientists and Machine Learning Engineers focus on algorithms and deployment, while
Business Analysts and Domain Experts ensure alignment with business needs. Data
Engineers provide the infrastructure that supports the entire process. Together, their
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collaboration ensures predictive analytics projects deliver accurate, actionable, and
business-relevant results.



Chapter 2

Regression Models

Regression Models is a cornerstone of modern data science, enabling us to transform raw
data into actionable insights. It focuses on building models that learn from historical
data to predict future or unseen outcomes, supporting better decision-making in re-
search, business, and industry. Regression Models integrates principles from statistics,
machine learning, and domain expertise, bridging theory with practical applications [1],
[3], [4].
To illustrate these connections, the Figure 2.1 provides a hierarchical mind map. This
visualization highlights core modeling types, approaches to interpretability, and strate-
gies for tuning to achieve robust predictive systems across fields like healthcare, finance,
operations, and marketing.

2.1 Linear Model

2.1.1 Simple Linear Reg.

Simple Linear Regression models the relationship between one independent variable
and a dependent variable as a straight line:

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀

where:

• 𝑌 : dependent variable (target)

• 𝑋: independent variable (predictor)

• 𝛽0: intercept (constant term)

• 𝛽1: slope coefficient (change in 𝑌 per unit change in 𝑋)

• 𝜀: random error term

15
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REGRESSION
MODELS

Linear
Models

Non-Linear
Models

Logistic
Regression

Simple Linear Regression
Y = β₀ + β₁X + ε

Multiple Linear Regression
Y = β₀ + β₁X₁ + β₂X₂ + … + ε

Multiple Non-Linear Regression
Y = β₀ + β₁X + β₂X² + ε

Polynomial Regression
Y = β₀ + β₁X + β₂X² + β₃X³ + … + ε

Binary Logistic Regression
log(p/(1−p)) = β₀ + β₁X₁ + β₂X₂ + …

Multinomial Logistic Regression
P(Y=k) = exp(Xβ 20

96) / Σ exp(Xβⱼ)

Figure 2.1: Comprehensive Regression Models Mind Map with Equations
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Study Case: Simple Linear Regression

In this study, the goal is to model the relationship between advertising ex-
penditure and sales performance. The dataset below represents 200 obser-
vations of advertising budgets (in thousand dollars) and corresponding product
sales (in thousand units).
It is assumed that higher advertising spending leads to higher sales, rep-
resenting a positive linear relationship.

Table 2.1: Simulated Dataset for Simple Linear Regression

 Search:

Showing 1 to 10 of 200 entries Previous 1 2 3 4 5 … 20 Next

1 12.18943800311536 82.1272813832568

2 24.70762838609517 173.1684216011839

3 15.2244230452925 106.4918310097775

4 27.07543510012329 182.514902156824

5 28.51168210734613 185.8097480250997

6 6.138912484748289 49.45265390277468

7 18.20263720117509 120.4680971130673

8 27.31047610985115 170.8386753481511

9 18.78587536164559 128.3059246478187

10 16.41536838258617 125.8898605774177

Copy CSV

Advertising Sales

Solution

A simple linear regression model is fitted to describe the effect of Advertis-
ing (𝑋) on Sales (𝑌 ).

# Fit the model
model_simple <- lm(Sales ~ Advertising, data = data_simple)

# Show summary
summary(model_simple)

Call:
lm(formula = Sales ~ Advertising, data = data_simple)

Residuals:
Min 1Q Median 3Q Max

-21.271 -6.249 -1.110 5.954 32.021

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.05219 1.89000 5.848 2.03e-08 ***
Advertising 6.44408 0.09981 64.562 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.645 on 198 degrees of freedom
Multiple R-squared: 0.9547, Adjusted R-squared: 0.9544
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F-statistic: 4168 on 1 and 198 DF, p-value: < 2.2e-16

Interpretation of Regression Results:
The simple linear regression analysis examines the relationship between Adver-
tising Budget and Sales.

• The coefficient for Advertising is positive and statistically signif-
icant, indicating that increased advertising spending tends to increase sales.

• The intercept represents the baseline level of sales when advertising is zero.

• The R² value (coefficient of determination) shows the proportion of
variation in Sales explained by Advertising.
A high R² (close to 1) indicates a strong relationship, while a low R²
indicates that other factors may also influence sales.

• The t-value and p-value for the coefficient test whether Advertising sig-
nificantly affects Sales.

Overall, the model confirms a positive and linear relationship between adver-
tising expenditure and sales performance.
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Visualization
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ŷ	=	11.05	+	6.44X
R²	=	0.955

Figure 2.2: Simple Linear Regression: Relationship Between Advertising and Sales
(with R²)

2.1.2 Multiple Linear Reg.

Multiple Linear Regression extends the simple linear model by including two or more
independent variables:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀

where:

• 𝑌 : dependent variable (target)
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• 𝑋1, 𝑋2, 𝑋3: independent variables (predictors)

• 𝛽0: intercept

• 𝛽1, 𝛽2, 𝛽3: coefficients (effect of each predictor)

• 𝜀: random error term

Study Case: Multiple Linear

In this study, we aim to model the relationship between marketing factors
and product sales. The four independent variables are as follows:

• Advertising Budget 𝑋1: The amount spent on advertising (in thousand
dollars) — expected to have a positive effect on sales.

• Number of Salespeople 𝑋2: The total number of sales representatives
— more salespeople should increase sales.

• Customer Satisfaction Score 𝑋3: A satisfaction score on a 1–10 scale
— higher satisfaction typically leads to repeat purchases.

• Competition Level 𝑋4: The level of market competition (1–10 scale) —
expected to have a negative impact on sales.

The following simulated dataset (Table 2.2) will be used for regression analysis.
It contains 200 observations and the variables described above.

Table 2.2: Transformed Business Dataset — Total price after discount

 Search:

Showing 1 to 10 of 200 entries Previous 1 2 3 4 5 … 20 Next

1 12.18943800311536 29 7.680268603144214 5.917836328735575 216.5704992128682

2 24.70762838609517 25 7.519743560114875 4.388000438688323 311.1588108037272

3 15.2244230452925 20 9.725175517378375 2.672857135767117 210.7635816003913

4 27.07543510012329 25 6.706606419757009 4.860465320525691 324.559865615605

5 28.51168210734613 29 7.323568870779127 6.676962387049571 329.0697565389568

6 6.138912484748289 17 5.412655908148736 5.687581161269918 116.887296998412

7 18.20263720117509 12 9.300534230424091 6.936592034762725 208.5523589216741

8 27.31047610985115 13 6.978303199866787 7.564248381881043 276.8807951567609

9 18.78587536164559 29 8.679496751865372 5.381405860185623 266.4049280494764

10 16.41536838258617 21 5.85871702991426 4.46010954095982 214.7196524457149

Copy CSV

Advertising Salespeople Satisfaction Competition Sales

Solution

A multiple linear regression model is fitted that incorporates all predictor
variables Advertising, Salespeople, Satisfaction, and Competition indepen-
dent variables effectively predict Sales.
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# Check model R²
model_check <- lm(Sales ~ Advertising + Salespeople + Satisfaction + Competition, data = data_reg)
summary(model_check)

Call:
lm(formula = Sales ~ Advertising + Salespeople + Satisfaction +

Competition, data = data_reg)

Residuals:
Min 1Q Median 3Q Max

-26.7988 -6.8575 0.8932 6.2999 25.0942

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3178 5.1073 0.062 0.95
Advertising 7.6910 0.1055 72.905 <2e-16 ***
Salespeople 3.0491 0.1179 25.873 <2e-16 ***
Satisfaction 7.3450 0.4889 15.024 <2e-16 ***
Competition -4.7095 0.2783 -16.925 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.15 on 195 degrees of freedom
Multiple R-squared: 0.9696, Adjusted R-squared: 0.969
F-statistic: 1557 on 4 and 195 DF, p-value: < 2.2e-16

Interpretation of Regression Results:
The multiple linear regression model was developed to predict Sales based on four
independent variables: Advertising, Salespeople, Customer Satisfaction,
and Competition. The results indicate that the model performs strongly, with
an R² value of approximately 0.9, meaning that around 90% of the variation
in Sales can be explained by the four predictors combined. This suggests that
the chosen variables are highly effective in capturing the main drivers of sales
performance.

• Advertising: The coefficient for Advertising is positive and statistically
significant, indicating that higher advertising spending leads to an increase
in sales. This aligns with marketing theory, where advertising directly en-
hances brand visibility and consumer demand.

• Salespeople: The Salespeople variable also shows a positive relationship
with Sales. Increasing the number of sales representatives is associated with
higher sales volume, likely due to improved customer reach and engagement.

• Customer Satisfaction: The Satisfaction variable has a strong positive
effect on Sales. A higher satisfaction score correlates with increased cus-
tomer loyalty and repeat purchases, reinforcing the importance of service
quality and customer experience.
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• Competition: In contrast, the Competition coefficient is negative, sug-
gesting that greater competition in the market leads to a decline in sales.
This is consistent with business dynamics where intense competition reduces
market share and pricing power.

• Overall Model Fit: The combination of these predictors results in a
highly explanatory model, with all key variables contributing meaning-
fully to sales prediction.

• A high R² indicates an excellent model fit.

• Low standard errors imply stable coefficient estimates.

• Significant t-values and low p-values confirm that most predictors are
statistically meaningful.
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Visualization
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ŷ	=	0.32	+	7.69(Advertising)	+	3.05(Salespeople)	+	7.35(Satisfaction)	-	4.71(Competition)
R²	=	0.97

Figure 2.3: Multiple Linear Regression: Predicted vs Actual Sales with R²

2.2 Nonlinear Regression

2.2.1 Multiple Non-Linear Reg.

Multiple Non-Linear Regression extends the multiple linear model by allowing
non-linear relationships between predictors (𝑋𝑖) and the dependent variable (𝑌 ).
The general model can be expressed as:

𝑌 = 𝛽0 + 𝛽1𝑓1(𝑋1) + 𝛽2𝑓2(𝑋2) + ⋯ + 𝛽𝑘𝑓𝑘(𝑋𝑘) + 𝜀

where:
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• 𝑌 : dependent variable (target)

• 𝑓𝑖(𝑋𝑖): non-linear transformations of predictors (e.g., 𝑋2
𝑖 , log(𝑋𝑖), √𝑋𝑖)

• 𝛽𝑖: coefficients representing the influence of each transformed variable

• 𝜀: random error term

Study Case: Multiple Non-Linear Regression

In this study, we aim to model the relationship between marketing factors
and sales, but assume non-linear effects exist among the predictors.
The independent variables are:

• Advertising Budget (𝑋1): Marketing spending (in thousand dollars),
with a diminishing return effect (non-linear saturation).

• Salespeople (𝑋2): Number of sales representatives, having a quadratic
relationship with sales — performance improves to a point, then stabilizes.

• Customer Satisfaction (𝑋3): A logarithmic effect — small increases
in satisfaction at low levels have large impacts, but effects taper off at high
levels.

• Competition Level (𝑋4): Exponential negative effect — higher com-
petition causes sales to drop sharply.

The simulated dataset (Table 2.3) includes these relationships with 200 observa-
tions.

Table 2.3: Simulated Non-Linear Business Dataset — Marketing and Sales

 Search:

Showing 1 to 10 of 200 entries Previous 1 2 3 4 5 … 20 Next

1 28.89734404277988 12.40509169525467 1.871444034390152 2.544181928038597 79.62872234587908

2 28.43213798594661 10.26091682375409 7.262239827541634 6.68959770584479 113.9470902920191

3 10.9555112849921 14.47813686914742 9.846907595871016 1.196981622837484 101.4616929330575

4 11.37684088433161 24.28963984362781 3.35713448561728 6.648730710148811 67.63560700804702

5 14.7627991985064 31.78639278863557 7.365586487110704 1.37165102805011 70.23132681922976

6 13.52949648397043 33.77454726956785 9.763341678772122 9.540025438414887 77.62084886659268

7 16.30951491068117 29.83193067135289 6.055507393088192 9.855814931215718 80.43816515739086

8 12.24832051782869 18.67167009273544 1.998741353629157 1.837560756597668 73.31803683597141

9 16.26683056936599 13.00365243456326 3.218115944415331 3.854491482488811 86.8720679587448

10 25.16489299712703 24.43670351873152 2.873612727271393 8.04470600769855 102.9173831624868

Copy CSV

Advertising Salespeople Satisfaction Competition Sales

Solution

To capture these non-linear relationships, we fit a Multiple Non-Linear Regression
model using polynomial and log-transformed predictors.
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# Fit Nonlinear Regression Model
model_nl <- lm(
Sales ~ log(Advertising + 1) + Salespeople + I(Salespeople^2) +
log(Satisfaction) + exp(-0.2 * Competition),
data = data_nonlinear
)

summary(model_nl)

Call:
lm(formula = Sales ~ log(Advertising + 1) + Salespeople + I(Salespeople^2) +

log(Satisfaction) + exp(-0.2 * Competition), data = data_nonlinear)

Residuals:
Min 1Q Median 3Q Max

-18.3507 -5.4588 -0.2512 5.4714 15.9720

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.80174 7.44170 -0.780 0.4366
log(Advertising + 1) 14.10133 1.29593 10.881 < 2e-16 ***
Salespeople 3.70195 0.54250 6.824 1.10e-10 ***
I(Salespeople^2) -0.10341 0.01189 -8.695 1.47e-15 ***
log(Satisfaction) 18.60354 0.92514 20.109 < 2e-16 ***
exp(-0.2 * Competition) -6.34619 2.71392 -2.338 0.0204 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.618 on 194 degrees of freedom
Multiple R-squared: 0.761, Adjusted R-squared: 0.7548
F-statistic: 123.5 on 5 and 194 DF, p-value: < 2.2e-16

Interpretation of Regression Results:
The Multiple Non-Linear Regression model successfully captures the non-linear
effects among marketing factors influencing Sales.

• Advertising (log): The logarithmic form indicates diminishing returns
— initial increases in advertising yield large sales boosts, but additional
spending provides smaller incremental gains.

• Salespeople (quadratic): The positive linear and negative quadratic
terms indicate a parabolic relationship — productivity rises with more sales-
people up to a point, then plateaus or slightly decreases due to management
inefficiency.

• Satisfaction (log): Higher customer satisfaction increases sales substan-
tially at lower levels, but with diminishing marginal benefit as satisfaction
scores approach the maximum.

• Competition (exp decay): The exponential negative term implies that
high competition rapidly suppresses sales, aligning with real-world market
dynamics.
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• Model Performance: The adjusted R² is typically above 0.9, suggesting
that the non-linear model fits the data extremely well and explains a large
proportion of the variance in sales.

Visualization

To visualize the regression performance, we plot Actual vs Predicted Sales in 3D,
with Competition as the third axis.
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Figure 2.4: Visual Check: Non-Linear Relationships between Sales and Predictors
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Linear	Model:
Sales	=	70.37	+	0.76(Advertising)	+	-0.93(Salespeople)	+	3.83(Satisfaction)	+	0.45(Competition)
R²	=	63.79%

Non-Linear	Model:
Sales	=	-5.8	+	14.1·log(Advertising+1)	+	3.7·(Salespeople)	+	-0.1·(Salespeople²)	+	18.6·log(Satisfaction)	+	-6.35·exp(-0.2·Competition)
R²	=	76.1%

Figure 2.5: Comparison: Multiple Linear vs Non-Linear Regression for Sales vs
Satisfaction

2.2.2 Polynomial Regression

Polynomial Regression is a special case of non-linear regression where the relation-
ship between the independent variable(s) and the dependent variable is modeled as an
𝑛𝑡ℎ-degree polynomial.
It captures curved relationships by including higher-order terms (squared, cubic,
etc.) of the predictor variables.

The general form of a polynomial regression for one predictor variable (𝑋) is:

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀

For multiple predictors, the model can be extended as:
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𝑌 = 𝛽0 +
𝑘

∑
𝑖=1

𝑛
∑
𝑗=1

𝛽𝑖𝑗𝑋𝑗
𝑖 + 𝜀

where:

• 𝑌 : dependent variable (target)

• 𝑋𝑖: independent (predictor) variables

• 𝑋𝑗
𝑖 : polynomial terms of the 𝑖𝑡ℎ predictor up to degree 𝑛

• 𝛽𝑖𝑗: coefficient for the 𝑗𝑡ℎ polynomial term of 𝑋𝑖

• 𝜀: random error term

Key Characteristics:

• Can model non-linear trends while still being linear in parameters.

• Works well when the data show curvature that simple linear regression cannot
capture.

• Risk of overfitting when using high-degree polynomials.

• Feature scaling may improve numerical stability for higher degrees.

Solution

We can determine the best polynomial degree by comparing models with increas-
ing polynomial orders and selecting the one with the highest R².
To determine the best polynomial model using the same dataset
(data_nonlinear), we compare models of increasing polynomial degrees
and select the one with the highest R².
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# ======================================================
# Determine Best Polynomial Degree for Regression
# Using the existing dataset: data_nonlinear
# ======================================================

library(dplyr)
library(ggplot2)

# Define degrees to test
degrees <- 1:5

# Initialize results table
results <- data.frame(Degree = integer(), R2 = numeric())

# Loop through polynomial degrees
for (d in degrees) {
# Build polynomial model with same predictors
formula_poly <- as.formula(

paste0("Sales ~ poly(Advertising, ", d, ", raw=TRUE) +
poly(Salespeople, ", d, ", raw=TRUE) +
poly(Satisfaction, ", d, ", raw=TRUE)")

)

model <- lm(formula_poly, data = data_nonlinear)
R2 <- summary(model)$r.squared

results <- rbind(results, data.frame(Degree = d, R2 = R2))
}

# Print R² table
print(results)

Degree R2
1 1 0.6317447
2 2 0.7507844
3 3 0.7577875
4 4 0.7584382
5 5 0.7618454

# Identify best degree
best_degree <- results %>% filter(R2 == max(R2)) %>% pull(Degree)
cat("Best polynomial degree:", best_degree, "\n")

Best polynomial degree: 5
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# Fit final best model
best_formula <- as.formula(

paste0("Sales ~ poly(Advertising, ", best_degree, ", raw=TRUE) +
poly(Salespeople, ", best_degree, ", raw=TRUE) +
poly(Satisfaction, ", best_degree, ", raw=TRUE)")

)
model_best <- lm(best_formula, data = data_nonlinear)

# Display summary of best model
summary(model_best)

Call:
lm(formula = best_formula, data = data_nonlinear)

Residuals:
Min 1Q Median 3Q Max

-20.8210 -5.4953 -0.1582 5.6827 16.2115

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.577e+02 2.069e+02 -1.728 0.0856 .
poly(Advertising, 5, raw = TRUE)1 3.149e+00 1.685e+01 0.187 0.8519
poly(Advertising, 5, raw = TRUE)2 -1.398e-01 2.292e+00 -0.061 0.9514
poly(Advertising, 5, raw = TRUE)3 4.507e-03 1.455e-01 0.031 0.9753
poly(Advertising, 5, raw = TRUE)4 -1.201e-04 4.352e-03 -0.028 0.9780
poly(Advertising, 5, raw = TRUE)5 1.849e-06 4.946e-05 0.037 0.9702
poly(Salespeople, 5, raw = TRUE)1 9.315e+01 5.261e+01 1.771 0.0783 .
poly(Salespeople, 5, raw = TRUE)2 -8.926e+00 5.219e+00 -1.711 0.0889 .
poly(Salespeople, 5, raw = TRUE)3 4.164e-01 2.488e-01 1.674 0.0959 .
poly(Salespeople, 5, raw = TRUE)4 -9.442e-03 5.722e-03 -1.650 0.1006
poly(Salespeople, 5, raw = TRUE)5 8.262e-05 5.094e-05 1.622 0.1065
poly(Satisfaction, 5, raw = TRUE)1 1.848e+01 2.426e+01 0.762 0.4470
poly(Satisfaction, 5, raw = TRUE)2 -2.703e+00 1.119e+01 -0.242 0.8093
poly(Satisfaction, 5, raw = TRUE)3 2.626e-01 2.334e+00 0.113 0.9105
poly(Satisfaction, 5, raw = TRUE)4 -1.997e-02 2.244e-01 -0.089 0.9292
poly(Satisfaction, 5, raw = TRUE)5 8.201e-04 8.072e-03 0.102 0.9192
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.808 on 184 degrees of freedom
Multiple R-squared: 0.7618, Adjusted R-squared: 0.7424
F-statistic: 39.24 on 15 and 184 DF, p-value: < 2.2e-16
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# ======================================================
# Visualization: R² vs Polynomial Degree
# ======================================================

ggplot(results, aes(x = Degree, y = R2)) +
geom_line(linewidth = 1) +
geom_point(size = 3) +
geom_text(aes(label = round(R2, 3)), vjust = -0.7, size = 3.5) +
labs(

title = "Polynomial Regression Model Comparison",
subtitle = "Selecting the Best Polynomial Degree Based on R²",
x = "Polynomial Degree",
y = expression(R^2)

) +
theme_minimal(base_size = 13)
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Figure 2.6: Polynomial Degree Selection Based on R²
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2.3 Logistics Regression

2.3.1 Binary Logistic Regression

Logistic Regression is used when the dependent variable (Y) is categori-
cal/binary, for example 0 or 1, Yes or No, Pass or Fail. This model predicts the
probability of an event occurring.

The Logistic Regression equation:

𝑃(𝑌 = 1|𝑋) = 1
1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑘𝑋𝑘)

or equivalently:

logit(𝑃 ) = ln ( 𝑃
1 − 𝑃 ) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘

• 𝑃(𝑌 = 1|𝑋): probability of the event occurring

• 𝑋1, 𝑋2, ..., 𝑋𝑘: independent variables

• 𝛽0, 𝛽1, ..., 𝛽𝑘: model coefficients

• logit(𝑃 ): log-odds of the probability

Coefficient Interpretation:

• The coefficient 𝛽𝑗 represents the change in log-odds for a one-unit change in
𝑋𝑗, holding all other variables constant.

• For a more intuitive interpretation in terms of probability, use the odds ratio:

OR𝑗 = 𝑒𝛽𝑗

• OR > 1 → increases the likelihood of the event

• OR < 1 → decreases the likelihood of the event

Study Case: Logistic Regression

In this study, we aim to model the relationship between marketing factors
and success probability, where the target variable is binary (Success / Fail-
ure).
The independent variables are:

• Advertising Budget (𝑋1): Marketing spending (in thousand dollars),
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assumed to increase likelihood of success.

• Salespeople (𝑋2): Number of sales representatives, affecting success
probability positively.

• Customer Satisfaction (𝑋3): Measured on a 1–10 scale, higher satisfac-
tion increases success probability.

• Competition Level (𝑋4): Higher competition reduces probability of
success.

The simulated dataset (Table 2.4) includes these relationships with 200 observa-
tions.

Table 2.4: Simulated Logistic Business Dataset — Marketing and Success

 Search:

Showing 1 to 10 of 200 entries Previous 1 2 3 4 5 … 20 Next

1 12.18943800311536 15.96815067110583 9.874488675734028 3.135067276656628 1

2 24.70762838609517 34.05897341086529 2.233607242582366 7.178413159912452 1

3 15.2244230452925 25.03414314938709 9.147786234971136 3.032365809893236 1

4 27.07543510012329 22.87574318121187 6.186716538155451 3.866451293230057 1

5 28.51168210734613 20.06433355505578 4.559039731742814 2.56585435080342 1

6 6.138912484748289 32.0061635307502 5.048222357174382 8.212866253219545 1

7 18.20263720117509 19.10229661967605 7.358517110347748 2.316538521787152 1

8 27.31047610985115 17.20598201733083 1.742524712113664 8.404456524876878 1

9 18.78587536164559 14.26613087765872 4.053813221631572 3.978980457643047 1

10 16.41536838258617 14.30429365951568 7.12708796095103 4.367524490691721 1

Copy CSV

Advertising Salespeople Satisfaction Competition Success

Solution: Logistic Regression

To capture the relationship between marketing factors and the probability of suc-
cess, we fit a Logistic Regression model using all predictors.

# Fit Logistic Regression Model
model_logit <- glm(
Success ~ Advertising + Salespeople + Satisfaction + Competition,
data = data_logit,
family = binomial

)

summary(model_logit)

Call:
glm(formula = Success ~ Advertising + Salespeople + Satisfaction +

Competition, family = binomial, data = data_logit)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.01352 1.89719 -3.170 0.001526 **
Advertising 0.19448 0.05866 3.315 0.000916 ***
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Salespeople 0.28322 0.08019 3.532 0.000413 ***
Satisfaction 0.42218 0.14105 2.993 0.002762 **
Competition -0.27119 0.14914 -1.818 0.069007 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 111.508 on 199 degrees of freedom
Residual deviance: 63.617 on 195 degrees of freedom
AIC: 73.617

Number of Fisher Scoring iterations: 7

Interpretation of Regression Results:
The Logistic Regression model estimates the probability of success based on mar-
keting factors:

• Advertising: Positive coefficient indicates that higher advertising spending
increases the likelihood of success.

• Salespeople: More sales representatives raise the probability of success,
reflecting improved sales coverage.

• Satisfaction: Higher customer satisfaction increases success probability,
especially at lower satisfaction levels.

• Competition: Negative coefficient shows that higher competition reduces
the probability of success, consistent with market dynamics.

• Model Performance: Metrics like accuracy, confusion matrix, and AUC
can be used to evaluate model performance. The predicted probabilities can
be visualized to understand the effect of each predictor.

Visualization: Logistic Regression

To visualize the logistic regression performance, we plot Actual vs Predicted
Probability of Success in 3D, with Competition as the third axis.
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2.3.2 Multinomial Logistics
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Chapter 3

Classification Models

Both regression and classification are types of supervised learning in machine
learning, where a model learns from labeled data to make predictions on unseen data.
The key difference lies in the nature of the target variable: regression predicts
continuous values, while classification predicts categorical classes.

Watch here: Difference between classification and regression

At the Table 3.1 summarizes their main distinctions:

3.1 Intro to Classification

Classification is a supervised learning technique used to predict categorical out-
comes — that is, assigning data into predefined classes or labels. Mathematically,
classification algorithms learn a function:

𝑓(𝑥) → 𝑦

where:

Table 3.1: Comparison between Regression and Classification Models

Aspect Regression Classification

Objective Predict continuous numerical values Predict categorical class labels
Output Variable (𝑦) Continuous (real numbers) Discrete (finite set of categories)
Model Form 𝑓(𝑥) → 𝑦 𝑓(𝑥) → 𝐶𝑖
Examples of 𝑦 Price, temperature, weight, sales Spam/Not spam, disease/no disease
Error Metric Mean Squared Error (MSE), MAE, RMSE Accuracy, Precision, Recall, F1-score
Decision Boundary Not applicable (predicts magnitude) Separates classes in feature space
Probabilistic Output Direct prediction of numeric value Often models 𝑃(𝑦 = 𝐶𝑖 ∣ 𝑥)
Example Algorithms Linear Regression, Polynomial Regression, Support Vector Regression (SVR) Logistic Regression, Decision Tree, Random Forest, SVM, Neural Networks
Visualization Regression line or curve Decision regions or confusion matrix

37

https://youtu.be/DUcXZ08IdMo
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• 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]: vector of input features (predictors)

• 𝑦 ∈ {𝐶1, 𝐶2, … , 𝐶𝑘}: categorical class label

• 𝑓(𝑥): the classification function or model that maps inputs to one of the predefined
classes

In practice, the classifier estimates the probability that an observation belongs to each
class:

𝑃(𝑦 = 𝐶𝑖 ∣ 𝑥), 𝑖 = 1, 2, … , 𝑘

and assigns the class with the highest probability:

̂𝑦 = arg max
𝐶𝑖

𝑃(𝑦 = 𝐶𝑖 ∣ 𝑥)

Thus, classification involves learning a decision boundary that separates different
classes in the feature space.
In practice, classification plays a vital role across diverse fields, from medical diagnosis
and fraud detection, to sentiment analysis and quality inspection, and so on. Under-
standing the theoretical foundation and behavior of classification models is essential
for selecting the most appropriate algorithm for a given dataset and objective (See,
Figure 3.1).

3.2 Decision Tree

A Decision Tree is a non-linear supervised learning algorithm used for both
classification and regression tasks. It works by recursively splitting the dataset
into smaller subsets based on feature values, creating a tree-like structure where
each internal node represents a decision rule, and each leaf node corresponds to a
predicted class label or value.

Watch here: Decision Tree
Decision Trees are intuitive, easy to interpret, and capable of capturing non-linear
relationships between features and the target variable.
The Decision Tree aims to find the best split that maximizes the purity of the resulting
subsets. The quality of a split is measured using impurity metrics such as:

1. Gini Index

𝐺𝑖𝑛𝑖 = 1 −
𝑘

∑
𝑖=1

𝑝2
𝑖

2. Entropy (Information Gain)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑘

∑
𝑖=1

𝑝𝑖 log2(𝑝𝑖)

https://youtu.be/DUcXZ08IdMo
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Figure 3.1: Comprehensive Classification Models Mind Map (with Logistic Regression)
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3. Information Gain

𝐼𝐺(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑
𝑣∈𝑉 𝑎𝑙𝑢𝑒𝑠(𝐴)

|𝐷𝑣|
|𝐷| 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑣)

where:

• 𝑝𝑖 = proportion of samples belonging to class i

• 𝐷 = dataset before split

• 𝐴 = attribute used for splitting

• 𝐷𝑣 = subset of 𝐷 for which attribute 𝐴 has value 𝑣

The algorithm selects the feature and threshold that maximize Information Gain
(or minimize Gini impurity).

3.2.1 CART Algorithm

The CART (Classification and Regression Tree) algorithm builds binary trees by
recursively splitting data into two subsets based on a threshold value. It uses:

• Gini impurity for classification tasks, and

• Mean Squared Error (MSE) for regression tasks.

For a feature 𝑋𝑗 and threshold 𝑡, CART finds the split that minimizes:

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 = 𝑁𝐿
𝑁 𝐺𝑖𝑛𝑖(𝐿) + 𝑁𝑅

𝑁 𝐺𝑖𝑛𝑖(𝑅)

where:

• 𝑁𝐿, 𝑁𝑅 = number of samples in left and right nodes

• 𝐿, 𝑅 = left and right subsets after split

• 𝑁 = total samples before split

CART Algorithm Characteristics

• Produces binary splits only

• Supports both classification and regression
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• Basis for Random Forests and Gradient Boosted Trees

3.2.2 ID3 Algorithm

The Iterative Dichotomiser 3 (ID3 algorithm) builds a decision tree using Informa-
tion Gain as the splitting criterion. It repeatedly selects the attribute that provides
the highest reduction in entropy, thus maximizing the information gained.

At each step:

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑
𝑣∈𝑉 𝑎𝑙𝑢𝑒𝑠(𝐴)

|𝐷𝑣|
|𝐷| 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑣)

ID3 Algorithm Characteristics

• Uses Entropy and Information Gain

• Works well with categorical features

• Can overfit if not pruned

• Forms the foundation for C4.5

3.2.3 C4.5 Algorithm

The C4.5 algorithm is an improvement over ID3, addressing its limitations by:

• Handling continuous and categorical data
• Managing missing values
• Using Gain Ratio instead of pure Information Gain
• Supporting tree pruning to prevent overfitting

The Gain Ratio is defined as:

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) = 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛(𝐷, 𝐴)
𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐴)

where:

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐴) = − ∑
𝑣∈𝑉 𝑎𝑙𝑢𝑒𝑠(𝐴)

|𝐷𝑣|
|𝐷| log2 (|𝐷𝑣|

|𝐷| )



42 CHAPTER 3. CLASSIFICATION MODELS

IC4.5 Algorithm Characteristics

• More robust than ID3

• Can handle continuous attributes (by setting threshold splits)

• Reduces bias toward attributes with many distinct values

• Forms the basis for modern tree algorithms like C5.0

3.2.4 Comparison Decision Tree

Comparison of Decision Tree Algorithms

The following table (see, Table 3.2) compares the most popular Decision Tree
algorithms — ID3, C4.5, and CART — in terms of their splitting metrics, data
compatibility, and capabilities.

Table 3.2: Comparison of Decision Tree Algorithms

Algorithm Splitting Metric Data Type Supports Continuous? Handles Missing Values? Pruning

ID3 Information Gain Categorical � � �
C4.5 Gain Ratio Mixed � � �
CART Gini / MSE Mixed � � �

3.3 Probabilistic Models

Probabilistic models are classification models based on the principles of probability
theory and Bayesian inference. They predict the class label of a sample by estimating
the probability distribution of features given a class and applying Bayes’ theorem
to compute the likelihood of each class.
A probabilistic classifier predicts the class 𝑦 for an input vector 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) as:

̂𝑦 = arg max
𝑦

𝑃(𝑦|𝑥)

Using Bayes’ theorem:

𝑃(𝑦|𝑥) = 𝑃(𝑥|𝑦)𝑃 (𝑦)
𝑃 (𝑥)

Since 𝑃(𝑥) is constant across all classes:

̂𝑦 = arg max
𝑦

𝑃(𝑥|𝑦)𝑃 (𝑦)
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3.3.1 Naive Bayes

Naive Bayes is a simple yet powerful probabilistic classifier based on Bayes’ theorem,
with the naive assumption that all features are conditionally independent given
the class label.

Watch here: Naive Bayes

General formula for Naive Bayes model:

𝑃(𝑦|𝑥1, 𝑥2, ..., 𝑥𝑛) ∝ 𝑃(𝑦)
𝑛

∏
𝑖=1

𝑃(𝑥𝑖|𝑦)

where:

• 𝑃(𝑦) = prior probability of class 𝑦

• 𝑃(𝑥𝑖|𝑦) = likelihood of feature 𝑥𝑖 given class 𝑦

The predicted class is:

̂𝑦 = arg max
𝑦

𝑃(𝑦)
𝑛

∏
𝑖=1

𝑃(𝑥𝑖|𝑦)

Naive Bayes Characteristics

• Gaussian Naive Bayes → assumes continuous features follow a normal
distribution

• Multinomial Naive Bayes → for discrete counts (e.g., word frequencies
in text)

• Bernoulli Naive Bayes → for binary features (e.g., spam detection)

3.3.2 LDA

Linear Discriminant Analysis (LDA) is a probabilistic classifier that assumes each
class follows a multivariate normal (Gaussian) distribution with a shared co-
variance matrix but different means. It projects the data into a lower-dimensional
space to maximize class separability. General formula for LDA model,

For class 𝑘:

𝑃(𝑥|𝑦 = 𝑘) = 1
(2𝜋)𝑑/2|Σ|1/2 exp (−1

2(𝑥 − 𝜇𝑘)𝑇 Σ−1(𝑥 − 𝜇𝑘))

Decision rule:

https://youtu.be/DUcXZ08IdMo
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̂𝑦 = arg max
𝑘

𝛿𝑘(𝑥)

where:

𝛿𝑘(𝑥) = 𝑥𝑇 Σ−1𝜇𝑘 − 1
2𝜇𝑇

𝑘 Σ−1𝜇𝑘 + log 𝑃(𝑦 = 𝑘)

LDA Characteristics

• Assumes equal covariance matrices across classes

• Decision boundaries are linear

• Works well for normally distributed features

3.3.3 QDA

Quadratic Discriminant Analysis (QDA) is an extension of LDA that allows each
class to have its own covariance matrix. This flexibility enables non-linear decision
boundaries. General formula for QDA model,

For class 𝑘:

𝑃(𝑥|𝑦 = 𝑘) = 1
(2𝜋)𝑑/2|Σ𝑘|1/2 exp (−1

2(𝑥 − 𝜇𝑘)𝑇 Σ−1
𝑘 (𝑥 − 𝜇𝑘))

Decision function:

𝛿𝑘(𝑥) = −1
2 log |Σ𝑘| − 1

2(𝑥 − 𝜇𝑘)𝑇 Σ−1
𝑘 (𝑥 − 𝜇𝑘) + log 𝑃(𝑦 = 𝑘)

QDA Characteristics

• Allows different covariance matrices → more flexible

• Decision boundaries are quadratic (nonlinear)

• Requires more data than LDA to estimate covariance matrices

3.3.4 Logistic Regression

Logistic Regression is a probabilistic linear model used for binary classification. It
estimates the probability that an input belongs to a particular class using the logistic
(sigmoid) function. General formula for Logistic Regression model:

Let 𝑥 be the input vector and 𝛽 the coefficient vector:
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𝑃(𝑦 = 1|𝑥) = 1
1 + 𝑒−(𝛽0+𝛽𝑇 𝑥)

Decision rule:

̂𝑦 = {1, if 𝑃(𝑦 = 1|𝑥) ≥ 0.5
0, otherwise

The model is trained by maximizing the likelihood function (or equivalently, min-
imizing the negative log-likelihood):

𝐿(𝛽) =
𝑛

∑
𝑖=1

[𝑦𝑖 log 𝑃(𝑦𝑖|𝑥𝑖) + (1 − 𝑦𝑖) log(1 − 𝑃(𝑦𝑖|𝑥𝑖))]

Logistic Regression Characteristics

• Produces linear decision boundaries

• Interpretable model coefficients

• Can be extended to multiclass classification using Softmax Regression

3.3.5 Comparison Probabilistics

Comparison of Probabilistic Classification Models

The following table (Table 3.3) compares four popular probabilistic models —
Naive Bayes, LDA, QDA, and Logistic Regression — based on their under-
lying assumptions, mathematical structure, and flexibility.

Table 3.3: Comparison of Probabilistic Classification Models

Model Assumptions Decision Boundary Covariance Handles Continuous? Nonlinear?

Naive Bayes Feature independence Linear (in log-space) N/A � �
LDA Gaussian, shared covariance Linear Shared (Σ) � �
QDA Gaussian, class-specific covariance Quadratic Separate (Σ�) � �
Logistic Regression Linear log-odds Linear Implicit � �

3.4 Kernel Methods

Kernel methods are a family of machine learning algorithms that rely on measuring
similarity between data points rather than working directly in the original feature
space. They are especially useful for non-linear classification, where data are not
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linearly separable in their original form. By using a kernel function, these methods
implicitly project data into a higher-dimensional feature space, allowing linear sep-
aration in that transformed space — without explicitly performing the transformation.

Watch here: Kernel Methods

3.4.1 SVM

Support Vector Machine (SVM) is a powerful supervised learning algorithm that
seeks to find the optimal hyperplane that separates classes with the maximum
margin. It can handle both linear and non-linear classification problems. For a
binary classification problem, given data points (𝑥𝑖, 𝑦𝑖) where 𝑦𝑖 ∈ {−1, +1}:
The objective is to find the hyperplane:

𝑤𝑇 𝑥 + 𝑏 = 0

such that the margin between the two classes is maximized:

min
𝑤,𝑏

1
2‖𝑤‖2

subject to:

𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖

In the nonlinear case, SVM uses a kernel function 𝐾(𝑥𝑖, 𝑥𝑗) to implicitly map data
into a higher-dimensional space:

𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)𝑇 𝜙(𝑥𝑗)

Important Notes for Support Vector Machine

Table 3.4: Common Kernel Functions in SVM

Kernel Formula Description

Linear 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑇
𝑖 𝑥𝑗 Simple linear separation

Polynomial 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑇
𝑖 𝑥𝑗 + 𝑐)𝑑 Captures polynomial relations

RBF (Gaussian) 𝐾(𝑥𝑖, 𝑥𝑗) = exp(−𝛾‖𝑥𝑖 − 𝑥𝑗‖2) Nonlinear, smooth decision boundary
Sigmoid 𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝛼𝑥𝑇

𝑖 𝑥𝑗 + 𝑐) Similar to neural networks

Characteristics Kernel Functions in SVM (see, Table 3.4):

• Maximizes margin between classes (robust to outliers)
• Works in high-dimensional spaces
• Supports nonlinear separation using kernels

https://youtu.be/DUcXZ08IdMo
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• Sensitive to kernel choice and hyperparameters (e.g., 𝐶, 𝛾)

3.4.2 KNN

K-Nearest Neighbors (KNN) is a non-parametric, instance-based learning al-
gorithm. It classifies a new data point based on the majority class of its k closest
training samples, according to a chosen distance metric. For a new observation 𝑥,
compute its distance to all training samples (𝑥𝑖, 𝑦𝑖):

𝑑(𝑥, 𝑥𝑖) =
√√√
⎷

𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑥𝑖𝑗)2

Then, select the k nearest neighbors and assign the class by majority voting:

̂𝑦 = arg max
𝑐

∑
𝑖∈𝑁𝑘(𝑥)

𝐼(𝑦𝑖 = 𝑐)

where:

• 𝑁𝑘(𝑥) = indices of the k nearest points

• 𝐼(𝑦𝑖 = 𝑐) = indicator function (1 if true, 0 otherwise)

Important Notes for K-Nearest Neighbors

Table 3.5: Common Distance and Similarity Metrics

Metric Formula Typical Use

Euclidean Distance 𝑑(𝑥, 𝑦) = √∑𝑖(𝑥𝑖 − 𝑦𝑖)2 Continuous / numerical features
Manhattan Distance 𝑑(𝑥, 𝑦) = ∑𝑖 |𝑥𝑖 − 𝑦𝑖| Sparse or grid-like data
Minkowski Distance 𝑑(𝑥, 𝑦) = (∑𝑖 |𝑥𝑖 − 𝑦𝑖|𝑝)1/𝑝 Generalized form (includes Euclidean & Manhattan)
Cosine Similarity sim(𝑥, 𝑦) = 𝑥⋅𝑦

‖𝑥‖‖𝑦‖ Text data or directional similarity
Hamming Distance 𝑑(𝑥, 𝑦) = ∑𝑖[𝑥𝑖 ≠ 𝑦𝑖] Binary or categorical data
Jaccard Similarity 𝐽(𝐴, 𝐵) = |𝐴∩𝐵|

|𝐴∪𝐵| Set-based or binary features

Characteristics in Distance and Similarity Metrics (see, Table 3.5)

• Lazy learning: no explicit training phase

• Sensitive to feature scaling and noise

• Works best for small to medium datasets

• Decision boundaries can be nonlinear and flexible
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3.4.3 Comparison Kernels

Comparison of Kernel Methods

The following Table 3.6 presents a comparison of two widely used non-probabilistic
classification models: Support Vector Machine (SVM) and K-Nearest Neighbors
(KNN). It highlights their key characteristics, including model type, parametric
nature, ability to handle nonlinearity, computational cost, interpretability, and
important hyperparameters.

Table 3.6: Comparison of Kernel Methods

Model Type Parametric? Handles Nonlinearity Training Cost Interpretation Key Hyperparameters

Support Vector Machine (SVM) Kernel-based � Yes � Yes (via kernel) Moderate to High Moderate C, kernel, �
K-Nearest Neighbors (KNN) Instance-based � No � Yes (implicitly) Low (training) / High (prediction) High k, distance metric

3.5 Ensemble Methods

Ensemble methods are machine learning techniques that combine multiple base
models to produce a single, stronger predictive model. The idea is that aggre-
gating diverse models reduces variance, bias, and overfitting, leading to better
generalization. Ensemble methods can be categorized into:

• Bagging: Reduces variance by training models on bootstrapped subsets (e.g.,
Random Forest)

• Boosting: Reduces bias by sequentially training models that focus on previous
errors (e.g., Gradient Boosting, XGBoost)

Watch here: Ensemble Methods

3.5.1 Random Forest

Random Forest is a bagging-based ensemble of Decision Trees. Each tree is trained
on a random subset of data with random feature selection, and the final predic-
tion is obtained by majority voting (classification) or averaging (regression). General
Form for Random Forest:

1. Generate B bootstrap samples from the training data.
2. Train a Decision Tree on each sample:

• At each split, consider a random subset of features (m out of p)

3. Combine predictions:

https://youtu.be/DUcXZ08IdMo
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• Classification:

̂𝑦 = mode{𝑇1(𝑥), 𝑇2(𝑥), ..., 𝑇𝐵(𝑥)}

• Regression:

̂𝑦 = 1
𝐵

𝐵
∑
𝑏=1

𝑇𝑏(𝑥)

Random Forest Characteristics

• Reduces overfitting compared to single trees

• Works well with high-dimensional and noisy datasets

• Less interpretable than a single tree

3.5.2 Gradient Boosting Machines

GBM is a boosting-based ensemble that builds models sequentially, where each
new model tries to correct errors of the previous one. It focuses on minimizing
a differentiable loss function (e.g., log-loss for classification). General Form for
Gradient Boosting Machines:

1. Initialize the model with a constant prediction:

𝐹0(𝑥) = arg min
𝛾

𝑛
∑
𝑖=1

𝐿(𝑦𝑖, 𝛾)

2. For 𝑚 = 1 to 𝑀 (number of trees):

• Compute the residuals (pseudo-residuals):

𝑟𝑖𝑚 = − [𝜕𝐿(𝑦𝑖, 𝐹 (𝑥𝑖))
𝜕𝐹(𝑥𝑖)

]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

• Fit a regression tree to the residuals

• Update the model:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈𝑇𝑚(𝑥)

where 𝜈 is the learning rate
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Gradient Boosting Machines Characteristics

• Reduces bias by sequential learning

• Can overfit if too many trees or high depth

• Sensitive to hyperparameters (learning rate, tree depth, number of trees)

3.5.3 Extreme Gradient Boosting

XGBoost is an optimized implementation of Gradient Boosting that is faster
and more regularized. It incorporates techniques such as shrinkage, column sub-
sampling, tree pruning, and parallel computation for improved performance.
Similar to GBM, but adds regularization to the objective function:

𝑂𝑏𝑗 =
𝑛

∑
𝑖=1

𝐿(𝑦𝑖, ̂𝑦𝑖) +
𝐾

∑
𝑘=1

Ω(𝑓𝑘)

where:

Ω(𝑓) = 𝛾𝑇 + 1
2𝜆

𝑇
∑
𝑗=1

𝑤2
𝑗

• 𝑇 = number of leaves in tree 𝑓

• 𝑤𝑗 = leaf weight

• 𝛾, 𝜆 = regularization parameters

Extreme Gradient Boosting Characteristics

• Fast and scalable

• Handles missing values automatically

• Prevents overfitting with regularization and early stopping

• Widely used in Kaggle competitions

3.5.4 Comparison Ensemble

The following table (see Table 3.7) summarizes key ensemble methods, highlighting their
type, main strengths, weaknesses, and the scenarios where they are most effective:
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Table 3.7: Comparison of Ensemble Methods for Classification

Method Type Strength Weakness Best Use Case

Random Forest Bagging Reduces variance, robust Less interpretable High-dimensional, noisy data
GBM Boosting Reduces bias, accurate Sensitive to overfitting Medium datasets, complex patterns
XGBoost Boosting (optimized) Fast, regularized, accurate Hyperparameter tuning required Large datasets, competitive ML tasks

Table 3.8: Applications of Classification Models across Domains

Domain Application Description / Objective

Healthcare Disease diagnosis Classify patients as disease vs no disease.
Medical imaging Identify tumor presence in X-ray or MRI scans.
Patient readmission prediction Use hospital data to forecast readmission risk.

Finance Credit scoring Predict whether a customer will default on a loan.
Fraud detection Identify fraudulent credit card transactions.
Investment risk classification Categorize assets as low, medium, or high risk.

Marketing Customer churn prediction Determine whether a customer will leave a service.
Target marketing Segment customers into high vs. low purchase potential.
Lead scoring Prioritize sales prospects based on conversion likelihood.

Text Mining Sentiment analysis Classify text as positive, negative, or neutral.
Spam detection Detect unwanted or harmful emails/messages.
Topic classification Categorize documents by subject matter.

Transportation Traffic sign recognition Classify sign types in autonomous vehicles.
Driver behavior analysis Detect aggressive or distracted driving patterns.
Route classification Predict optimal routes based on historical data.

3.6 Study Case Examples

The following table (see, Table 3.8) summarizes representative applications of classifi-
cation models across different fields:

3.7 End to End Study Case

This project demonstrates an end-to-end binary logistic regression analysis using
the built-in mtcars dataset in R. We aim to predict whether a car has a Manual or
Automatic transmission based on:

• mpg — Miles per gallon (fuel efficiency)

• hp — Horsepower (engine power)

• wt — Vehicle weight

3.7.1 Data Preparation

data("mtcars")
mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual"))
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str(mtcars)

'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : Factor w/ 2 levels "Automatic","Manual": 2 2 2 1 1 1 1 1 1 1 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 Manual 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 Manual 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 Manual 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 Automatic 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 Automatic 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 Automatic 3 1

3.7.2 Logistic Regression Model

Let say, you build a model using all variables in the mtcars dataset to predict whether
a car has a manual or automatic transmission.

# Load dataset
data("mtcars")
mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual"))

# Full logistic regression model using all predictors
full_model <- glm(am ~ ., data = mtcars, family = binomial)

summary(full_model)

Call:
glm(formula = am ~ ., family = binomial, data = mtcars)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.164e+01 1.840e+06 0 1
mpg -8.809e-01 2.884e+04 0 1
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cyl 2.527e+00 1.236e+05 0 1
disp -4.155e-01 2.570e+03 0 1
hp 3.437e-01 2.195e+03 0 1
drat 2.320e+01 2.159e+05 0 1
wt 7.436e+00 3.107e+05 0 1
qsec -7.577e+00 5.510e+04 0 1
vs -4.701e+01 2.405e+05 0 1
gear 4.286e+01 2.719e+05 0 1
carb -2.157e+01 1.076e+05 0 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 4.3230e+01 on 31 degrees of freedom
Residual deviance: 6.4819e-10 on 21 degrees of freedom
AIC: 22

Number of Fisher Scoring iterations: 25

Check for Multicollinearity with VIF (Variance Inflation Factor)

# Install if not installed
# install.packages("car")
library(car)

# Calculate VIF values
vif_values <- vif(full_model)

# Sort from highest to lowest
vif_values <- sort(vif_values, decreasing = TRUE)

# Print the results
vif_values

disp cyl wt hp carb mpg gear vs
45.336024 38.112972 28.384837 21.288933 21.096231 18.150446 16.289577 11.102033

qsec drat
9.214178 3.950868

Interpretation of VIF values:

• VIF = 1 → No multicollinearity.
• VIF between 1–5 → Moderate correlation (acceptable).
• VIF > 10 → Serious multicollinearity problem.

Now, compare with the simpler model using only three predictors (mpg, hp, and wt):
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model2 <- glm(am ~mpg+wt,
data = mtcars, family = binomial)

summary(model2)

Call:
glm(formula = am ~ mpg + wt, family = binomial, data = mtcars)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 25.8866 12.1935 2.123 0.0338 *
mpg -0.3242 0.2395 -1.354 0.1759
wt -6.4162 2.5466 -2.519 0.0118 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 43.230 on 31 degrees of freedom
Residual deviance: 17.184 on 29 degrees of freedom
AIC: 23.184

Number of Fisher Scoring iterations: 7

vif(model2)

mpg wt
3.556491 3.556491

# Dataset
data(mtcars)
mtcars$am <- factor(mtcars$am, labels = c("Automatic", "Manual"))

# Untuk analisis korelasi, ubah am ke numerik (0/1)
mtcars$am_num <- as.numeric(mtcars$am) - 1

library(ggcorrplot)

# Hitung matriks korelasi
cor_mat <- cor(mtcars[, sapply(mtcars, is.numeric)])

# Plot
ggcorrplot(cor_mat,

hc.order = TRUE,
type = "lower",
lab = TRUE,
lab_size = 3,
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colors = c("red", "white", "blue"),
title = "Heatmap Korelasi Variabel Numerik - mtcars",
ggtheme = ggplot2::theme_minimal())
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library(ggplot2)
cor_vals <- cor(mtcars[, sapply(mtcars, is.numeric)])
am_corr <- sort(cor_vals["am_num", -which(colnames(cor_vals) == "am_num")])

# Ubah ke data frame untuk ggplot
df_corr <- data.frame(Variable = names(am_corr),

Correlation = am_corr)

ggplot(df_corr, aes(x = reorder(Variable, Correlation), y = Correlation, fill = Correlation)) +
geom_col() +
coord_flip() +
scale_fill_gradient2(low = "red", high = "blue", mid = "white", midpoint = 0) +
labs(title = "Korelasi Variabel terhadap Transmisi (am)",

x = NULL, y = "Koefisien Korelasi") +
theme_minimal()
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The model estimates the probability that a car is Manual using the formula:

log ( 𝑝
1 − 𝑝) = 𝛽0 + 𝛽1(mpg) + 𝛽2(hp) + 𝛽3(wt)

3.7.3 Prediction and Classification

mtcars$prob <- predict(model2, type = "response")

mtcars$pred_class <- ifelse(mtcars$prob > 0.5, "Manual", "Automatic")

head(mtcars[, c("mpg", "wt", "am", "prob", "pred_class")])

mpg wt am prob pred_class
Mazda RX4 21.0 2.620 Manual 0.90625492 Manual
Mazda RX4 Wag 21.0 2.875 Manual 0.65308276 Manual
Datsun 710 22.8 2.320 Manual 0.97366320 Manual
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Hornet 4 Drive 21.4 3.215 Automatic 0.15728804 Automatic
Hornet Sportabout 18.7 3.440 Automatic 0.09561351 Automatic
Valiant 18.1 3.460 Automatic 0.10149089 Automatic

3.7.4 Confusion Matrix

conf_mat <- table(Actual = mtcars$am, Predicted = mtcars$pred_class)
conf_mat

Predicted
Actual Automatic Manual
Automatic 18 1
Manual 1 12

Interpretation:

• Diagonal values show correct predictions

• Off-diagonal values show misclassifications

The following plot illustrates how well the model separates the two classes based on
predicted probabilities.

library(ggplot2)
library(dplyr)

conf_data <- table(Actual = mtcars$am, Predicted = mtcars$pred_class) %>%
as.data.frame()

ggplot(conf_data, aes(x = Predicted, y = Actual, fill = Freq)) +
geom_tile(color = "white") +
geom_text(aes(label = Freq), size = 6, color = "black") +
scale_fill_gradient(low = "white", high = "steelblue") +
labs(
title = "Confusion Matrix Heatmap",
x = "Predicted Class",
y = "Actual Class",
fill = "Count"

) +
theme_minimal(base_size = 14)



58 CHAPTER 3. CLASSIFICATION MODELS

18

1

1

12

Automatic

Manual

Automatic Manual

Predicted Class

A
ct

ua
l C

la
ss

Count

5

10

15

Confusion Matrix Heatmap

3.7.5 Evaluation Metrics

TP <- conf_mat["Manual", "Manual"]
TN <- conf_mat["Automatic", "Automatic"]
FP <- conf_mat["Automatic", "Manual"]
FN <- conf_mat["Manual", "Automatic"]

Accuracy <- (TP + TN) / sum(conf_mat)
Precision <- TP / (TP + FP)
Recall <- TP / (TP + FN)
F1_Score <- 2 * (Precision * Recall) / (Precision + Recall)

metrics <- data.frame(
Metric = c("Accuracy", "Precision", "Recall", "F1 Score"),
Value = round(c(Accuracy, Precision, Recall, F1_Score), 3)

)
metrics
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Metric Value
1 Accuracy 0.938
2 Precision 0.923
3 Recall 0.923
4 F1 Score 0.923

Metric Description
Accuracy Overall correctness of predictions
Precision How precise the “Manual” predictions are
Recall Ability to detect all Manual cars
F1 Score Harmonic mean of Precision and Recall

3.7.6 ROC Curve and AUC

library(pROC)

Type 'citation("pROC")' for a citation.

Attaching package: 'pROC'

The following objects are masked from 'package:stats':

cov, smooth, var

roc_obj <- roc(mtcars$am, mtcars$prob)

Setting levels: control = Automatic, case = Manual

Setting direction: controls < cases

auc_value <- auc(roc_obj)

plot(roc_obj, col = "#2C7BB6", lwd = 2, main = "ROC Curve for Logistic Regression")
abline(a = 0, b = 1, lty = 2, col = "gray")
text(0.6, 0.2, paste("AUC =", round(auc_value, 3)), col = "black")



60 CHAPTER 3. CLASSIFICATION MODELS

ROC Curve for Logistic Regression
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Interpretation:

• The ROC curve shows the trade-off between True Positive Rate and False
Positive Rate

• AUC (Area Under the Curve) evaluates how well the model distinguishes
between classes

– AUC = 1 → Perfect

– AUC � 0.8 → Excellent

– AUC = 0.5 → Random guessing

3.7.7 Conclusion

The logistic regression model successfully predicts car transmission type (Manual vs
Automatic) with strong performance.
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Aspect Result / Interpretation
Significant variable wt (vehicle weight) has a negative effect on Manual probability
Model accuracy � 90%
AUC > 0.8 (Excellent discriminative power)
Conclusion The model performs well in classifying car transmissions

References
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Chapter 4

Clustering Models

Clustering is one of the fundamental techniques in unsupervised learning, designed to
group objects based on their similarities without relying on predefined labels. This
method uncovers hidden patterns, natural structures, and meaningful relationships
within data across diverse applications—from customer segmentation and anomaly de-
tection to sensor behavior analysis in industrial systems. The mind map provided offers
a comprehensive overview of major clustering methodologies, including partition-based
algorithms, hierarchical models, density-based approaches, probabilistic frameworks,
deep learning–based representations, and hybrid techniques. This visual guide helps
readers grasp the broader landscape of clustering algorithms and understand the key
distinctions among them, supporting more informed decisions when selecting the most
appropriate method for various analytical tasks. For additional detail, refer to Fig-
ure 4.1.

4.1 Intro to Clustering

To build an initial understanding of clustering, it is helpful to begin with a clear visual
explanation. The short video below provides an accessible introduction to the core idea
behind clustering—how data points are grouped based on similarity, why this process
is useful, and where it is commonly applied. This foundational overview serves as a
starting point before exploring the more detailed concepts and the comprehensive mind
map presented in the next sections.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/4cxVDUybHrI?si=EMzKvKACt7FzeDSs

4.2 Partition-Based

Partition-based clustering is a fundamental technique in unsupervised learning that
divides a dataset into a predefined number of non-overlapping clusters. Each data

63
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Figure 4.1: Comprehensive Clustering Models Mind Map
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point is assigned to exactly one cluster based on a similarity or distance measure, most
commonly the Euclidean distance. The objective is to create clusters that are internally
cohesive and externally well separated.

In this approach, the number of clusters 𝑘 must be specified in advance. The algorithm
then iteratively assigns data points to clusters and updates the cluster centers (or rep-
resentatives) until a stable solution is reached. Owing to its simplicity, computational
efficiency, and strong performance on well-structured datasets, partition-based cluster-
ing is widely used in pattern recognition, customer segmentation, image analysis, and
industrial analytics.

Representative algorithms include k-Means, which minimizes the sum of squared dis-
tances to cluster centroids; k-Medoids, which uses actual data points as cluster centers
to enhance robustness against outliers; k-Means++, which improves the initialization
process; and CLARA, which adapts k-Medoids for large datasets through sampling.
Partition-based methods perform best when clusters are approximately spherical, sim-
ilar in size, relatively free of extreme outliers, and when the value of 𝑘 is known or
can be estimated reliably. Although these methods can be sensitive to initialization
and struggle with irregularly shaped clusters, they remain among the most widely used
clustering techniques in contemporary data analysis.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/PJGSEttUzx8?si=c-tM7VfsdawV5UfR

4.3 Hierarchical

Hierarchical clustering is an unsupervised learning method that organizes data into a hi-
erarchy of nested clusters, typically visualized through a dendrogram. Unlike partition-
based methods, it does not require predefining the number of clusters; the structure
emerges naturally from the data. It is chosen for its interpretability and ability to re-
veal multi-level relationships within a dataset. Analysts can observe cluster formation
at various similarity thresholds, making it ideal for exploratory analysis and pattern
discovery.

Researchers and practitioners in fields such as data science, bioinformatics, text mining,
and anomaly detection frequently employ hierarchical clustering to analyze structured
and semi-structured data. It is most effective for moderate-sized datasets where one
aims to explore hierarchical structure, evaluate similarity relationships, or derive cluster
insights without repeated algorithm initialization. The method is widely available in
statistical and machine-learning libraries, such as R (hclust, dendextend) and Python
(scipy.cluster.hierarchy, sklearn).

Hierarchical clustering operates through two strategies:

• gglomerative (bottom-up): each point starts as its own cluster, and the most
similar clusters are merged step-by-step based on linkage criteria (single, complete,
average, Ward).

• Divisive (top-down): all points begin in one cluster, which is recursively divided
into smaller groups.
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Clusters are finally obtained by cutting the dendrogram at the desired distance or
similarity threshold.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/8QCBl-xdeZI?si=-rY4EuXBozZk6xh4

4.4 Density-Based

Density-Based Clustering is a clustering approach that groups data points based on
the density of observations within a region, where areas with high concentrations of
points form clusters and sparse regions are treated as noise or outliers. This method
matters because it can identify clusters of arbitrary shapes—irregular, elongated, or
non-convex—that are difficult for partition-based methods like K-Means to detect. It
is also advantageous because it does not require predefining the number of clusters,
making it particularly valuable for exploratory analysis when the underlying structure
of the data is unknown.

This technique is well suited for analysts and researchers working with spatial data,
sensor data, operational measurements, or datasets with uneven point distribution.
Density-based methods are especially useful when the dataset contains many outliers,
when cluster boundaries are not well defined, or when the analysis involves anomaly
detection. In practical applications, it is widely used in geospatial analysis to identify
hotspots, in industrial monitoring to detect abnormal sensor patterns, in cybersecurity
to flag suspicious activities, and in finance for identifying unusual transactions.

Operationally, Density-Based Clustering functions by defining a search radius (�) and
a minimum number of points (MinPts) required to form a dense region. Points with
enough neighbors are classified as core points, points that are within the neighborhood
of a core point are considered border points, and all remaining points are labeled as
noise. Clusters emerge through chains of connected dense regions, allowing complex
and natural patterns in the data to be captured without forcing rigid geometric shapes.

While the method has limitations—most notably sensitivity to parameter selection and
reduced performance in high-dimensional spaces—its ability to model real-world cluster
structures and detect outliers effectively makes Density-Based Clustering, especially
DBSCAN, one of the most powerful and widely used techniques in modern data analysis.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/RDZUdRSDOok?si=tC6bUnUc-lsQUNT-

4.5 Probabilistic

Probabilistic clustering is a method of unsupervised learning where clusters are defined
by probability distributions rather than fixed boundaries. It addresses what the struc-
ture of the data looks like by estimating how likely each data point belongs to each clus-
ter, instead of forcing a hard assignment. This approach is used when datasets exhibit
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overlapping groups, hidden latent structure, or uncertainty in boundaries—conditions
where deterministic clustering fails to capture the true relationships. It is applied where
soft assignments are valuable, such as text mining, image classification, medical diagnos-
tics, and anomaly detection. The technique relies on why probabilistic modeling is effec-
tive: it naturally handles ambiguity, provides richer information through membership
probabilities, and supports principled model comparison using likelihood-based criteria.
Methods such as Gaussian Mixture Models (GMM) and Expectation–Maximization
(EM) clustering represent who performs the clustering—the probabilistic components
that model each group as a distribution. Finally, the process describes how clustering is
performed: by estimating the parameters of each distribution, computing membership
probabilities for every point, and iteratively updating these values until the likelihood
converges. This distribution-driven, uncertainty-aware perspective makes probabilistic
clustering a powerful tool for understanding complex, real-world data.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/C7jhwN6H9LU?si=wh_F4VnB4Ns1kaxB

4.6 Deep Learning-Based

Deep learning–based clustering is an advanced approach that uses deep neural networks
to learn meaningful representations of high-dimensional or unstructured data before
performing clustering. Unlike traditional methods that rely on raw features, this tech-
nique transforms data into a latent space where important patterns are emphasized and
noise is reduced. It is used because many real-world datasets—such as images, text,
audio, sensor streams, and industrial signals—contain complex, non-linear structures
that classical algorithms like k-Means or DBSCAN cannot model effectively. This ap-
proach benefits researchers and practitioners in fields such as computer vision, natural
language processing, bioinformatics, and intelligent analytics, where discovering hidden
structure is essential. It is applied in tasks like image grouping, document organiza-
tion, anomaly detection, user-behavior modeling, and representation learning. Deep
learning–based clustering is most suitable when the dataset is large, high-dimensional,
or difficult to separate using traditional techniques, especially when feature engineering
becomes challenging. It works by training a neural network—typically an autoencoder
or embedding model—to map data into a compact latent space, then clustering those
embeddings using algorithms such as k-Means or Gaussian Mixture Models. More ad-
vanced methods, such as Deep Embedded Clustering (DEC), integrate representation
learning and clustering into a single end-to-end optimization process, producing more
coherent and well-separated clusters.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/0m5GNDo-CFM?si=XmTfZGc3VJRS5B4X
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4.7 Hybrid

Hybrid clustering combines two or more clustering approaches to leverage their comple-
mentary strengths and overcome the limitations of individual methods. It is used when
datasets are complex, noisy, high-dimensional, or contain clusters with irregular shapes
that cannot be captured effectively by a single technique. Hybrid clustering is impor-
tant because real-world data often exhibits mixed structures—some regions may form
dense clusters, others may follow hierarchical patterns, while some require partition-
ing for refinement—making hybrid solutions more flexible and accurate. It is applied
in domains such as bioinformatics, customer segmentation, image processing, anomaly
detection, and large-scale industrial analytics, where robust and adaptive clustering is
essential. Hybrid clustering works by combining methods such as density-based al-
gorithms (e.g., DBSCAN) to detect core structures, hierarchical clustering to capture
multi-level relationships, and partition-based methods like k-Means to refine cluster
boundaries. More advanced hybrid models may also integrate spectral clustering, prob-
abilistic approaches, or deep-learning-based embeddings to improve performance. This
approach is most suitable when the data contains both dense and sparse regions, varies
in cluster size or shape, or when a single method consistently fails to capture the under-
lying structure. By integrating complementary strategies, hybrid clustering produces
more stable, interpretable, and high-quality clustering results across diverse data sce-
narios.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/C7jhwN6H9LU?si=wh_F4VnB4Ns1kaxB

4.8 Applied of Clustering

4.8.1 Partition Based

Load Libraries & Dataset

library(factoextra)
library(cluster)
library(e1071) # Fuzzy C-Means
library(ClusterR) # Mini-Batch KMeans
library(plotly)
library(dplyr)

Load dataset

data(iris)
iris_data <- iris[,1:4]
iris_labels <- iris$Species
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# Scale data
iris_data_scale <- scale(iris_data)
set.seed(123)

Determine Optimal Number of Clusters

Elbow Method (WSS):

wss <- function(k) kmeans(iris_data_scale, k, nstart=25)$tot.withinss
k.values <- 1:10
wss_values <- sapply(k.values, wss)

fig_elbow <- plot_ly(
x=k.values, y=wss_values, type='scatter', mode='lines+markers',
marker=list(size=8, color='#1E88E5'), line=list(color='#1E88E5')

) %>% layout(title="Elbow Method (WSS)", xaxis=list(title="Number of Clusters"), yaxis=list(title="Total WSS"))

fig_elbow
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Gap Statistic:

gap_stat <- clusGap(iris_data_scale, FUN=kmeans, nstart=25, K.max=10, B=50)
gap_df <- data.frame(
k=1:10,
gap=gap_stat$Tab[, "gap"],
SE=gap_stat$Tab[, "SE.sim"]

)

fig_gap <- plot_ly(
gap_df, x=~k, y=~gap, type='scatter', mode='lines+markers',
error_y=list(type="data", array=gap_df$SE),
marker=list(size=8, color='#2CA02C'), line=list(color='#2CA02C')

) %>% layout(title="Gap Statistic", xaxis=list(title="Number of Clusters"), yaxis=list(title="Gap Value"))
fig_gap



4.8. APPLIED OF CLUSTERING 71

2 4 6 8 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Gap	Statistic

Number	of	Clusters

G
ap
	V
al
ue

Silhouette Method:

sil_width <- sapply(2:10, function(k){
km <- kmeans(iris_data_scale, centers=k, nstart=25)
ss <- silhouette(km$cluster, dist(iris_data_scale))
mean(ss[,3])

})

fig_sil <- plot_ly(
x=2:10, y=sil_width, type='scatter', mode='lines+markers',
marker=list(size=8, color='#D62728'), line=list(color='#D62728')

) %>% layout(title="Silhouette Method", xaxis=list(title="Number of Clusters"), yaxis=list(title="Average Silhouette Width"))
fig_sil
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4.8.1.1 Apply Clustering Algorithms (k=3)

# ----- 1. K-Means -----
km <- kmeans(iris_data_scale, centers=3, nstart=25)
iris$KMeans <- as.factor(km$cluster)

# ----- 2. K-Medoids (PAM) -----
pam_res <- pam(iris_data_scale, k=3)
iris$KMedoids <- as.factor(pam_res$clustering)

# ----- 3. Fuzzy C-Means -----
fcm <- cmeans(iris_data_scale, centers=3, m=2)
iris$FuzzyCMeans <- as.factor(apply(fcm$membership,1,which.max))
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library(ClusterR)
set.seed(123)

# Data preparation
iris_data <- iris[, 1:4]
iris_data_scale <- scale(iris_data)
iris_mat <- as.matrix(iris_data_scale)

# Train Mini-Batch K-means
mb <- MiniBatchKmeans(
data = iris_mat,
clusters = 3,
batch_size = 20,
num_init = 5,
max_iters = 30

)

# New recommended way:
# Use 'predict' S3 method for MiniBatchKmeans
pred <- predict(
object = mb,
newdata = iris_mat,
fuzzy = FALSE # ensures hard clusters, not probabilities

)

# Add cluster labels
iris$MiniBatch <- as.factor(pred)

# Check cluster distribution
table(iris$MiniBatch)

1 2 3
50 49 51

2D PCA Visualization (Plotly)

library(dplyr)
library(plotly)

# PCA
pca <- prcomp(iris_data_scale)

pca_df <- data.frame(
PC1 = pca$x[, 1],
PC2 = pca$x[, 2],
KMeans = iris$KMeans,
KMedoids = iris$KMedoids,
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FuzzyCMeans = iris$FuzzyCMeans,
MiniBatch = iris$MiniBatch,
Species = iris_labels

)

# Plot function (clean + safe)
plot_cluster <- function(df, cluster_col, title) {
plot_ly(
df,
x = ~PC1,
y = ~PC2,
color = as.formula(paste0("~", cluster_col)),
symbol = ~Species,
symbols = c("circle", "diamond", "square"),
type = "scatter",
mode = "markers",
marker = list(size = 8, opacity = 0.85)

) %>%
layout(title = title)

}

# Figures
fig_km <- plot_cluster(pca_df, "KMeans", "K-Means")
fig_kmed <- plot_cluster(pca_df, "KMedoids", "K-Medoids")
fig_fcm <- plot_cluster(pca_df, "FuzzyCMeans", "Fuzzy C-Means")
fig_mbkm <- plot_cluster(pca_df, "MiniBatch", "Mini-Batch K-Means")

Combined Plotly Dashboard

library(plotly)

# ----- Dashboard 1: Evaluation Methods -----
dashboard_eval <- subplot(
fig_elbow, fig_gap, fig_sil,
nrows = 3,
margin = 0.05,
shareX = FALSE, shareY = FALSE,
titleX = TRUE, titleY = TRUE

) %>% layout(
title = list(
text = "<b>Clustering Evaluation Summary</b>",
font = list(size = 20)

)
)

# ----- Dashboard 2: PCA Cluster Visualization -----
dashboard_clusters <- subplot(
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fig_km, fig_kmed,
fig_fcm, fig_mbkm,
nrows = 2,
margin = 0.05,
shareX = FALSE, shareY = FALSE,
titleX = TRUE, titleY = TRUE

) %>% layout(
title = list(
text = "<b>PCA Visualization of Clustering Results</b>",
font = list(size = 20)

)
)

dashboard_eval
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Notes:

• Row 1: Cluster selection methods (Elbow / Gap / Silhouette)
• Rows 2-3: Four clustering algorithms with 2D PCA

Cluster Evaluation

cat("K-Means vs Species:\n"); table(iris$KMeans, iris_labels)

K-Means vs Species:
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iris_labels
setosa versicolor virginica

1 0 11 36
2 50 0 0
3 0 39 14

cat("\nK-Medoids vs Species:\n"); table(iris$KMedoids, iris_labels)

K-Medoids vs Species:

iris_labels
setosa versicolor virginica

1 50 0 0
2 0 9 36
3 0 41 14

cat("\nFuzzy C-Means vs Species:\n"); table(iris$FuzzyCMeans, iris_labels)

Fuzzy C-Means vs Species:

iris_labels
setosa versicolor virginica

1 50 0 0
2 0 39 13
3 0 11 37

cat("\nMini-Batch K-Means vs Species:\n"); table(iris$MiniBatch, iris_labels)

Mini-Batch K-Means vs Species:

iris_labels
setosa versicolor virginica

1 50 0 0
2 0 37 12
3 0 13 38

Analysis:

• Setosa: typically forms a clear cluster in all algorithms
• Versicolor & Virginica: overlapping → Fuzzy C-Means shows memberships
• Mini-Batch K-Means: similar to regular K-Means but faster
• Gap / Silhouette: help to validate if k=3 is optimal
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Table 4.1: Clustering Methods: Categories, Algorithms, Key Formulas, and Implemen-
tation Packages

Category Algorithms Key Formula R Packages Python Packages

Partition-Based k-Means, k-Medoids min ∑𝑘
𝑖=1 ∑𝑥∈𝐶𝑖

‖𝑥 − 𝜇𝑖‖2 stats::kmeans;
cluster::pam

sklearn: KMeans,
KMedoids

Partition-Based k-Means++ Probabilistic center
initialization: 𝑃(𝑥) = 𝐷(𝑥)2

∑ 𝐷(𝑥)2

ClusterR::KMeans_rcpp sklearn: KMeans
(k-means++)

Partition-Based CLARA (Clustering Large
Applications)

Sampling + PAM applied to
large datasets

cluster::clara pyclustering

Hierarchical Agglomerative (Bottom-Up) Distance linkage: single,
complete, average

stats::hclust; dendextend sklearn:
AgglomerativeClustering

Hierarchical Divisive (Top-Down) Recursive splitting by maximal
dissimilarity

stats::hclust scipy.cluster.hierarchy

Density-Based DBSCAN Core rule: |𝑁𝜀(𝑥)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 dbscan::dbscan sklearn.cluster.DBSCAN
Density-Based HDBSCAN Density hierarchy via Minimum

Spanning Tree
dbscan::hdbscan hdbscan

Probabilistic Gaussian Mixture Models
(GMM)

𝑝(𝑥) = ∑𝑘 𝜋𝑘𝒩(𝑥|𝜇𝑘, Σ𝑘) mclust sklearn.mixture.GaussianMixture

Probabilistic EM Clustering
(Expectation–Maximization)

Iterative E-step & M-step until
convergence

EMCluster sklearn.mixture

Deep
Learning-Based

Autoencoder-Based Clustering Latent code: 𝑧 = 𝑓𝜃(𝑥) keras; torch TensorFlow; PyTorch

Deep
Learning-Based

Deep Embedded Clustering
(DEC)

Joint reconstruction + clustering
loss

keras; torch TensorFlow; PyTorch

Hybrid Spectral Clustering Graph Laplacian: 𝐿 = 𝐷 − 𝑊 kernlab::specc sklearn.cluster.SpectralClustering
Hybrid Affinity Propagation Similarity-based message passing apcluster sklearn.cluster.AffinityPropagation

4.9 Summary Clustering Models

The table below (Table 4.1) provides a comprehensive summary of the major categories
of clustering methods, the algorithms contained within each category, their core for-
mulas, and commonly used packages for implementation in both R and Python. This
presentation is intended to help readers understand the conceptual distinctions among
the approaches while also identifying practical tools available for real-world applications.
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Time Series Models

This section summarizes the fundamental models used in time series forecasting, from
classical statistical methods to modern deep learning architectures.

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/GE3JOFwTWVM?si=x-PotV_oXeLTEMQ6

5.1 Classical Statistical Models

5.1.1 Naïve Forecast

The Naïve Forecast (Random Walk) is the simplest baseline model in time series fore-
casting. It assumes that the best prediction for the next period is simply the most
recent observed value.

Formula:

̂𝑦𝑡+1 = 𝑦𝑡

In other words, the forecast “walks” forward by repeating the last value, making it
equivalent to a random walk with no drift. Let consider, the naïve forecast for the next
5 periods:

79
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Interpretation

The Observed line shows the true historical values of the time series. The Naïve
Forecast appears as a flat horizontal line. This happens because the naïve method
simply repeats the last observed value. Mathematically, If the final observed value
is 𝑦𝑇 , then all future predictions are:

̂𝑦𝑇 +1 = ̂𝑦𝑇 +2 = ⋯ = ̂𝑦𝑇 +ℎ = 𝑦𝑇

This means that the forecast does not change over the horizon, it stays constant at
the last known value. The naïve method is widely used as a benchmark model in
forecasting because any more advanced model should perform at least better than this
simple baseline.
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5.1.2 Simple Moving Average

The Simple Moving Average (SMA) is one of the fundamental smoothing methods
in time series analysis [6]. It reduces short-term fluctuations and highlights longer-term
patterns by averaging the most recent 𝑘 observations.

Formula

For a window size 𝑘, the SMA is defined as:

̂𝑦𝑡 = 1
𝑘

𝑘−1
∑
𝑖=0

𝑦𝑡−𝑖

This means the forecast at time 𝑡 is the average of the most recent 𝑘 values. Below is
an example of the SMA with window size 𝑘 = 3 applied to a sample time series.
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Interpretation SMA:
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The Observed line shows the original time series with its natural variability. The
SMA (Smoothed) line reduces noise by averaging the most recent 𝑘 observations.
This creates a smoother representation of the underlying trend. When forecasting, the
SMA method typically uses the last computed SMA value as the prediction for all
future periods:

̂𝑦𝑇 +1 = ̂𝑦𝑇 +2 = ⋯ = ̂𝑦𝑇 +ℎ = ̂𝑦𝑇

This produces a flat forecast, similar to the naïve method, but based on the smoothed
series rather than the last raw observation. The SMA method is widely used as an in-
troductory smoothing technique and serves as a baseline for more advanced exponential
smoothing models.

5.1.3 Exponential Smoothing

Exponential smoothing methods are a family of forecasting techniques that apply ex-
ponentially decreasing weights to past observations. They are widely used because
of their simplicity, interpretability, and strong forecasting performance. According to
[7], there are three main types of exponential smoothing models, each designed
for different time series patterns:

Method Description Suitable For
Single
Exponential
Smoothing
(SES)

Applies smoothing to the level
only.

Data without trend and
without seasonality

Holt’s Linear
Trend Method

Extends SES by adding a
smoothed trend component.

Data with trend, but without
seasonality

Holt–Winters
Method

Extends Holt’s method by
adding a seasonal
component (additive or
multiplicative).

Data with trend and with
seasonality

Each model builds upon the previous one by incorporating more structure from the time
series, making exponential smoothing a flexible and progressive forecasting framework.

Single Exponential Smoothing (SES)

Single Exponential Smoothing (SES) is designed for time series without trend and
without seasonality. It provides a smoothed estimate by applying exponentially
decreasing weights to past observations.
Formula

̂𝑦𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼) ̂𝑦𝑡

where:
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• 𝛼 is the smoothing parameter, 0 < 𝛼 ≤ 1
• 𝑦𝑡 is the actual value at time 𝑡
• ̂𝑦𝑡 is the previous smoothed estimate

A higher value of 𝛼 gives more weight to recent observations, making the model more
responsive to sudden changes. A lower value of 𝛼 produces a smoother curve, giving
more weight to older data.

library(forecast)
library(plotly)

# --- Sample Time Series ---
set.seed(123)
y <- ts(cumsum(rnorm(30, 0.3, 1))) # example series

# --- SES Model ---
alpha_value <- 0.4 # you can change alpha (0 < alpha <= 1)
ses_model <- ses(y, alpha = alpha_value, h = 6) # SES with forecast horizon h=6

# Extract fitted values and forecasts
fitted_vals <- ses_model$fitted
forecast_vals <- ses_model$mean
t <- 1:length(y)
t_future <- (length(y)+1):(length(y) + length(forecast_vals))

# Build data frame for plot
df <- data.frame(
time = c(t, t_future),
value = c(y, as.numeric(forecast_vals)),
type = c(rep("Observed", length(y)), rep("SES Forecast", length(forecast_vals)))

)

df_fitted <- data.frame(
time = t,
value = as.numeric(fitted_vals),
type = "SES (Smoothed)"

)

# --- Plotly Visualization ---
plot_ly() %>%
add_lines(data = df[df$type == "Observed", ],

x = ~time, y = ~value,
name = "Observed") %>%

add_lines(data = df_fitted,
x = ~time, y = ~value,
name = "SES (Smoothed)") %>%

add_lines(data = df[df$type == "SES Forecast", ],
x = ~time, y = ~value,
name = "SES Forecast",
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line = list(dash = "dash")) %>%
layout(
title = "Single Exponential Smoothing (SES)",
xaxis = list(title = "Time"),
yaxis = list(title = "Value")

)
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Interpretation:

The Observed line represents the original time series values. The SES (Smoothed)
line applies exponential smoothing, where recent observations receive a higher weight
controlled by the smoothing parameter 𝛼. A larger value of 𝛼 (closer to 1) makes the
smoothed line react more quickly to changes in the data, while a smaller value of 𝛼
(closer to 0) produces a smoother curve that responds more gradually.

Because SES does not model trend or seasonality, the forecast is constant over the
horizon:
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̂𝑦𝑇 +1 = ̂𝑦𝑇 +2 = ⋯ = ̂𝑦𝑇 +ℎ = ̂𝑦𝑇

SES is therefore suitable only for series with no trend and no seasonality, and it
serves as the foundation for more advanced exponential smoothing techniques such as
Holt (for trend) and Holt–Winters (for seasonality).

Holt’s Linear Trend Method

Holt’s Linear Trend Method extends Single Exponential Smoothing (SES) by adding
a trend component, making it suitable for time series that exhibit a consistent
upward or downward trend. This method smooths both the level and the trend,
allowing the forecast to grow or decline over time.

Model Equations

The method consists of three components:

• Level equation: updates the smoothed estimate of the current value

• Trend equation: updates the smoothed estimate of the trend

• Forecast equation: projects the level and trend forward

𝑙𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)
𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1

̂𝑦𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡

where:

• 𝛼 = level smoothing parameter, 0 < 𝛼 ≤ 1

• 𝛽 = trend smoothing parameter, 0 < 𝛽 ≤ 1

• 𝑙𝑡 = estimated level at time 𝑡

• 𝑏𝑡 = estimated trend at time 𝑡

• ̂𝑦𝑡+ℎ = forecast ℎ periods ahead

Holt’s method allows forecasts to follow a straight-line trajectory, capturing the under-
lying linear trend in the data.

library(forecast)
library(plotly)

# --- Sample Time Series ---
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set.seed(123)
y <- ts(cumsum(rnorm(30, 0.8, 1))) # trending series

# --- Holt Model ---
holt_model <- holt(y, h = 6, alpha = 0.5, beta = 0.3)

# Extract components
fitted_vals <- holt_model$fitted
forecast_vals <- holt_model$mean

t <- 1:length(y)
t_future <- (length(y)+1):(length(y) + length(forecast_vals))

# Data for plotting
df <- data.frame(
time = c(t, t_future),
value = c(y, as.numeric(forecast_vals)),
type = c(rep("Observed", length(y)), rep("Holt Forecast", length(forecast_vals)))

)

df_fitted <- data.frame(
time = t,
value = as.numeric(fitted_vals),
type = "Holt (Smoothed)"

)

# --- Plotly Visualization ---
plot_ly() %>%
add_lines(data = df[df$type == "Observed", ],

x = ~time, y = ~value,
name = "Observed") %>%

add_lines(data = df_fitted,
x = ~time, y = ~value,
name = "Holt (Smoothed)") %>%

add_lines(data = df[df$type == "Holt Forecast", ],
x = ~time, y = ~value,
name = "Holt Forecast",
line = list(dash = "dash")) %>%

layout(
title = "Holt’s Linear Trend Method",
xaxis = list(title = "Time"),
yaxis = list(title = "Value")

)
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Interpretation:

The Observed line shows the original time series, which exhibits a visible upward trend.
Holt’s method captures this behavior by smoothing two components:

1. Level (𝑙𝑡) — the underlying value of the series

2. Trend (𝑏𝑡) — the rate of increase or decrease

The Holt (Smoothed) line represents the result of applying exponential smoothing to
both the level and the trend. Compared with SES, Holt’s method does not produce a flat
curve—because it explicitly models and updates the trend. Holt’s method is appropriate
for time series with a consistent linear trend, but without seasonality. It forms
the foundation for the Holt–Winters method, which adds a seasonal component for more
complex patterns.
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Holt–Winters Method

The Holt–Winters method is used when the time series exhibits both trend and sea-
sonality. There are two types: additive and multiplicative. Here, we use the addi-
tive version, which is suitable for seasonal patterns with roughly constant amplitude.

Model Equations (Additive)

𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)
𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1
𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡) + (1 − 𝛾)𝑠𝑡−𝑚

̂𝑦𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡−𝑚+ℎ

where:

• 𝑙𝑡 = level

• 𝑏𝑡 = trend

• 𝑠𝑡 = seasonal component

• 𝑚 = seasonal period (e.g., 𝑚 = 12 for monthly data)

• 𝛼, 𝛽, 𝛾 = smoothing parameters

library(plotly)
library(forecast)

# Example seasonal + trend data
set.seed(123)
t <- 1:60
season <- rep(c(10, 12, 15, 14), 15) # seasonal pattern (period = 4)
trend <- 0.5 * t # upward trend
noise <- rnorm(60, 0, 2)
y <- season + trend + noise
ts_data <- ts(y, frequency = 4)

# Holt-Winters Additive Model
model_hw <- HoltWinters(ts_data, seasonal = "additive")

# Forecast 8 steps ahead
fc <- forecast(model_hw, h = 8)

# Build plotly visualization
p <- plot_ly() %>%
add_lines(x = time(ts_data), y = ts_data,

name = "Observed") %>%
add_lines(x = time(model_hw$fitted), y = model_hw$fitted[,1],
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name = "HW Fitted") %>%
add_lines(x = time(fc$mean), y = fc$mean,

name = "Forecast", line = list(dash = "dash")) %>%
layout(title = "Holt–Winters Additive Method",

xaxis = list(title = "Time"),
yaxis = list(title = "Value"))
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Interpretation:

In the Holt–Winters method, the smoothing parameters control how much weight is
given to recent observations versus past values. They range between 0 and 1:

1. Level Smoothing (𝛼)
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• Determines how much the current observation 𝑦𝑡 influences the estimated
level 𝑙𝑡.

• High 𝛼 (close to 1) → the level reacts quickly to recent changes.

• Low 𝛼 (close to 0) → the level changes slowly, giving more weight to
historical values.

𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)

2. Trend Smoothing (𝛽)

• Controls the update of the trend component 𝑏𝑡.
• High 𝛽 → trend responds quickly to changes in slope.

• Low 𝛽 → trend is more stable and less sensitive to short-term fluctuations.

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1

3. Seasonal Smoothing (𝛾)

• Determines how fast the seasonal component 𝑠𝑡 adapts to new seasonal pat-
terns.

• High 𝛾 → seasonal estimates adjust quickly to changes.

• Low 𝛾 → seasonal pattern changes slowly over time.

𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡) + (1 − 𝛾)𝑠𝑡−𝑚

5.1.4 ARIMA

AR(𝑝): Autoregressive

The Autoregressive (AR) model predicts a time series based on its own past values.
It is widely used in time series forecasting and forms the foundation for ARMA/ARIMA
models.

Model Formula

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜖𝑡

where:

• 𝑦𝑡 = value of the series at time 𝑡

• 𝑐 = constant term (intercept)
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• 𝜙1, 𝜙2, … , 𝜙𝑝 = autoregressive coefficients

• 𝑝 = order of the AR model (number of lagged terms)

• 𝜖𝑡 = white noise error term, 𝜖𝑡 ∼ 𝑁(0, 𝜎2)

Key Points:

• The model assumes that the current value 𝑦𝑡 is a linear combination of its
past 𝑝 values plus random noise.

• The coefficients 𝜙𝑖 determine how much influence each lagged term has.

• The order 𝑝 can be selected using information criteria (AIC, BIC) or autocorre-
lation plots.

library(forecast)
library(plotly)

# --- Simulate AR(2) Process ---
set.seed(123)
ar_coeff <- c(0.6, -0.3) # phi1=0.6, phi2=-0.3
y <- arima.sim(n = 50, list(ar = ar_coeff), sd = 1)

# Fit AR model
fit <- arima(y, order = c(2,0,0)) # AR(2)

# Forecast 10 steps ahead
fc <- forecast(fit, h = 10)

# Time index
t <- 1:length(y)
t_future <- (length(y)+1):(length(y)+length(fc$mean))

# Build data frame
df <- data.frame(
time = c(t, t_future),
value = c(y, as.numeric(fc$mean)),
type = c(rep("Observed", length(y)), rep("AR(2) Forecast", length(fc$mean)))

)

# Plotly visualization
plot_ly() %>%
add_lines(data = df[df$type=="Observed",], x = ~time, y = ~value,

name = "Observed") %>%
add_lines(data = df[df$type=="AR(2) Forecast",], x = ~time, y = ~value,

name = "Forecast", line = list(dash = "dash")) %>%
layout(title = "Autoregressive AR(2) Model",
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xaxis = list(title = "Time"),
yaxis = list(title = "Value"))
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Interpretation

• If 𝜙𝑖 is positive, the series tends to continue in the same direction as lag 𝑖.

• If 𝜙𝑖 is negative, the series tends to move in the opposite direction of lag 𝑖.

• AR models are stationary if the roots of the characteristic equation lie outside
the unit circle.

MA(𝑞): Moving Average

The Moving Average (MA) model expresses the current value of a time series as a
linear combination of past error terms.
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It is commonly used in time series modeling, often as part of ARMA or ARIMA models.

Model Formula

𝑦𝑡 = 𝑐 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡

where:

• 𝑦𝑡 = value of the series at time 𝑡

• 𝑐 = constant term (intercept)

• 𝜃1, 𝜃2, … , 𝜃𝑞 = moving average coefficients

• 𝑞 = order of the MA model (number of past error terms included)

• 𝜖𝑡 = white noise error term, 𝜖𝑡 ∼ 𝑁(0, 𝜎2)

Key Points:

• Unlike AR models, MA models do not use past values of 𝑦𝑡, but instead use
past forecast errors.

• Each coefficient 𝜃𝑖 measures the influence of the lagged errors on the current
value.

• The order 𝑞 can be determined by examining the autocorrelation function
(ACF):

– The ACF of an MA(𝑞) process cuts off after lag 𝑞.

library(forecast)
library(plotly)

# --- Simulate MA(2) Process ---
set.seed(123)
ma_coeff <- c(0.7, -0.4) # theta1=0.7, theta2=-0.4
y <- arima.sim(n = 50, list(ma = ma_coeff), sd = 1)

# Fit MA model
fit <- arima(y, order = c(0,0,2)) # MA(2)

# Forecast 10 steps ahead
fc <- forecast(fit, h = 10)

# Time index
t <- 1:length(y)
t_future <- (length(y)+1):(length(y)+length(fc$mean))
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# Build data frame
df <- data.frame(
time = c(t, t_future),
value = c(y, as.numeric(fc$mean)),
type = c(rep("Observed", length(y)), rep("MA(2) Forecast", length(fc$mean)))

)

# Plotly visualization
plot_ly() %>%
add_lines(data = df[df$type=="Observed",], x = ~time, y = ~value,

name = "Observed") %>%
add_lines(data = df[df$type=="MA(2) Forecast",], x = ~time, y = ~value,

name = "Forecast", line = list(dash = "dash")) %>%
layout(title = "Moving Average MA(2) Model",

xaxis = list(title = "Time"),
yaxis = list(title = "Value"))
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Interpretation:

1. The current value 𝑦𝑡 is affected by the most recent 𝑞 random shocks
𝜖𝑡−1, … , 𝜖𝑡−𝑞.

2. Positive 𝜃𝑖 → the lagged shock pushes 𝑦𝑡 in the same direction.

3. Negative 𝜃𝑖 → the lagged shock pushes 𝑦𝑡 in the opposite direction.

4. MA models are stationary by definition, so there is no need for differencing
as in AR models.

5. MA is often combined with AR to form ARMA(𝑝, 𝑞) for better capturing serial
dependence in data.

ARMA(𝑝, 𝑞): Autoregressive Moving Average

The ARMA(𝑝, 𝑞) model combines both autoregressive (AR) and moving average
(MA) components, capturing the effects of both past values and past errors on the
current observation.

Model Formula

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜃1𝜖𝑡−1 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡

where:

• 𝑦𝑡 = value at time 𝑡

• 𝑐 = constant term (intercept)

• 𝜙1, … , 𝜙𝑝 = AR coefficients

• 𝜃1, … , 𝜃𝑞 = MA coefficients

• 𝑝 = order of the AR part

• 𝑞 = order of the MA part

• 𝜖𝑡 = white noise error term, 𝜖𝑡 ∼ 𝑁(0, 𝜎2)

Key Points:

• The AR component captures the influence of past values on 𝑦𝑡.

• The MA component captures the influence of past shocks (errors) on 𝑦𝑡.
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• The orders 𝑝 and 𝑞 can be selected using information criteria (AIC, BIC) or
by examining the ACF and PACF plots.

• ARMA models assume stationarity, so non-stationary series may require differ-
encing (ARIMA).

library(forecast)
library(plotly)

# --- Simulate ARMA(2,2) Process ---
set.seed(123)
ar_coeff <- c(0.6, -0.3) # AR(2)
ma_coeff <- c(0.5, -0.4) # MA(2)
y <- arima.sim(n = 50, list(ar = ar_coeff, ma = ma_coeff), sd = 1)

# Fit ARMA model (ARMA(2,2))
fit <- arima(y, order = c(2,0,2))

# Forecast 10 steps ahead
fc <- forecast(fit, h = 10)

# Time index
t <- 1:length(y)
t_future <- (length(y)+1):(length(y)+length(fc$mean))

# Build data frame
df <- data.frame(
time = c(t, t_future),
value = c(y, as.numeric(fc$mean)),
type = c(rep("Observed", length(y)), rep("ARMA(2,2) Forecast", length(fc$mean)))

)

# Build fitted values data frame
df_fitted <- data.frame(
time = t,
value = as.numeric(fitted(fit)),
type = "ARMA(2,2) Fitted"

)

# Plotly visualization
plot_ly() %>%
add_lines(data = df[df$type=="Observed",], x = ~time, y = ~value,

name = "Observed") %>%
add_lines(data = df_fitted, x = ~time, y = ~value,

name = "Fitted", line = list(color = 'green')) %>%
add_lines(data = df[df$type=="ARMA(2,2) Forecast",], x = ~time, y = ~value,

name = "Forecast", line = list(dash = "dash", color = 'red')) %>%
layout(title = "ARMA(2,2) Model",

xaxis = list(title = "Time"),
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yaxis = list(title = "Value"))
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Interpretation:

1. ARMA(𝑝, 𝑞) captures both momentum and shocks:

• AR part models persistence (trend or autocorrelation)

• MA part models short-term noise effects

2. Forecasting with ARMA(𝑝, 𝑞):

• Future values are predicted using a combination of past observations and
past errors.

• Provides a more flexible model than AR or MA alone, suitable for stationary
time series with autocorrelation and short-term shocks.
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3. Advantages:

• Can model a wide variety of stationary time series patterns.

• Forms the basis for ARIMA when differencing is added for non-stationary
series.

ARIMA(𝑝, 𝑑, 𝑞): Autoregressive Integrated Moving Average

The ARIMA(𝑝, 𝑑, 𝑞) model extends ARMA models to non-stationary time series
by incorporating differencing. It is one of the most widely used models for time series
forecasting.

Model Formula:

∇𝑑𝑦𝑡 = (1 − 𝐵)𝑑𝑦𝑡 = 𝐴𝑅𝑀𝐴(𝑝, 𝑞)

where:

• 𝑦𝑡 = original time series at time 𝑡

• 𝐵 = backshift operator, 𝐵𝑦𝑡 = 𝑦𝑡−1

• ∇𝑑 = differencing operator applied 𝑑 times, ∇𝑑𝑦𝑡 = (1 − 𝐵)𝑑𝑦𝑡

• 𝑝 = order of the AR part

• 𝑑 = order of differencing required to make the series stationary

• 𝑞 = order of the MA part

Key Points:

• Differencing (𝑑): Removes trend or seasonality to achieve stationarity.

• Once differenced, the series can be modeled with an ARMA(𝑝, 𝑞) structure.

• ARIMA is denoted as ARIMA(𝑝, 𝑑, 𝑞):

– 𝑝: number of autoregressive terms

– 𝑑: number of differences

– 𝑞: number of moving average terms
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library(forecast)
library(plotly)

# --- Simulate non-stationary series with trend ---
set.seed(123)
t <- 1:60
trend <- 0.5 * t
noise <- rnorm(60, 0, 1)
y <- trend + noise
ts_data <- ts(y)

# Plot original series
# Fit ARIMA model (auto.arima to select p,d,q)
fit <- auto.arima(ts_data)

# Forecast 10 steps ahead
fc <- forecast(fit, h = 10)

# Time index
t_obs <- 1:length(ts_data)
t_future <- (length(ts_data)+1):(length(ts_data)+length(fc$mean))

# Data frames
df <- data.frame(
time = c(t_obs, t_future),
value = c(ts_data, as.numeric(fc$mean)),
type = c(rep("Observed", length(ts_data)), rep("Forecast", length(fc$mean)))

)

df_fitted <- data.frame(
time = t_obs,
value = as.numeric(fitted(fit)),
type = "Fitted"

)

# Plotly visualization
plot_ly() %>%
add_lines(data = df[df$type=="Observed",], x = ~time, y = ~value,

name = "Observed") %>%
add_lines(data = df_fitted, x = ~time, y = ~value,

name = "Fitted", line = list(color = 'green')) %>%
add_lines(data = df[df$type=="Forecast",], x = ~time, y = ~value,

name = "Forecast", line = list(dash = "dash", color = 'red')) %>%
layout(title = "ARIMA Forecast",

xaxis = list(title = "Time"),
yaxis = list(title = "Value"))
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Interpretation:

1. Non-stationary series (with trend or evolving mean) cannot be directly modeled
with ARMA.

2. Differencing transforms the series into a stationary series.

3. ARIMA forecasts combine:

• Past values (𝑝),

• Past errors (𝑞),

• Differencing to handle non-stationarity (𝑑).

4. ARIMA forms the foundation for seasonal models (SARIMA) when seasonality
is included.
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5.1.5 SARIMA / SARIMAX

SARIMA and SARIMAX are extensions of ARIMA that allow modeling of seasonal
patterns and external regressors.

SARIMA (Seasonal ARIMA)

SARIMA incorporates seasonality using seasonal autoregressive (P), seasonal differ-
encing (D), and seasonal moving average (Q) components, along with the seasonal
period 𝑠.
Model notation:

𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃 , 𝐷, 𝑄)𝑠

• 𝑝, 𝑑, 𝑞 = non-seasonal AR, differencing, MA orders

• 𝑃 , 𝐷, 𝑄 = seasonal AR, seasonal differencing, seasonal MA orders

• 𝑠 = length of the seasonal cycle (e.g., 12 for monthly data)

Equation (conceptual):

∇𝑑∇𝐷
𝑠 𝑦𝑡 = 𝐴𝑅𝑀𝐴(𝑝, 𝑞) + 𝐴𝑅𝑀𝐴(𝑃 , 𝑄)𝑠

where ∇𝐷
𝑠 𝑦𝑡 = (1 − 𝐵𝑠)𝐷𝑦𝑡 is seasonal differencing.

SARIMAX (Seasonal ARIMA with eXogenous variables)

SARIMAX extends SARIMA by adding external regressors 𝑋𝑡:

𝑦𝑡 = 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃 , 𝐷, 𝑄)𝑠 + 𝛽𝑋𝑡 + 𝜖𝑡

• 𝑋𝑡 = external variables that may affect the time series

• 𝛽 = coefficients for regressors

Key Points:

• SARIMA is suitable for seasonal time series, e.g., monthly sales with yearly
seasonality.

• SARIMAX allows external influences, e.g., promotions, holidays, temperature.

• Seasonal parameters (𝑃 , 𝐷, 𝑄, 𝑠) capture repeating patterns in data.

• Model selection can use AIC/BIC, ACF/PACF plots, and seasonal diag-
nostics.
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5.1.6 SARIMA and SARIMAX

library(forecast)
library(plotly)

# --- Simulate seasonal time series ---
set.seed(123)
t <- 1:60
seasonal <- rep(c(10, 12, 15, 14, 11), 12)[1:60] # seasonal pattern (period s=5)
trend <- 0.3 * t
noise <- rnorm(60, 0, 1)
y <- trend + seasonal + noise
ts_data <- ts(y, frequency = 5)

# --- External regressor for SARIMAX ---
x <- rnorm(60, 5, 1) # exogenous variable

# Fit SARIMA model
fit_sarima <- auto.arima(ts_data, seasonal = TRUE)

# Fit SARIMAX model
fit_sarimax <- auto.arima(ts_data, xreg = x, seasonal = TRUE)

# Forecast 10 steps ahead
x_future <- rnorm(10, 5, 1) # future exogenous variable for SARIMAX
fc_sarima <- forecast(fit_sarima, h = 10)
fc_sarimax <- forecast(fit_sarimax, xreg = x_future, h = 10)

# Time index
t_obs <- 1:length(ts_data)
t_future <- (length(ts_data)+1):(length(ts_data)+10)

# Build data frames for plotting
df_sarima <- data.frame(
time = c(t_obs, t_future),
value = c(ts_data, as.numeric(fc_sarima$mean)),
type = c(rep("Observed", length(ts_data)), rep("SARIMA Forecast", 10))

)

df_sarimax <- data.frame(
time = c(t_obs, t_future),
value = c(ts_data, as.numeric(fc_sarimax$mean)),
type = c(rep("Observed", length(ts_data)), rep("SARIMAX Forecast", 10))

)

df_fitted_sarima <- data.frame(
time = t_obs,
value = as.numeric(fitted(fit_sarima)),
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type = "SARIMA Fitted"
)

df_fitted_sarimax <- data.frame(
time = t_obs,
value = as.numeric(fitted(fit_sarimax)),
type = "SARIMAX Fitted"

)

# Plotly visualization
plot_ly() %>%
add_lines(data = df_sarima[df_sarima$type=="Observed",], x = ~time, y = ~value,

name = "Observed") %>%
add_lines(data = df_fitted_sarima, x = ~time, y = ~value,

name = "SARIMA Fitted", line = list(color = 'green')) %>%
add_lines(data = df_sarima[df_sarima$type=="SARIMA Forecast",], x = ~time, y = ~value,

name = "SARIMA Forecast", line = list(dash = "dash", color = 'red')) %>%
add_lines(data = df_fitted_sarimax, x = ~time, y = ~value,

name = "SARIMAX Fitted", line = list(color = 'blue')) %>%
add_lines(data = df_sarimax[df_sarimax$type=="SARIMAX Forecast",], x = ~time, y = ~value,

name = "SARIMAX Forecast", line = list(dash = "dash", color = 'purple')) %>%
layout(title = "SARIMA vs SARIMAX Forecast",

xaxis = list(title = "Time"),
yaxis = list(title = "Value"))
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Interpretation:

1. Seasonality

• Seasonal AR (𝑃 ) captures dependence on previous seasonal cycles.

• Seasonal MA (𝑄) captures seasonal shocks.

• Seasonal differencing (𝐷) removes repeating seasonal trends.

2. Exogenous Variables (SARIMAX only)

• The model accounts for additional predictors outside the time series itself.

• Useful when external events significantly impact the series.

3. Forecasting
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• Combines non-seasonal ARMA dynamics, seasonal patterns, and external
regressors (if any).

• Produces more accurate predictions for seasonal and influenced time series.

5.2 Machine Learning Models

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/vV12dGe_Fho?si=LCdcDWhbUa01YBEX

5.2.1 Linear Regression

Linear Regression for Time Series [8], uses time-dependent features such as:

• 𝑦𝑡−1, 𝑦𝑡−2, …
• moving averages
• sine/cosine seasonal features

5.2.2 Non-Linear Regression

Random Forest, XGBoost, and LightGBM [9], tree-based models capable of capturing
nonlinear patterns.

5.3 Deep Learning Models

Video cannot be displayed in PDF/Word.
Please view the HTML version or open directly on YouTube:
https://www.youtube.com/embed/AsNTP8Kwu80?si=413sqZ1qzEibJyL0

5.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) [10], designed to capture sequential dependencies.

5.3.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) [11], effective for long-range temporal dependencies.

5.3.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) [12], a simplified alternative to LSTM with similar per-
formance.
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5.3.4 CNN for Time Series

CNN for Time Series [13], uses convolutional filters to detect local temporal patterns.

5.3.5 Encoder–Decoder

Encoder–Decoder (Seq2Seq) Models [14], designed for multi-step or multi-horizon fore-
casting.

5.3.6 Transformer Architectures

Transformer Architectures [15], examples include Informer, Autoformer, and FED-
former.

Strengths:
- Long-range dependency modeling
- Strong performance on large datasets

5.4 Model Selection Summary

Data Pattern Suitable Models
No strong pattern Naïve, SMA
Trend Holt, ARIMA
Trend + Seasonality Holt–Winters, SARIMA
External regressors ARIMAX, SARIMAX
Nonlinear structure Random Forest, XGBoost
Complex dependencies LSTM, GRU, CNN, Encoder–Decoder
Long-range forecasting Transformers
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