
Introduction to Statistical Methodology, Second
Edition

Derek L. Sonderegger & Robert Buscaglia

December 08, 2020



2



Contents

Preface 7
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Summary Statistics and Graphing 9
1.1 Variable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Randomization and Sampling . . . . . . . . . . . . . . . . . . . . 11

1.3 Graphical Summaries . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Probability 33
2.1 Introduction to Set Theory . . . . . . . . . . . . . . . . . . . . . 33

2.2 Probability Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . 41

2.4 Common Discrete Distributions . . . . . . . . . . . . . . . . . . . 45

2.5 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . 52

2.6 R Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Confidence Intervals via Bootstrapping 63
3.1 Theory of Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Conducting a Bootstrap . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Quantile-based Confidence Intervals . . . . . . . . . . . . . . . . 67

3



4 CONTENTS

3.4 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Sampling Distribution of �̄� 77

4.1 Enlightening Example . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Mathematical details . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Distribution of �̄� . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Confidence Intervals for 𝜇 87

5.1 Asymptotic result (𝜎 known) . . . . . . . . . . . . . . . . . . . . 87

5.2 Asymptotoic result (𝜎 unknown) . . . . . . . . . . . . . . . . . . 88

5.3 Sample Size Selection . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Hypothesis Tests for the mean of a population 97

6.1 Writing Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Conducting a Hypothesis Test for 𝜇 . . . . . . . . . . . . . . . . 102

6.3 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 P-values vs cutoff values . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Running a t-test in R . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Type I and Type II Errors . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Two-Sample Hypothesis Tests and Confidence Intervals 119

7.1 Difference in means between two groups . . . . . . . . . . . . . . 120

7.2 Difference in means between two groups: Paired Data . . . . . . 140

7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



CONTENTS 5

8 Testing Model Assumptions 153

8.1 Testing Normality . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 Testing Equal Variance . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3 Power of the F-test . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.4 Theoretical distribution vs bootstrap . . . . . . . . . . . . . . . . 162

8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9 Analysis of Variance (ANOVA) 171

9.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.3 Anova in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.4 Multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.5 Different Model Representations . . . . . . . . . . . . . . . . . . 188

9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10 Regression 199

10.1 Pearson’s Correlation Coefficient . . . . . . . . . . . . . . . . . . 199

10.2 Model Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.3 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10.4 Checking Model Assumptions . . . . . . . . . . . . . . . . . . . . 214

10.5 Common Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 218

10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

11 Contingency Tables 227

11.1 Expected Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

11.2 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 231

11.3 RxC tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239



6 CONTENTS

Appendix A : Resampling Linear Models 241

11.5 Using lm() for many analyses . . . . . . . . . . . . . . . . . . . . 242

11.6 Creating Simulated Data . . . . . . . . . . . . . . . . . . . . . . . 245

11.7 Confidence Interval Types . . . . . . . . . . . . . . . . . . . . . . 250

11.8 Bootstrap Confidence Intervals in R . . . . . . . . . . . . . . . . 252

11.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Appendix B : Alternative Bootstrap Code 267

Mosaic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Base R Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



Preface

The problem with most introductory statistics courses is that they don’t prepare
the student for the use of advanced statistics. Rote hand calculation is easy
to test, easy to grade, and easy for students to learn to do, but is useless
for actually understanding how to apply statistics. Since students pursuing a
Ph.D. will likely be using statistics for the rest of their professional careers, we
feel that this sort of course should attempt to steer away from a “cookbook”
undergraduate pedagogy, and give the student enough theoretical background
to continue their statistical studies at a high level while staying away from the
painful mathematical details that statisticians must work through.

Statistical software has progressed by leaps and bounds over the last decades.
Scientists need access to reliable software that is flexible enough to handle new
problems, with minimal headaches. R has become a widely used, and extremely
robust Open Source platform for statistical computing and most new method-
ologies will appear in R before being incorporated into commercial software.
Second, data exploration is the first step of any analysis and a user friendly
yet powerful mechanism for graphing is a critical component in a researchers
toolbox. R succeeds in this area with the most flexible graphing library of any
statistical software and and basic plotting that can be executed quickly and eas-
ily. The only downside is that there is a substantial learning curve to scripting,
particularly for students without any programming background. The use of R
software is introduced with as little pain as possible, but some frustration is
inevitable.

Because the mathematical and statistical background of physical science stu-
dents varies widely, the course seems to have a split-personality disorder. We
wish to talk about using calculus to maximize the likelihood function and de-
fine the expectation of a continuous random variable, but also must spend time
defining how to calculate a mean. We attempt to address both audiences, but
recognize that it is not ideal.

These notes were originally written for an introductory statistics course for
grad students in the physical sciences. Furthermore, the initial author of the
notes primarily works in biological and ecological fields. As a result, many of the
examples are biological situations. However there isn’t any biological knowledge
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necessary.

We hope you’ll find these notes useful.
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Chapter 1

Summary Statistics and
Graphing

When confronted with a large amount of data, we seek to summarize the data
into statistics that capture the essence of the data with as few numbers as pos-
sible. Graphing the data has a similar goal: to reduce the data to an image that
represents all the key aspects of the raw data. In short, we seek to simplify the
data in order to understand the trends while not obscuring important structure.

# Every chapter, we will load all the libraries we will use at the beginning
# of the chapter. These commands will start most every homework assignment
# for this class, and likely, every R script you write.
suppressPackageStartupMessages({
library(tidyverse)

})

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

For this chapter, we will consider data from a the 2005 Cherry Blossom 10 mile
run that occurs in Washington DC. This data set has 8636 observations that
includes the runners state of residence, official time (gun to finish, in seconds),
net time (start line to finish, in seconds), age, and gender of the runners.

data(TenMileRace, package='mosaicData')
head(TenMileRace) # examine the first few rows of the data

## state time net age sex
## 1 VA 6060 5978 12 M

9
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## 2 MD 4515 4457 13 M
## 3 VA 5026 4928 13 M
## 4 MD 4229 4229 14 M
## 5 MD 5293 5076 14 M
## 6 VA 6234 5968 14 M

1.1 Variable Types

We will distinguish variables into two principal categories: categorical and nu-
merical. This distinction will become important because the manner in which
we visualize and model the data will depend on the variable types. For example
we use box plots to graph a continuous vs categorical variable relationship but
a scatter plot for a continuous vs continuous relationship.

• Categorical variables are variables whose elements take on non-
numerical entries.
Examples within the TenMileRace set include the state and sex variables.
Categorical variables are typically un-ordered, such that if we chose to
order ‘NM’ before ‘AZ’ in an evaluation of the state variable, there would
be no impact on our analysis. Categorical variables that have an implied
order are termed ordinal variables. Examples include the common A, B,
C, D, F grade-scale system. The variable entries are non-numerical, but
there is an implied order that A > B > C > D > F. Such an ordering
could influence the way the data is evaluated.

• Numerical variables are broadly classified as variables with numerical
elements.
Numerical variables within the TenMileRace set include the time, net, and
age variables. Numerical variables are sub-classified as either discrete or
continuous.

– Numerical Discrete variables are numerical variables have values
coming from a countable set of possible values. Data that is numerical
discrete can take on a countable number of numerical entries. Some
examples are:
∗ The number of offspring an adult has
∗ The number of items in a shopping cart.
∗ The value of a die roll.
∗ The number of students in a classroom.

Discrete variables often have an upper bound on their possible value,
but theoretically could be countably infinite and listed as 0, 1, 2,….
Although there is no largest value within the list, the number of
potential entries is still countable. Infinite valued discrete variables
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will serve the basis for important distributions, such as the Poisson
distribution, while the finite valued variables serve as the basis for
distributions such as the binomial, Bernoulli, and discrete uniform.

– Continuous variables have entries that take on numerical values
that lie on an interval.
Continuous variables are also numerical variables but the values come
from an uncountable set of values. This distinction between Discrete
and Continuous variable types is important from a statistical theory
point of view, but is less helpful in statistical practice. Instead we
can consider the question: “Does a fraction of a value make sense?”
If so, then the data is continuous.

The TenMileRace data, the variables time and net are both recorded in sec-
onds, and in this case seem to conform to discrete. However, if we had instead
recorded the minutes with fractions of a minute present, such as 75.25 min-
utes instead of 4515 seconds, we might realize these variables are more likely
to be considered continuous. Continuous variables constitute a large set of dis-
tributions that will be studied, the most commonly known being the Normal
distribution. For the Normal distribution, it is theoretically possible to see val-
ues ranging from (−∞,∞). This constitutes an interval, albeit a very large
interval. Thus, elements of the variables lie on an interval, and it is not possible
to list out all possible entries. Another simple example will be the Uniform
distribution, whose entries lie on the interval (𝑎, 𝑏), where 𝑎 and 𝑏 are any real
valued number. Again, all potential observation of the variable can be found in
the interval, but it is not possible to list out all possible outcomes.

1.2 Randomization and Sampling

An important aspect of working within statistics is the concept that the data
we are working with has been collected randomly. We think of having a popu-
lation, the collection of all possible observations under consideration. We often
consider population summary quantities, such as the population mean which we
will denote as 𝜇. For example, we might care about the mean age of all NAU
students, or the average income of Hispanic residents of Arizona.

Usually we will not have data on all individuals within the population and we
are forced to rely on a sample. A sample is a subset of the population for which
information is gathered.
The fundamental idea in the theory of statistics is:

• The sample is a representative subset of the population and quantities cal-
culated from the sample (called sample statistics) are reasonable estimates
of the corresponding population quantity (called population parameters).
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The way we select our samples is done to ensure that the sample is representative
of the population and that there is no unknown lurking correlation between
variables.

We will distinguish between the usually unknown population parameters and
the sample estimating quantities by using Greek letters such as 𝜇, 𝜎, 𝜌, or 𝛽 for
the population values and either Roman characters such as ̄𝑥, s, r, or b or add
a “hat” on-top of the parameter such as ̂𝜇, �̂�, ̂𝜌 or ̂𝛽. As for the Population
and sample sizes, we will use 𝑁 to represent the number of individuals in the
population, and 𝑛 to represent the number of individuals in the sample.

1.2.1 Sampling Techniques

We will cover three broad sampling techniques that help ensure the sample is
representative of the population and the randomization of the samples collected.

• Simple Random Sampling (SRS) is when every sample of size 𝑛 is
equally likely. In practice this almost always implemented as randomly
selecting member of the population is equally-likely to be chosen.

For SRS to be used, we also ensure that every member of the population is
selected independently. Let us take the a university of having 30,000 students
enrolled to be our population of which we would like to selected 1,000 as a
sample. To use SRS, we would assign every member of the population a value
{1, 2, ..., 30,000} and then draw numbers, without replacement, from our
list of values. Such random numbers can be drawn using a random number
generator, or traditionally through the use of a random number table. Below
we show a simple method in R to draw 1,000 from 30,000 without replacement.

sample(1:30000, 1000, replace=FALSE)

Using this method would ensure that we obtain a random sampling drawn from
the entire University. What we cannot do is draw a student, then also draw
all of their siblings. If we were to use such a method, we would be introducing
correlation within our samples. We must ensure that the students are all drawn
randomly and that the selection is done independently.

• Random Cluster Sampling draws entire clusters based on a division of
the population.

In cluster sampling, the idea is perform a hierarchical sampling where that
we will use a SRS to select clusters and then observe every individual in that
cluster. For example, if we were taking a sample of NAU students, we might
first randomly select a certain set of classes and then interview every student in
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each class. Another example would have a tree ecologist randomly select GIS
locations in a study area and then measure every tree within 20 meters of the
location.

Cluster sampling is usually done to make it more convenient to carry out the
sample, but introduces correlation among the observations that will need to be
accounted for in the statistical analysis (e.g. using mixed models).

As an example of a bad cluster sample design, let us consider cluster sampling
the TenMileRace population based on state. If one was to view this variable,
they would find there are 62 unique state identifiers. This is due to there being
several countries listed in this variable, as well as the inclusion of Washington,
DC as its own state, and because it is real data, there is also one blank. The main
concept though if we chose to cluster by state, we would produce 62 clusters, all
of which are imbalanced in size. To complete cluster random sampling, we then
use SRS to draw X states from the 62 clusters produced, such as say 10 from
62. From those 10, we would sample ALL participants within those clusters.
Thus, if I were to draw the AZ cluster, I would sample all 3 participants. If
I drew the VA cluster, we would sample all 3689 participants. Although this
type of sampling is easier to produce larger samples with less randomization, we
can see that clusters can be highly imbalanced, and it is unlikely that clustering
will allow me to sub-sample from the entire population. Just in our example, I
would not gather information from 52 of the 62 states, if I only was to draw 10
clusters.

• Stratified Sampling draws samples using proportionality based on ho-
mogeneous groupings known as strata.

It is often easy to confuse Clustering and Stratified sampling, but the major
difference here is that we will draw random samples from within the strata,
unlike clustering where we take all individuals from the chosen clusters. Let us
consider for exampling producing a random stratified sample using sex as our
strata. Here, our homogeneous grouping is simply sex. Other examples might
include stratifying animals by breed, stratifying the atmosphere by height above
ground, or stratifying soil by depth. The main idea behind a strata is every
member should be homogenized: in our example, we homogenized by ‘Male’
and ‘Female’.
sex n Proportion
F 4325 0.501
M 4311 0.499

Above shows a table for the number of ‘Male’ and ‘Female’ participants. We
see that these two strata are nearly equivalent, but we suppose we want to
ensure we draw the samples based on proportionality. In total, we have 8636
participants. Let us say we want to draw 800 of these participants, but through
stratification using sex. We must then ensure that when we draw a random
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sample, we obtain a sub-sample that has nearly equivalent proportions to that
observed in the population. We must therefore draw

sex Sample size
F 800 ∗ 0.501 = 401
M 800 ∗ 0.499 = 399

And if we do this sub-sampling, then our sample proportions will necessarily be
the same as our population proportions. This can have desirable consequences,
mainly that stratifying ensures samples are taken from all potential sources, here
the sources are the different categories within our sex variable. If I did draw
samples using only SRS with no stratifying, I might get proportions of ‘Male’
and ‘Female’ that are wildly different than the original sample, and stratification
forces us to not select those unrepresentative samples. Stratifying guarantees
we reproduce the proportions, while sampling from all homogeneous groupings.

1.3 Graphical Summaries

1.3.1 Barcharts/Barplots (Univariate - Categorical)

If we have univariate data about a number of groups, often the best way to
display it is using barplots. They have the advantage over pie-charts that groups
are easily compared. The bars do NOT touch indicating that the order is not
required, and the same information could be gained if we plotted them in a
slightly different order. Below we compare the counts of ‘Male’ and ‘Female’
participants.

ggplot(TenMileRace, aes(x=sex)) + geom_bar()
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One thing that can be misleading is if the zero on the y-axis is removed. In the
following graph it looks like there are twice as many female runners as male until
you examine the y-axis closely. In general, the following is a very misleading
graph.

ggplot(TenMileRace, aes(x=sex)) +
geom_bar() +
coord_cartesian(ylim = c(4300, 4330))
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1.3.2 Histogram (Univariate - Numerical)

A histogram looks very similar to a bar plot, but is used to represent numerical
data instead of categorical and therefore the bars will actually be touching.

ggplot(TenMileRace, aes(x=net)) +
geom_histogram()
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Often when a histogram is presented, the y-axis is labeled as “frequency” or
“count” which is the number of observations that fall within a particular bin.
However, it is often desirable to scale the y-axis so that if we were to sum up
the area (ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑤𝑖𝑑𝑡ℎ) then the total area would sum to 1. The re-scaling
that accomplishes this is

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = # 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑏𝑖𝑛
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ⋅ 1

𝑏𝑖𝑛 𝑤𝑖𝑑𝑡ℎ

We can force the histogram created within ggplot to be display density by using
the y=..density.. command.

ggplot(TenMileRace, aes(x=net)) +
geom_histogram(aes(y=..density..))
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1.3.3 Boxplot (Bivariate - Categorical vs Numerical)

We often wish to compare response levels from two or more groups of interest.
To do this, we often use side-by-side box plots. Notice that each observation is
associated with a continuous response value and a categorical value.

ggplot(TenMileRace, aes(x=sex, y=net)) +
geom_boxplot()
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In this graph, the edges of the box are defined by the 25% and 75% percentiles.
That is to say, 25% of the data is to the below of the box, 50% of the data is
in the box, and the final 25% of the data is to the above of the box. The line
in the center of the box represents the 50% percentile, more commonly called
the median. The dots are data points that are traditionally considered outliers.
We will define the Inter-Quartile Range (IQR) as the length of the box. It is
conventional to define any observation more than 1.5*IQR from the box as an
outlier. In the above graph it is easy to see that the median time for the males
is lower than for females, but the box width (one measure of the spread of the
data) is approximately the same.
Because boxplots simplify the distribution to just 5 numbers, looking at side-
by-side histograms might give similar information.

ggplot(TenMileRace, aes(x=net)) +
geom_histogram() +
facet_grid( . ~ sex ) # side-by-side plots based on sex
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Orientation of graphs can certainly matter. In this case, it makes sense to stack
the two graphs to facilitate comparisons in where the centers are and it is more
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obvious that the center of the female distribution is about 500 to 600 seconds
higher than then center of the male distribution.

ggplot(TenMileRace, aes(x=net)) +
geom_histogram() +
facet_grid( sex ~ . ) # side-by-side plots based on sex
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1.3.4 Scatterplot (Bivariate - Numerical vs Numerical)

Finally we might want to examine the relationship between two numerical ran-
dom variables. For example, we might wish to explore the relationship between
a runners age and their net time.

ggplot(TenMileRace, aes(x=age, y=net, color=sex)) +
geom_point()
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1.4 Summary Statistics

Often we want to take a set of data and summarize it using just a few numbers.
These numbers are called summary statistics and different statistics measure
different aspects of the data.

1.4.1 Measures of Centrality

The most basic question to ask of any dataset is ‘What is the typical value?’
There are several ways to answer that question and they should be familiar to
most students.

1.4.1.1 Mean

Often called the average, or arithmetic mean, we will denote this special statistic
with a bar. We define

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 =
1
𝑛 (𝑥1 + 𝑥2 +⋯+ 𝑥𝑛)

If we want to find the mean of five numbers {3, 6, 4, 8, 2} the calculation is

̄𝑥 = 1
5 (3 + 6 + 4 + 8 + 2) = 1

5 (23) = 23/5 = 4.6

This can easily be calculated in R by using the function mean(). We first extract
the column we are interested in using the notation: DataSet$ColumnName where
the $ signifies grabbing the column.

mean( TenMileRace$net ) # Simplest way of doing this calculation

## [1] 5599.065

# Using the dplyr package we first specify the data set
# Then specify we wish to summarize() the data set
# The summary we want to do is to calculate the mean of the 'net' column.
# and we want to name what we are about to create as Calculated.Mean
# The .groups='drop' is telling R to ungroup() the data.
TenMileRace %>%
summarise( Calculated.Mean = mean(net), .groups='drop' )

## Calculated.Mean
## 1 5599.065
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1.4.1.2 Median

If the data were to be ordered, the median would be the middle most observation
(or, in the case that 𝑛 is even, the mean of the two middle most values).

In our simple case of five observations {3, 6, 4, 8, 2}, we first sort the data into
{2, 3, 4, 6, 8} and then the middle observation is clearly 4.
In R the median is easily calculated by the function median().

# median( TenMileRace$net )
TenMileRace %>%
summarise( Median = median(net) )

## Median
## 1 5555

1.4.1.3 Mode

This is peak in the distribution. A distribution might have a single peak or mul-
tiple peaks.This measure of “center” is not often used in quantitative analyses,
but is often helps provide a nice description.

When creating a histogram from a set of data, often the choice of binwidth will
affect the modes of the graph. Consider the following graphs of 𝑛 = 200 data
points, where we have slightly different binwidths.
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With the two smaller binwidths, sample randomness between adjacent bins ob-
scures the overall shape and we have many different modes. However the larger
binwidth results in a histogram that more effectively communicates the shape
of the distribution and has just a single mode at around 6000 seconds. When
making histograms, the choice of binwidth (or equivalently, the number of bins)
should not be ignored and a balance should be struck between simplifying the
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data too much vs seeing too much of the noise resulting from the sample ran-
domness.

1.4.1.4 Examples

• Suppose a retired professor were to become bored and enroll in the author’s
STA 570 course, how would that affect the mean and median age of the
STA 570 students?

– The mean would move much more than the median. Suppose the
class has 5 people right now, ages 21, 22, 23, 23, 24 and therefore the
median is 23. When the retired professor joins, the ages will be 21,
22, 23, 23, 24, 72 and the median will remain 23. However, the mean
would move because we add in such a large outlier. Whenever we
are dealing with skewed data, the mean is pulled toward the outlying
observations.

• In 2010, the median NFL player salary was $770,000 while the mean salary
was $1.9 million. Why the difference?

– Because salary data is skewed by superstar players that make huge
salaries (in excess of $20,000,000) while the minimum salary for a
rookie is $375,000. Financial data often reflects a highly skewed
distribution and the median is often a better measure of centrality
in these cases.

1.4.2 Measures of Spread

The second question to ask of a dataset is ‘How much spread is in the data?’
The fancier (and eventually more technical) word for spread is ‘variability’. As
with centrality, there are several ways to measure this.

1.4.2.1 Range

Range is the distance from the largest to the smallest value in the dataset.

TenMileRace %>% summarise( Range = max(net) - min(net) )

## Range
## 1 7722

We usually aren’t interested in the range because it can be highly affected by
a single observation. For example, in the TenMileRace data, only two runners
out of 8600 were in their 80s, but the range is calculated using the most extreme
values of a 10 and 87 year old even though the majority of the runners were
between 28 and 44.
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1.4.2.2 Inter-Quartile Range (IQR)

The p-th percentile is the observation (or observations) that has at most 𝑝
percent of the observations below it and (1 − 𝑝) above it, where 𝑝 is between 0
and 100. The median is the 50th percentile. Often we are interested in splitting
the data into four equal sections using the 25th, 50th, and 75th percentiles
(which, because it splits the data into four sections, we often call these the 1st,
2nd, and 3rd quartiles).

In general we could be interested in dividing the data up into an arbitrary
number of sections, and refer to those as quantiles of my data.

quantile( TenMileRace$net ) # gives the 5-number summary by default

## 0% 25% 50% 75% 100%
## 2814 4950 5555 6169 10536

The IQR is defined as the distance between the 3rd and 1st quantiles.

# IQR( TenMileRace$net )
TenMileRace %>% summarise( CalcIQR = IQR(net) )

## CalcIQR
## 1 1219

Notice that we’ve defined IQR before when we looked at boxplots, and that the
IQR is exactly the length of the box.

1.4.3 Variance

One way to measure the spread of a distribution is to ask “what is the typical
distance of an observation to the mean?” We could define the 𝑖th deviation as

𝑒𝑖 = 𝑥𝑖 − ̄𝑥

and then ask what is the average deviation? The problem with this approach is
that the sum (and thus the average) of all deviations is always 0.

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥) =
𝑛

∑
𝑖=1

𝑥𝑖 −
𝑛

∑
𝑖=1

̄𝑥 = 𝑛 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛 ̄𝑥 = 𝑛 ̄𝑥 − 𝑛 ̄𝑥 = 0

The big problem is that about half the deviates are negative and the others are
positive. What we really care is the distance from the mean, not the sign. So
we could either take the absolute value, or square it.
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There are some really good theoretical reasons to chose the square option.
Squared terms are easier to deal with computationally when compared to abso-
lute values. More importantly, the spread of the normal distribution is param-
eterized via squared distances from the mean. Because the normal distribution
is so important, we’ve chosen to define the sample variance so it matches up
with the natural spread parameter of the normal distribution. So we square the
deviations and find the average deviation size (approximately) and call that the
sample variance.

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

Why do we divide by 𝑛 − 1 instead of 𝑛?

1. If we divide by 𝑛, then on average, we would tend to underestimate the
population variance 𝜎2.

2. The reason is because we are using the same set of data to estimate 𝜎2

as we did to estimate the population mean (𝜇). If we could use

1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

as the estimator, we would be fine. But because we have to replace 𝜇 with
̄𝑥 we have to pay a price.

3. Because the estimation of 𝜎2 requires the estimation of one other quantity,
we have used one degree of freedom on estimating the mean and we need
to adjust the formula accordingly.

In later chapters we’ll give this quantity a different name, so we’ll introduce the
necessary vocabulary here. Let 𝑒𝑖 = 𝑥𝑖 − ̄𝑥 be the error left after fitting the
sample mean. This is the deviation from the observed value to the “expected
value” ̄𝑥. We can then define the Sum of Squared Error as

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

𝑒2𝑖

and the Mean Squared Error as

𝑀𝑆𝐸 = 𝑆𝑆𝐸
𝑑𝑓 = 𝑆𝑆𝐸

𝑛 − 1 = 𝑠2

where 𝑑𝑓 = 𝑛 − 1 is the appropriate degrees of freedom.

Calculating the variance of our small sample of five observations {3, 6, 4, 8, 2},
recall that the sample mean was ̄𝑥 = 4.6
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𝑥𝑖 (𝑥𝑖 − ̄𝑥) (𝑥𝑖 − ̄𝑥)2

3 -1.6 2.56
6 1.4 1.96
4 -0.6 0.36
8 3.4 11.56
2 -2.6 6.76

Sum = 0 SSE = 23.2

and so the sample variance is

𝑠2 = 𝑆𝑆𝐸
𝑛 − 1 = 23.2

(𝑛 − 1) = 23.2
4 = 5.8

Clearly this calculation would get very tedious to do by hand and computers
will be much more accurate in these calculations. In R, the sample variance is
easily calculated by the function var(). Given below is an example calculation
done using dplyr commands.

ToyData <- data.frame( x=c(3,6,4,8,2) )
#var(ToyData$x)
ToyData %>% summarise( s2 = var(x) )

## s2
## 1 5.8

For the larger TenMileRace data set, the variance of the net time to complete
the race is calculated just as easily.

TenMileRace %>% summarise( s2 = var(net) )

## s2
## 1 940233.5

1.4.3.1 Standard Deviation

The biggest problem with the sample variance statistic is that the units are the
original units-squared. That means if you are looking at data about car fuel
efficiency, then the values would be in mpg2 which are units that I can’t really
understand. The solution is to take the positive square root, which we will call
the sample standard deviation.

𝑠 =
√
𝑠2
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Why do we even bother to define the variance? Mathematically the variance
is more useful and most distributions (such as the normal) are defined by the
variance term. Practically, standard deviation is easier to think about and
becomes an informative quantity when discussing sample error.

The sample standard deviation is important enough for R to have a function
sd() that will calculate it for you.

# sd( TenMileRace$net )
TenMileRace %>% summarise( s = sd(net) )

## s
## 1 969.6564

1.4.3.2 Coefficient of Variation

While the IQR and standard deviation are the most common ways to evaluate
spread, they are not the only measures. Suppose we had a group of animals and
the sample standard deviation of the animals lengths was 15 cm. If the animals
were elephants, you would be amazed at their uniformity in size, but if they
were insects, you would be astounded at the variability. To account for that,
the coefficient of variation takes the sample standard deviation and divides by
the absolute value of the sample mean (to keep everything positive)

𝐶𝑉 = 𝑠
| ̄𝑥|

Below is sample code to quickly grab the summary metrics of interest, with a
calculation of the CV.

TenMileRace %>%
summarise( s = sd(net),

xbar = mean(net),
CV = s / abs(xbar) )

## s xbar CV
## 1 969.6564 5599.065 0.1731818

One final example showing how we can get information about grouped variables.
Here, we would like to to calculate the same summary statistics as above, but
would like to know them specificall for each factor with sex; that is, we want to
compare ‘Male’ and ‘Female’.
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# Previously using dplyr notation didn't help too much, but if we wanted
# to calculate the statistics separately for each sex, the dplyr solution
# is MUCH easier.
TenMileRace %>% # Summarize the Ten Mile Race Data
group_by(sex) %>% # Group actions using sex
summarise( xbar = mean(net), #

s = sd(net), #
cv = s / abs(xbar) ) # Calculate three different summary stats

## `summarise()` ungrouping output (override with `.groups` argument)

## # A tibble: 2 x 4
## sex xbar s cv
## <fct> <dbl> <dbl> <dbl>
## 1 F 5916. 902. 0.152
## 2 M 5281. 930. 0.176

1.4.3.3 Empirical Rules

For any data that are normally distributed (or approximately normal), the fol-
lowing are resourceful rules of thumb:

Interval Approximate percent of Measurements
̄𝑥 ± 𝑠 68%
̄𝑥 ± 2𝑠 95%
̄𝑥 ± 3𝑠 99.7%

x ± s
68%

x ± 2s
95%

x ± 3s
99.7%

1 S
td D

ev
2 S

td D
ev

3 S
td D

ev

x − 3s x − 2s x − s x x + s x + 2s x + 3s
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1.5 Shape

Vocabulary for discussing the shape of a distribution is discussed. These descrip-
tors can be very useful for understanding the distribution, and as understanding
develops, also tell us about relationships between the mean and median, or other
informative quantities.

1.5.1 Symmetry

A distribution is said to be symmetric if there is a point along the x-axis
(which we’ll call 𝜇) which acts as a mirror. Mathematically, a distribution is
symmetric around 𝑚 if and only if 𝑓(−|𝑥 − 𝜇|) = 𝑓(|𝑥 − 𝜇|). The following
graphs give the point of symmetry marked with a red line.

A distribution that is not symmetric is said to be asymmetric.

1.5.2 Unimodal or Multi-modal

Recall one measure of centrality was mode. If there is just a single mode, then
we refer to the distribution as unimodal. If there is two or more we would refer
to it as bimodal or multi-modal.

1.5.3 Skew

If a distribution has a heavier tail on one side or the other, we refer to it as
a skewed distribution and the direction of the skew is towards the heavier tail.
Usually (but not always), an asymmetric distribution is skewed.
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Left Skewed Right Skewed

1.6 Exercises

1. O&L 3.21. The ratio of DDE (related to DDT) to PCB concentrations
in bird eggs has been shown to have had a number of biological impli-
cations. The ratio is used as an indication of the movement of contam-
ination through the food chain. The paper “The ratio of DDE to PCB
concentrations in Great Lakes herring gull eggs and its us in interpreting
contaminants data” reports the following ratios for eggs collected at 13
study sites from the five Great Lakes. The eggs were collected from both
terrestrial and aquatic feeding birds.

Source Type DDE to PCB Ratio
Terrestrial 76.50, 6.03, 3.51, 9.96, 4.24, 7.74, 9.54, 41.70, 1.84, 2.5,

1.54
Aquatic 0.27, 0.61, 0.54, 0.14, 0.63, 0.23, 0.56, 0.48, 0.16, 0.18

a) By hand, compute the mean and median separately for each type of
feeder.

b) Using your results from part (a), comment on the relative sensitivity
of the mean and median to extreme values in a data set.

c) Which measure, mean or median, would you recommend as the most
appropriate measure of the DDE to PCB level for both types of
feeders? Explain your answer.

2. O&L 3.31. Consumer Reports in its June 1998 issue reports on the typical
daily room rate at six luxury and nine budget hotels. The room rates are
given in the following table.
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Hotel Type Nightly Rate
Luxury 175, 180, 120, 150, 120, 125
Budget 50, 50, 49, 45, 36, 45, 50, 50, 40

a) By hand, compute the means and standard deviations of the room
rates for each class of hotel.

b) Give a practical reason why luxury hotels might have higher variabil-
ity than the budget hotels. (Don’t just say the standard deviation
is higher because there is more spread in the data, but rather think
about the Hotel Industry and why you might see greater price vari-
ability for upscale goods compared to budget items.)

3. Use R to confirm your calculations in problem 1 (the pollution data). Show
the code you used and the subsequent output. It will often be convenient
for me to give you code that generates a data frame instead of uploading
an Excel file and having you read it in. The data can be generated using
the following commands:

PolutionRatios <- data.frame(
Ratio = c(76.50, 6.03, 3.51, 9.96, 4.24, 7.74, 9.54, 41.70, 1.84, 2.5, 1.54,

0.27, 0.61, 0.54, 0.14, 0.63, 0.23, 0.56, 0.48, 0.16, 0.18 ),
Type = c( rep('Terrestrial',11), rep('Aquatic',10) ) )

head( PolutionRatios ) # Print out some data to confirm column names.

## Ratio Type
## 1 76.50 Terrestrial
## 2 6.03 Terrestrial
## 3 3.51 Terrestrial
## 4 9.96 Terrestrial
## 5 4.24 Terrestrial
## 6 7.74 Terrestrial

Hint: for computing the means and medians for each type of feeder sep-
arately, the group_by() command we demonstated earlier in the chapter
is convenient.

4. Use R to confirm your calculations in problem 2 (the hotel data). Show
the code you used and the subsequent output. The data can be loaded
into a data frame using the following commands Show the code you used
and the subsequent output:

Hotels <- data.frame(
Price = c(175, 180, 120, 150, 120, 125, 50, 50, 49, 45, 36, 45, 50, 50, 40),
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Type = c( rep('Luxury',6), rep('Budget', 9) ) )

head( Hotels ) # Print out some data to confirm the column names.

## Price Type
## 1 175 Luxury
## 2 180 Luxury
## 3 120 Luxury
## 4 150 Luxury
## 5 120 Luxury
## 6 125 Luxury

5. For the hotel data (problem 2 and 4), create side-by-side box-and-whisker
plots to compare the prices.

6. For each of the following, mark if it is Continuous or Discrete.

a) Milliliters of tea drunk per day.
b) Different brands of soda drunk over the course of a

year.
c) Number of days per week that you are on-campus

for any amount of time.
d) Number of grizzly bears individuals genetically

identified from a grid of hair traps in Glacier National Park.

7. Match the following histograms to the appropriate boxplot.
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a) Histogram A goes with boxplot __________
b) Histogram B goes with boxplot __________
c) Histogram C goes with boxplot __________
d) Histogram D goes with boxplot __________

8. Twenty-five employees of a corporation have a mean salary of $62,000
and the sample standard deviation of those salaries is $15,000. If each
employee receives a bonus of $1,000, does the standard deviation of the
salaries change? Explain your reasoning.

9. The chemicals in clay used to make pottery can differ depending on the
geographical region where the clay originated. Sometimes, archaeologists
use a chemical analysis of clay to help identify where a piece of pottery
originated. Such an analysis measures the amount of a chemical in the
clay as a percent of the total weight of the piece of pottery. The box plots
below summarize analyses done for three chemicals—X, Y, and Z—on
pieces of pottery that originated at one of three sites: I, II, or III.
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a) For chemical Z, describe how the percents found in the pieces of
pottery are similar and how they differ among the three sites.

b) Consider a piece of pottery known to have originated at one of the
three sites, but the actual site is not known.
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i) Suppose an analysis of the clay reveals that the sum of the per-
cents of the three chemicals X, Y, and Z is 20.5%. Based on the
box plots, which site—I, II, or III—is the most likely site where
the piece of pottery originated? Justify your choice.

ii) Suppose only one chemical could be analyzed in the piece of pot-
tery. Which chemical—X, Y, or Z— would be the most useful in
identifying the site where the piece of pottery originated? Justify
your choice.

10. The efficacy of a new heart medication is being tested by evaluating its
effect on a wide range of individuals. For each individual in the study the
following characteristics are recorded prior to being given the medication:
Gender, Ethnicity, Age (years), Height (m), Weight (kg), Blood Pressure
(mmHg), Heart Rate (bpm). Determine the type of variable for each
characteristic, briefly justify each answer.

11. Grapes from a vineyard with 500 vines in Napa Valley are to be sampled.
The investigator chooses to sample one grape from 100 different vines.
What type of sampling is being done? Justify your response.

12. R Experiment. Use the code below to generate 100 samples from a
normal distribution. The normal distribution has a mean of 10 and a
variance of 2. Be sure to include the set.seed function so all answers are
the same.

set.seed(10)
rand.sample<-rnorm(100, 10, 2)

a) Use R to calculate the mean, median, variance, and IQR of
rand.sample. Assign each value to variables with the names
step1.mean, step1.median, step1.var, step1.IQR and have them
output to the file.

b) Do the mean and median calculated match the expected value of
10? Discuss why there may be discrepancies between the population
mean and the sample mean.

c) Next use the following code to augment rand.sample. This effectively
adds two outliers to rand.sample.

rand.sample.2<-c(rand.sample, 250, 250)

d) Use R to calculate the mean, median, variance, and IQR of
rand.sample.2 and save them as variables named step2.mean,
step2.median, step2.var, step2.IQR. Be sure to display all resulting
summary statistics in the final RMD output.

e) Discuss the differences in the statistics computed for rand.sample and
rand.sample.2. Which statistics seem more resilient to the outliers?



Chapter 2

Probability

# Every chapter, we will load all the librarys we will use at the beginning
# of the chapter.
library(ggplot2) # graphing functions
library(dplyr) # data summary tools

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

We need to work out the mathematics of what we mean by probability. To
begin with we first define an outcome. An outcome is one observation from a
random process or event. For example we might be interested in a single roll
of a six-side die. Alternatively we might be interested in selecting one NAU
student at random from the entire population of NAU students.

2.1 Introduction to Set Theory

Before we jump into probability, it is useful to review a little bit of set theory.
Events are properties of a particular outcome. For a coin flip, the event “Heads”
would be the event that a heads was flipped. For the single roll of a six-sided
die, a possible event might be that the result is even. For the NAU student, we
might be interested in the event that the student is a biology student. A second
event of interest might be if the student is an undergraduate.
1.1.1 Venn Diagrams
Let 𝑆 be the set of all outcomes of my random trial. Suppose I am interested in
two events 𝐴 and 𝐵. The traditional way of representing these events is using
a Venn diagram.

33
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A

B

S

For example, suppose that my random experiment is rolling a fair 6-sided die
once. The possible outcomes are 𝑆 = {1, 2, 3, 4, 5, 6}. Suppose I then define
events 𝐴 = roll is odd and 𝐵 = roll is 5 or greater. In this case our picture is:

A

B

S

1,3 5 6

2,4

All of our possible events are present, and distributed among our possible events.

2.1.1 Composition of events

I am often interested in discussing the composition of two events and we give
the common set operations below.

• Union: Denote the event that either 𝐴 or 𝐵 occurs as 𝐴 ∪ 𝐵.



2.1. INTRODUCTION TO SET THEORY 35

A

B

S

A∪B

• Intersection: Denote the event that both 𝐴 and 𝐵 occur as 𝐴 ∩ 𝐵

A

B

S

A∩B

• Complement: Denote the event that 𝐴 does not occur as ̄𝐴 or 𝐴𝐶

(different people use different notations)

A

B

S

A  or  Ac
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Definition: Two events 𝐴 and 𝐵 are said to be mutually exclusive (or
disjoint) if the occurrence of one event precludes the occurrence of the other.
For example, on a single roll of a die, a two and a five cannot both come up.
For a second example, define 𝐴 to be the event that the die is even, and 𝐵 to
be the event that the die comes up as a 5.

A

B

S

2.2 Probability Rules

2.2.1 Simple Rules

We now take our Venn diagrams and use them to understand the rules of prob-
ability. The underlying idea that we will use is the the probability of an event
is the area in the Venn diagram.

Definition: The probability is the proportion of times an event occurs in
many repeated trials of a random phenomenon. In other words, it is the long-
term relative frequency.

Rule: For any event 𝐴 the probability of the event 𝑃(𝐴) satisfies 0 ≤ 𝑃(𝐴) ≤ 1.
That is to say, the probability of any event will always lie in the interval [0, 1].
Because 𝑆 is the set of all events that might occur, the area of our bounding
rectangle will be 1 and the probability of event 𝐴 occurring will be represented
by the area in the circle 𝐴.

Rule: The probability of the set of all events (𝑆) is always 1. That is, 𝑃(𝑆) = 1.

General Addition Rule: 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)
The reason behind this fact is that if there is if 𝐴 and 𝐵 are not disjoint, then
some area is added twice when I calculate 𝑃 (𝐴) + 𝑃 (𝐵). To account for this,
I simply subtract off the area that was double counted.
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A

B

S

P(A∪B) = P(A) + P(B) − P(A∩B)

Rule: If two events are mutually exclusive, then 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)

A

B

S

P(A∪B) = P(A) + P(B)

Example. Let 𝑅 be the sum of two different colored dice. Suppose we are
interested in 𝑃(𝑅 ≤ 4). Notice that the pair of dice can fall 36 different ways (6
ways for the first die and six for the second results in 6x6 possible outcomes, and
each way has equal probability 1/36. Because the dice cannot simultaneously
sum to 2 and to 3, we could write

𝑃(𝑅 ≤ 4) = 𝑃(𝑅 = 2) + 𝑃(𝑅 = 3) + 𝑃(𝑅 = 4)
= 𝑃({1, 1}) + 𝑃({1, 2} or {2, 1}) + 𝑃({1, 3} or {2, 2} or {3, 1})

= 1
36 + 2

36 + 3
36

= 6
36

= 1
6

Complement Rule: 𝑃(𝐴) + 𝑃(𝐴𝑐) = 1
This rule follows from the partitioning of the set of all events (𝑆) into two
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disjoint sets, 𝐴 and 𝐴𝑐. We learned above that 𝐴∪𝐴𝑐 = 𝑆 and that 𝑃(𝑆) = 1.
Combining those statements, we obtain the complement rule.

A

Ac

S

P(A) + P(Ac) = 1

Completeness Rule: 𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵𝑐)

A

B

S

P(A) = P(A∩Bc) + P(A∩B)

This identity is just breaking the event 𝐴 into two disjoint pieces.

2.2.2 Conditional Probability

We are given the following data about insurance claims. Notice that the data
is given as 𝑃( 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∩ 𝑃𝑜𝑙𝑖𝑐𝑦𝑇𝑦𝑝𝑒 ) which is apparent because the sum of
all the elements in the table is 100%

Fire Auto Other
Fraudulant 6% 1% 3%

non-Fraudulant 14% 29% 47%

Summing across the rows and columns, we can find the probabilities of for each
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category and policy type.

Fire Auto Other
Fraudulant 6% 1% 3% 10%

non-Fraudulant 14% 29% 47% 90%
20% 30% 50% 100%

It is clear that fire claims are more likely fraudulent than auto or other claims.
In fact, the proportion of fraudulent claims, given that the claim is against a
fire policy is

𝑃( Fraud | FirePolicy ) = proportion of claims that are fire policies and are fraudulent
proportion of fire claims

= 6%
20%

= 0.3

In general we define conditional probability (assuming 𝑃(𝐵) ≠ 0) as

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

which can also be rearranged to show

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴 |𝐵)𝑃(𝐵)
= 𝑃(𝐵 |𝐴)𝑃(𝐴)

Because the order doesn’t matter and 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐵 ∩ 𝐴).
Using this rule, we might calculate the probability that a claim is an Auto policy
given that it is not fraudulent.

𝑃 (𝐴𝑢𝑡𝑜 | 𝑁𝑜𝑡𝐹𝑟𝑎𝑢𝑑 ) = 𝑃 (𝐴𝑢𝑡𝑜 ∩ 𝑁𝑜𝑡𝐹𝑟𝑎𝑢𝑑)
𝑃 (𝑁𝑜𝑡𝐹𝑟𝑎𝑢𝑑 )

= 0.29
0.9

= 0.3 ̄2

Definition: Two events 𝐴 and 𝐵 are said to be independent if 𝑃(𝐴 ∩ 𝐵) =
𝑃(𝐴)𝑃(𝐵).
What independence is saying that knowing the outcome of event 𝐴 doesn’t give
you any information about the outcome of event 𝐵. Thus, we can use conditional
statements to also show that two events are independent if 𝑃(𝐴|𝐵) = 𝑃(𝐴).
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In simple random sampling, we assume that any two samples are independent.
In cluster sampling, we assume that samples within a cluster are not indepen-
dent, but clusters are independent of each other.

Fact: If 𝐴 and 𝐵 are independent events, then 𝑃(𝐴|𝐵) = 𝑃(𝐴) and 𝑃(𝐵|𝐴) =
𝑃(𝐵).
These statements follow directly from the given definitions.

Example: Suppose that we are interested in the relationship between the color
and the type of car. Specifically I will divide the car world into convertibles and
non-convertibles and the colors into red and non-red.

Suppose that convertibles make up just 10% of the domestic automo-
bile market. This is to say 𝑃( 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒 ) = 0.10. Of the non-
convertibles, red is not unheard of but it isn’t common either. So suppose
𝑃( 𝑅𝑒𝑑 | 𝑁𝑜𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒 ) = 0.15. However red is an extremely popular color
for convertibles so let 𝑃( 𝑅𝑒𝑑 | 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒 ) = 0.60.
Given the above information, we can create the following table:

Convertible Not Convertible
Red

Not Red
10% 90% 100%

We can fill in some of the table using our the definition of conditional probability.
For example:

𝑃 (𝑅𝑒𝑑 ∩ 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒) = 𝑃 (𝑅𝑒𝑑 |𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒) 𝑃 (𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒)
= 0.60 ∗ 0.10
= 0.06

Lets think about what this conditional probability means. Of the 90% of cars
that are not convertibles, 15% those non-convertibles are red and therefore the
proportion of cars that are red non-convertibles is 0.90 ∗ 0.15 = 0.135. Of the
10% of cars that are convertibles, 60% of those are red and therefore proportion
of cars that are red convertibles is 0.10 ∗ 0.60 = 0.06. Thus the total percentage
of red cars is actually

𝑃 (𝑅𝑒𝑑 ) = 𝑃 ( 𝑅𝑒𝑑 ∩ 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 ) + 𝑃 (𝑅𝑒𝑑 ∩ 𝑁𝑜𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 )
= 𝑃 (𝑅𝑒𝑑 |𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒 ) 𝑃 (𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 ) + 𝑃 (𝑅𝑒𝑑 |𝑁𝑜𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 ) 𝑃 (𝑁𝑜𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 )
= 0.60 ∗ 0.10 + 0.15 ∗ 0.90
= 0.06 + 0.135
= 0.195
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So when I ask for 𝑃( 𝑟𝑒𝑑 | 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒 ), I am narrowing my space of cars
to consider only convertibles. While there percentage of cars that are red and
convertible is just 6% of all cars, when I restrict myself to convertibles, we see
that the percentage of this smaller set of cars that are red is 60%.

Notice that because 𝑃 (𝑅𝑒𝑑) = 0.195 ≠ 0.60 = 𝑃 (𝑅𝑒𝑑 |𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒) then the
events 𝑅𝑒𝑑 and 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑎𝑏𝑙𝑒 are not independent.

2.2.3 Summary of Probability Rules

Here we give a short summary of the most frequently used rules.

0 ≤ 𝑃 (𝐴) ≤ 1

𝑃 (𝐴) + 𝑃 (𝐴𝑐) = 1
𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵)

𝑃 (𝐴 ∩ 𝐵) =
⎧{
⎨{⎩

𝑃 (𝐴 |𝐵)𝑃 (𝐵)
𝑃 (𝐵 |𝐴)𝑃 (𝐴)
𝑃(𝐴)𝑃(𝐵) if A,B are independent

𝑃 (𝐴 |𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵)

2.3 Discrete Random Variables

The different types of probability distributions (and therefore your analysis
method) can be divided into two general classes:

1. Continuous Random Variables - the variable takes on numerical values
and could, in principle, take any of an uncountable number of values. In
practical terms, if fractions or decimal points in the number make sense,
it is usually continuous.

2. Discrete Random Variables - the variable takes on one of small set of values
(or only a countable number of outcomes). In practical terms, if fractions
or decimals points don’t make sense, it is usually discrete. Previously we
distinguished between categorical (e.g. Ford, Chevy, Tesla) and numerical
discrete (e.g. number of offspring) but because we could arbitrarily map
the categorical labels to the integers, probability theory generally glosses
over that distinction and only worries about if their is ordering to the
categorical levels.
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Examples:

1. Presence or Absence of wolves in a State?
2. Number of Speeding Tickets received?
3. Tree girth (in cm)?
4. Photosynthesis rate?

2.3.1 Introduction to Discrete Random Variables

The following facts hold for discrete random variables:

1. The probability associated with every value lies between 0 and 1
2. The sum of all probabilities for all values is equal to 1
3. Probabilities for discrete RVs are additive. i.e., 𝑃(3 or 4) = 𝑃(3) + 𝑃(4)

2.3.1.1 Expected Value

Example: Consider the discrete random variable 𝑆, the sum of two fair dice.
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Distribution of the sum of two dice

We often want to ask ‘What is expected value of this distribution?’ You might
think about taking a really, really large number of samples from this distribu-
tion and then taking the mean of that really really big sample. We define the
expected value (often denoted by 𝜇) as a weighted average of the possible values
and the weights are the proportions with which those values occur.

𝜇 = 𝐸[𝑆] = ∑
possible 𝑠

𝑠 ⋅ 𝑃 (𝑆 = 𝑠)
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In this case, we have that

𝜇 = 𝐸[𝑆] =
12
∑
𝑠=2

𝑠 ⋅ 𝑃 (𝑆 = 𝑠)

= 2 ⋅ 𝑃 (𝑆 = 2) + 3 ⋅ 𝑃 (𝑆 = 3) + ⋯+ 11 ⋅ 𝑃 (𝑆 = 11) + 12 ⋅ 𝑃 (𝑆 = 12)

= 2( 1
36) + 3( 2

36) + ⋯+ 11( 2
36) + 12( 1

36)

= 7

2.3.1.2 Variance

Similarly we could define the variance of 𝑆 (which we often denote 𝜎2) as a
weighted average of the squared-deviations that could occur.

𝜎2 = 𝑉 [𝑆] = ∑
possible 𝑠

(𝑠 − 𝜇)2 ⋅ 𝑃 (𝑆 = 𝑠)

which in this example can be calculated as

𝜎2 = 𝑉 [𝑆] =
12
∑
𝑠=2

(𝑠 − 𝜇)2 𝑃(𝑆 = 𝑠)

= (2 − 7)2 ( 1
36) + (3 − 7)2 ( 2

36) + ⋯+ (12 − 7)2 ( 1
36)

= 35
6 = 5.8 ̄3

We could interpret the expectation as the sample mean of an infinitely large
sample, and the variance as the sample variance of the same infinitely large
sample. These are two very important numbers that describe the distribution.

Example: Aubrey is a massage therapist and over the last year, the number of
clients she sees per work day (denoted Y) varied according the following table:

Number of Clients 0 1 2 3 4
Frequency/Probability 0.30 0.35 0.20 0.10 0.05

distr <- data.frame( clients = c( 0, 1, 2, 3, 4 ), # two columns
probability = c(0.3, 0.35, 0.20, 0.10, 0.05 ) ) #

ggplot(distr, aes(x=clients)) + # graph with clients as the x-axis
geom_point(aes(y=probability)) + # where the dots go
geom_linerange(aes(ymax=probability, ymin=0)) + # the vertical lines
theme_bw() # set background color...
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Because this is the long term relative frequency of the number of clients (over 200
working days!), it is appropriate to interpret these frequencies as probabilities.
This table and graph is often called a probability mass function (pmf)
because it lists how the probability is spread across the possible values of the
random variable. We might next ask ourselves what is the average number of
clients per day?

𝐸 (𝑌 ) = ∑
possible 𝑦

𝑦 𝑃 (𝑌 = 𝑦)

=
4

∑
𝑦=0

𝑦 𝑃 (𝑌 = 𝑦)

= 0𝑃 (𝑌 = 0) + 1𝑃 (𝑌 = 1) + 2𝑃 (𝑌 = 2) + 3𝑃 (𝑌 = 3) + 4𝑃 (𝑌 = 4)
= 0 (0.3) + 1 (0.35) + 2 (0.20) + 3 (0.10) + 4 (0.05)
= 1.25

Notice that this number is not an integer and therefore is not a value that 𝑌
could actually take on. You might be tempted to therefore round it to the
nearest integer. That would be wrong. The rational is that if we wanted to
estimate the number of clients she has per month (and thus her income), we
would have a worse estimate if we used the rounded number.

Another example of a case where rounding would be inappropriate is in gambling
situations where the amount won or lost per hand isn’t particularly important
but the average amount won or lost over hundreds or thousands of plays is what
matters. A Roulette wheel has 18 red and 18 black slots along with 2 green.
If you bet $1 on red, you could either win a dollar or lose a dollar. However,
because the probabilities are
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Win ( + $1 ) Lose (- $1)
Probability 18

38
20
38

then the persons expected winnings per play are:

𝐸[𝑊] = ∑
possible 𝑤

𝑤𝑃 (𝑊 = 𝑤) = 1(18
38) + −1(20

38) = −0.0526

So for every Black/Red bet, the player should expect to lose 5.2 cents. While
this number is small, it is enough to make the casino millions of dollars over the
long run.

Returning to the massage therapy example, assuming that successive days are
independent (which might be a bad assumption) what is the probability she has
two days in a row with no clients?

𝑃 (0 on day1 𝑎𝑛𝑑 0 on day2) = 𝑃 (0 on day 1) 𝑃 (0 on day 2)
= (0.3) (0.3)
= 0.09

What is the variance of this distribution?

𝑉 (𝑌 ) = ∑
possible y

(𝑦 − 𝜇)2 𝑃 (𝑌 = 𝑦)

=
4

∑
𝑦=0

(𝑦 − 𝜇)2 𝑃 (𝑌 = 𝑦)

= (0 − 1.25)2 (0.3) + (1 − 1.25)2 (0.35) + (2 − 1.25)2 (0.20) + (3 − 1.25)2 (0.10) + (4 − 1.25)2 (0.05)
= 1.2875

Note on Notation: There is a difference between the upper and lower case letters
we have been using to denote a random variable. In general, we let the upper
case denote the random variable and the lower case as a value that the the
variable could possibly take on. So in the massage example, the number of
clients seen per day 𝑌 could take on values 𝑦 = 0, 1, 2, 3, or 4.

2.4 Common Discrete Distributions

2.4.1 Binomial Distribution

Example: Suppose we are trapping small mammals in the desert and we spread
out three traps. Assume that the traps are far enough apart that having one
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being filled doesn’t affect the probability of the others being filled and that all
three traps have the same probability of being filled in an evening. Denote the
event that a trap is filled with a critter as 𝐶𝑖 and denote the event that the trap
is empty as 𝐸𝑖. Denote the probability that a trap is filled by 𝜋 = 0.8. (This
sort of random variable is often referred to as a Bernoulli RV.)

The possible outcomes are

Outcome
𝐸1, 𝐸2, 𝐸3
𝐶1, 𝐸2, 𝐸3
𝐸1, 𝐶2, 𝐸3
𝐸1, 𝐸2, 𝐶3
𝐶1, 𝐶2, 𝐸3
𝐶1, 𝐸2, 𝐶3
𝐸1, 𝐶2, 𝐶3
𝐶1, 𝐶2, 𝐶3

Because these are far apart enough in space that the outcome of Trap1 is inde-
pendent of Trap2 and Trap3, then

𝑃(𝐸1 ∩ 𝐶2 ∩ 𝐸3) = 𝑃(𝐸1)𝑃 (𝐶2)𝑃 (𝐸3) = (1 − 0.8)0.8(1 − 0.8) = 0.032

Notice how important the assumption of independence is!!! Similarly
we could calculate the probabilities for the rest of the table.

Outcome Probability 𝑆 Outcome Probability
𝐸1, 𝐸2, 𝐸3 0.008 𝑆 = 0 0.008

——————- ————— ————- —————
𝐶1, 𝐸2, 𝐸3 0.032
𝐸1, 𝐶2, 𝐸3 0.032 𝑆 = 1 3(0.032) = 0.096
𝐸1, 𝐸2, 𝐶3 0.032

——————- ————— ————- —————
𝐶1, 𝐶2, 𝐸3 0.128
𝐶1, 𝐸2, 𝐶3 0.128 𝑆 = 2 3(0.128) = 0.384
𝐸1, 𝐶2, 𝐶3 0.128

——————- ————— ————- —————
𝐶1, 𝐶2, 𝐶3 0.512 𝑆 = 3 0.512

Next we are interested in the random variable 𝑆, the number of traps that were
filled:
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𝑆 Outcome Probability
𝑆 = 0 0.008
𝑆 = 1 0.096
𝑆 = 2 0.384
𝑆 = 3 0.512

𝑆 is an example of a Binomial Random Variable. A binomial experiment is one
that:

1. Experiment consists of 𝑛 identical trials.
2. Each trial results in one of two outcomes (Heads/Tails, presence/absence).

One will be labeled a success and the other a failure.
3. The probability of success on a single trial is equal to 𝜋 and remains the

same from trial to trial.
4. The trials are independent (this is implied from property 3).
5. The random variable 𝑌 is the number of successes observed during 𝑛 trials.

Recall that the probability mass function (pmf) describes how the probability
is spread across the possible outcomes, and in this case, I can describe this via
a nice formula. The pmf of a a binomial random variable 𝑋 taken from 𝑛 trials
each with probability of success 𝜋 is

𝑃(𝑋 = 𝑥) = 𝑛!
𝑥!(𝑛 − 𝑥)!⏟⏟⏟⏟⏟
𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝑠

𝜋𝑥⏟
𝑦 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

(1 − 𝜋)𝑛−𝑥⏟⏟⏟⏟⏟
𝑛−𝑦𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

where we define 𝑛! = 𝑛(𝑛 − 1)… (2)(1) and further define 0! = 1. Often the
ordering term is written more compactly as

(𝑛𝑥) = 𝑛!
𝑥! (𝑛 − 𝑥)!

.

For our small mammal example we can create a graph that shows the binomial
distribution with the following R code:

dist <- data.frame( x=0:3 ) %>%
mutate(probability = dbinom(x, size=3, prob=0.8))

ggplot(dist, aes(x=x)) +
geom_point(aes(y=probability)) +
geom_linerange(aes(ymax=probability, ymin=0)) +
ggtitle('Binomial distribution: n=3, p=0.8') +
theme_bw()



48 CHAPTER 2. PROBABILITY

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3
x

pr
ob

ab
ili

ty

Binomial distribution: n=3, p=0.8

To calculate the height of any of these bars, we can evaluate the pmf at the
desired point. For example, to calculate the probability the number of full traps
is 2, we calculate the following

𝑃(𝑋 = 2) = (32) (0.8)
2 (1 − 0.8)3−2

= 3!
2!(3 − 2)! (0.8)

2(0.2)3−2

= 3 ⋅ 2 ⋅ 1
(2 ⋅ 1)1 (0.8)2(0.2)

= 3(0.128)
= 0.384

You can use R to calculate these probabilities. In general, for any distribution,
the “d-function” gives the distribution function (pmf or pdf). So to get R to do
the preceding calculation we use:

# If X ~ Binomial(n=3, pi=0.8)
# Then P( X = 2 | n=3, pi=0.8 ) =
dbinom(2, size=3, prob=0.8)

## [1] 0.384

The expectation of this distribution can be shown to be

𝐸[𝑋] =
𝑛

∑
𝑥=0

𝑥𝑃(𝑋 = 𝑥)

=
𝑛

∑
𝑥=0

𝑥 𝑛!
𝑥! (𝑛 − 𝑥)!𝜋

𝑥 (1 − 𝜋)𝑛−𝑥

=⋮
= 𝑛𝜋
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and the variance can be similarly calculated

𝑉 [𝑋] =
𝑛

∑
𝑥=0

(𝑥 − 𝐸 [𝑋])2 𝑃 (𝑋 = 𝑥|𝑛, 𝜋)

=
𝑛

∑
𝑥=0

(𝑥 − 𝐸 [𝑋])2 𝑛!
𝑥! (𝑛 − 𝑥)!𝜋

𝑥 (1 − 𝜋)𝑛−𝑥

=⋮
= 𝑛𝜋(1 − 𝜋)

Example: Suppose a bird survey only captures the presence or absence of
a particular bird (say the mountain chickadee). Assuming the true presence
proportion at national forest sites around Flagstaff is 𝜋 = 0.1, then for 𝑛 = 20
randomly chosen sites, the number of sites in which the bird was observed would
have the following PMF.

dist <- data.frame( x = 0:20 ) %>%
mutate(probability = dbinom(x, size=20, prob=0.1))

ggplot(dist, aes(x=x)) +
geom_point(aes(y=probability)) +
geom_linerange(aes(ymax=probability, ymin=0)) +
ggtitle('Binomial distribution: n=20, p=0.1') +
xlab('Number of Sites Occupied') +
theme_bw()

0.0

0.1

0.2

0 5 10 15 20
Number of Sites Occupied

pr
ob

ab
ili

ty

Binomial distribution: n=20, p=0.1

Often we are interested in questions such as 𝑃(𝑋 ≤ 2) which is the probability
that we see 2 or fewer of the sites being occupied by mountain chickadee. These
calculations can be tedious to calculate by hand but R will calculate these
cumulative distribution function values for you using the “p-function”. This
cumulative distribution function gives the sum of all values up to and including
the number given.
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# P(X=0) + P(X=1) + P(X=2)
sum <- dbinom(0, size=20, prob=0.1) +

dbinom(1, size=20, prob=0.1) +
dbinom(2, size=20, prob=0.1)

sum

## [1] 0.6769268

# P(X <= 2)
pbinom(2, size=20, prob=0.1)

## [1] 0.6769268

In general we will be interested in asking four different questions about a dis-
tribution.

1. What is the height of the probability mass function (or probability density
function). For discrete variable 𝑌 this is 𝑃 (𝑌 = 𝑦) for whatever value of
𝑦 we want. In R, this will be the d-function.

2. What is the probability of observing a value less than or equal to 𝑦? In
other words, to calculate 𝑃 (𝑌 ≤ 𝑦). In R, this will be the p-function.

3. What is a particular quantile of a distribution? For example, what value
separates the lower 25% from the upper 75%? In R, this will be the
q-function.

4. Generate a random sample of values from a specified distribution. In R,
this will be the r-function.

2.4.2 Poisson Distribution

A commonly used distribution for count data is the Poisson.

1. Number of customers arriving over a 5 minute interval
2. Number of birds observed during a 10 minute listening period
3. Number of prairie dog towns per 1000 hectares
4. Number of alga clumps per cubic meter of lake water

A discrete RV is a Poisson RV if the following conditions apply:

1. Two or more events do not occur at precisely the same time or in the same
space

2. The occurrence of an event in a given period of time or region of space is
independent of the occurrence of the event in a non overlapping period or
region.
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3. The expected number of events during one period or region, 𝜆, is the same
in all periods or regions of the same size.

Assuming that these conditions hold for some count variable 𝑌 , the the proba-
bility mass function is given by

𝑃(𝑌 = 𝑦) = 𝜆𝑦𝑒−𝜆

𝑦!

where 𝜆 is the expected number of events over 1 unit of time or space and 𝑒 is
the constant 2.718281828….

𝐸[𝑌 ] = 𝜆
𝑉 𝑎𝑟[𝑌 ] = 𝜆

Example: Suppose we are interested in the population size of small mammals
in a region. Let 𝑌 be the number of small mammals caught in a large trap over
a 12 hour period. Finally, suppose that 𝑌 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 2.3). What is the
probability of finding exactly 4 critters in our trap?

𝑃(𝑌 = 4) = 2.34 𝑒−2.3

4! = 0.1169

What about the probability of finding at most 4?

𝑃(𝑌 ≤ 4) = 𝑃(𝑌 = 0) + 𝑃(𝑌 = 1) + 𝑃(𝑌 = 2) + 𝑃(𝑌 = 3) + 𝑃(𝑌 = 4)
= 0.1003 + 0.2306 + 0.2652 + 0.2033 + 0.1169
= 0.9163

What about the probability of finding 5 or more?

𝑃(𝑌 ≥ 5) = 1 − 𝑃(𝑌 ≤ 4) = 1 − 0.9163 = 0.0837

These calculations can be done using the distribution function (d-function) for
the Poisson and the cumulative distribution function (p-function).

dist <- data.frame( NumCaught = 0:10 ) %>%
mutate( probability = dpois( NumCaught, lambda=2.3 ) )

ggplot(dist, aes(x=NumCaught)) +
geom_point( aes(y=probability) ) +
geom_linerange(aes( ymax=probability, ymin=0)) +
ggtitle(expression(paste('Poisson Distribution with ', lambda == 2.3))) +
labs(x='Number Caught') +
theme_bw()
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Poisson Distribution with  λ = 2.3

# P( Y = 4)
dpois(4, lambda=2.3)

## [1] 0.1169022

# P( Y <= 4)
ppois(4, lambda=2.3)

## [1] 0.9162493

# 1-P(Y <= 4) == P( Y > 4) == P( Y >= 5)
1-ppois(4, 2.3)

## [1] 0.08375072

2.5 Continuous Random Variables

Continuous random variables can take on an (uncountably) infinite number of
values, and this results in a few obnoxious mathematical differences between
how we handle continuous and discrete random variables. In particular, the
probability that a continuous random variable 𝑋 will take on a particular value
will be zero, so we will be interested in finding the probability that the random
variable is in some interval instead. Wherever we had a summation, ∑, we will
instead have an integral, but because many students haven’t had calculus, we
will resort to using R or tables of calculated values.
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2.5.1 Uniform(0,1) Distribution

Suppose you wish to draw a random number number between 0 and 1 and any
two intervals of equal size should have the same probability of the value being
in them. This random variable is said to have a Uniform(0,1) distribution.
Because there are an infinite number of rational numbers between 0 and 1,
the probability of any particular number being selected is 1/∞ = 0. But even
though each number has 0 probability of being selected, some number must end
up being selected. Because of this conundrum, probability theory doesn’t look
at the probability of a single number, but rather focuses on a region of numbers.
To make this distinction, we will define the distribution using a probability
density function (pdf) instead of the probability mass function. In the dis-
crete case, we had to constrain the probability mass function to sum to 1. In
the continuous case, we have to constrain the probability density function to
integrate to 1.
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Finding the area under the curve of a particular density function 𝑓(𝑥) usually
requires the use of calculus, but since this isn’t a calculus course, we will resort
to using R or tables of calculated values.
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2.5.2 Exponential Distribution

The exponential distribution is the continuous analog of the Poisson distri-
bution and is often used to model the time between occurrence of successive
events. Perhaps we are modeling time between transmissions on a network, or
the time between feeding events or prey capture. If the random variable 𝑋 has
an Exponential distribution, its probability density function is

𝑓(𝑥) = {𝜆𝑒−𝜆𝑥 𝑥 ≥ 0 and 𝜆 > 0
0 otherwise

Analogous to the discrete distributions, we can define the Expectation and Vari-
ance of these distributions by replacing the summation with an integral

𝜇 = 𝐸[𝑋] = ∫
∞

0
𝑥 𝑓(𝑥) 𝑑𝑥 = ⋯ = 1

𝜆

𝜎2 = 𝑉 𝑎𝑟[𝑋] = ∫
∞

0
(𝑥 − 𝜇)2 𝑓 (𝑥) 𝑑𝑥 = ⋯ = 1

𝜆2

Because the exponential distribution is defined by the rate of occurrence of an
event, increasing that rate decreases the time between events. Furthermore
because the rate of occurrence cannot be negative, we restrict 𝜆 > 0.
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Example: Suppose the time between insect captures 𝑋 during a summer
evening for a species of bat follows a exponential distribution with capture rate
of 𝜆 = 2 insects per minute and therefore the expected waiting time between
captures is 1/𝜆 = 1/2 minute. Suppose that we are interested in the probability
that it takes a bat more than 1 minute to capture its next insect.

𝑃(𝑋 > 1) =
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data <- data.frame(x=seq(0,5,length=1000), lambda = 2) %>%
mutate(y=dexp(x, rate = lambda),

grp = ifelse( x > 1, '> 1', '<= 1'))
ggplot(data, aes(x=x, y=y, fill=grp)) +
geom_area() +
labs(y='density') +
theme_bw()
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We now must resort to calculus to find this area. Or use tables of pre-calculated
values. Or use R, remembering that p-functions give the area under the curve
to the left of the given value.

# P(X > 1) == 1 - P(X <= 1) ### Complement Rule
1 - pexp(1, rate=2)

## [1] 0.1353353

2.5.3 Normal Distribution

Undoubtedly the most important distribution in statistics is the normal distri-
bution. If my RV 𝑋 is normally distributed with mean 𝜇 and standard deviation
𝜎, its probability density function is given by

𝑓(𝑥) = 1√
2𝜋𝜎 exp [−(𝑥 − 𝜇)2

2𝜎2 ]

where exp[𝑦] is the exponential function 𝑒𝑦. We could slightly rearrange the
function to

𝑓(𝑥) = 1√
2𝜋𝜎 exp [−1

2 (𝑥 − 𝜇
𝜎 )

2
]
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and see this distribution is defined by its expectation 𝐸[𝑋] = 𝜇 and its variance
𝑉 𝑎𝑟[𝑋] = 𝜎2. Notice I could define it using the standard deviation 𝜎, and
different software packages will expect it to be defined by one or the other. R
defines the normal distribution using the standard deviation.
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Example: It is known that the heights of adult males in the US is approxi-
mately normal with a mean of 5 feet 10 inches (𝜇 = 70 inches) and a standard
deviation of 𝜎 = 3 inches. One of the textbook authors is a mere 5 feet 4 inches
(64 inches). What proportion of the population is shorter than the author?

distr <- data.frame(x=seq(57, 82, length=1000)) %>%
mutate( density = dnorm(x, mean=70, sd=3),

group = ifelse(x<=64, 'Shorter','Taller') )
ggplot(distr, aes(x=x, y=density, fill=group)) +
geom_line() +
geom_area() +
theme_bw()
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Using R you can easily find this
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pnorm(64, mean=70, sd=3)

## [1] 0.02275013

2.5.4 Standardizing

Before we had computers that could calculate these probabilities for any normal
distribution, it was important to know how to convert a probability statement
from an arbitrary 𝑁 (𝜇, 𝜎2) distribution to a question about a Standard Normal
distribution, which is a normal distribution with mean 𝜇 = 0 and standard
deviation 𝜎 = 1. If we have

𝑋 ∼ 𝑁 (𝜇, 𝜎2)
then

𝑍 = 𝑋 − 𝜇
𝜎 ∼ 𝑁 (0, 1)

You might remember doing something similar in an undergraduate statistics
course in order to use a table to look up some probability. From the height
example, we calculate

𝑧 = 64 − 70
3 = −6

3 = −2

Note that this calculation shows that he is −2 standard deviations from the
mean. Next we look at a table for 𝑧 = −2.00. To do this we go down to the
−2.0 row and over to the .00 column and find 0.0228. Only slightly over 2% of
the adult male population is shorter!

How tall must a person be to be taller than 80% of the rest of the adult male
population? To answer that we must use the table in reverse and look for the
0.8 value. We find the closest value possible (0.7995) and the 𝑧 value associated
with it is 𝑧 = 0.84. Next we solve the standardizing equation for 𝑥

𝑧 = 𝑥 − 𝜇
𝜎

0.84 = 𝑥 − 70
3

𝑥 = 3(0.84) + 70
= 72.49 inches

Alternatively we could use the quantile function for the normal distribution
(q-function) in R and avoid the imprecision of using a table.

qnorm(.8, mean=0, sd=1)

## [1] 0.8416212
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Empirical Rules: It is from the normal distribution that the empirical rules
from the previous chapter is derived. If 𝑋 ∼ 𝑁(𝜇, 𝜎2) then

𝑃(𝜇 − 𝜎 ≤ 𝑋 ≤ 𝜇 + 𝜎) = 𝑃(−1 ≤ 𝑍 ≤ 1)
= 𝑃(𝑍 ≤ 1) − 𝑃(𝑍 ≤ −1)
≈ 0.8413 − 0.1587
= 0.6826
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2.6 R Quick Reference

We give a brief summary of the distributions used most in this course and the
abbreviations used in R.

Distribution Stem Parameters Parameter Interpretation
Binomial binom size prob Number of Trials, Probability

of Success (per Trial)
Exponential exp rate Mean of the distribution
Normal norm mean=0 sd=1 Center of the distribution,

Standard deviation
Uniform unif min=0 max=1 Minimum and Maximum of the

distribution

All the probability distributions available in R are accessed in exactly the same
way, using a d-function, p-function, q-function, and r-function.

Function Result
d-function(x) The height of the probability distribution/density at 𝑥
p-function(x) 𝑃 (𝑋 ≤ 𝑥)
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Function Result
q-function(q) 𝑥 such that 𝑃 (𝑋 ≤ 𝑥) = 𝑞
r-function(n) 𝑛 random observations from the distribution

The mosaic package has versions of the p and q -functions that also print
a out nice picture of the probabilities that you ask for. These functions are
named by just adding an ‘x’ at the beginning of the function. For example
mosaic::xpnorm(-1).

2.7 Exercises

1. The population distribution of blood donors in the United States based
on race/ethnicity and blood type as reported by the American Red Cross
is given here:

O A B AB Total
White 36% 32.2% 8.8% 3.2%
Black 7% 2.9% 2.5% 0.5%
Asian 1.7% 1.2% 1% 0.3%
Other 1.5% 0.8% 0.3% 0.1%
Total 100%

Notice that the numbers given in the table sum to 100%, so the data
presented are the probability of a particular ethnicity and blood type.

a) Fill in the column and row totals.
b) What is the probability that a randomly selected donor will be Asian

and have Type O blood? That is to say, given a donor is randomly
selected from the list of all donors, what is the probability that the
selected donor will Asian with Type O?

c) What is the probability that a randomly selected donor is white?
That is to say, given a donor is randomly selected from the list of all
donors, what is the probability that the selected donor is white?

d) What is the probability that a randomly selected donor has Type A
blood? That is to say, given a donor is selected from the list of all
donors, what is the probability that the selected donor has Type A
blood?

e) What is the probability that a white donor will have Type A blood?
That is to say, given a donor is randomly selected from the list of all
the white donors, what is the probability that the selected donor has
Type A blood? (Notice we already know the donor is white because
we restricted ourselves to that subset!)
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f) Is blood type and ethnicity independent? Justify your response math-
ematically using your responses from the previous answers.

2. For each scenario, state whether the event should be modeled via a bino-
mial or Poisson distribution.

a) Number of M&Ms I eat per hour while grading homework
b) The number of mornings in the coming 7 days that I change my son’s

first diaper of the day.
c) The number of Manzanita bushes per 100 meters of trail.

3. During a road bike race, there is always a chance a crash will occur.
Suppose the probability that at least one crash will occur in any race I’m
in is 𝜋 = 0.2 and that races are independent.

a) What is the probability that the next two races I’m in will both have
crashes?

b) What is the probability that neither of my next two races will have
a crash?

c) What is the probability that at least one of the next two races have
a crash?

4. My cats suffer from gastric distress due to eating house plants and the
number of vomits per week that I have to clean up follows a Poisson
distribution with rate 𝜆 = 1.2 pukes per week.

a) What is the probability that I don’t have to clean up any vomits this
coming week?

b) What is the probability that I must clean up 1 or more vomits?
c) If I wanted to measure this process with a rate per day, what rate

should I use?

5. Suppose that the number of runners I see on a morning walk on the trails
near my house has the following distribution (Notice I’ve never seen four
or more runners on a morning walk):

y 0 1 2 3 4+
Probabilty 0.45 0.25 0.20 0.0

a) What is the probability that I see 3 runners on a morning walk?
b) What is the expected number of runners that I will encounter?
c) What is the variance of the number of runners that I will encounter?

6. If 𝑍 ∼ 𝑁 (𝜇 = 0, 𝜎2 = 1), find the following probabilities:

a) 𝑃(𝑍 < 1.58) =
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b) 𝑃(𝑍 = 1.58) =
c) 𝑃(𝑍 > −.27) =
d) 𝑃(−1.97 < 𝑍 < 2.46) =

7. Using the Standard Normal Table or the table functions in R, find 𝑧 that
makes the following statements true.

a) 𝑃(𝑍 < 𝑧) = .75
b) 𝑃(𝑍 > 𝑧) = .4

8. The amount of dry kibble that I feed my cats each morning can be well
approximated by a normal distribution with mean 𝜇 = 200 grams and
standard deviation 𝜎 = 30 grams.

a) What is the probability that I fed my cats more than 250 grams of
kibble this morning?

b) From my cats’ perspective, more food is better. How much would
I have to feed them for this morning to be among the top 10% of
feedings?

9. Sea lion weight is well approximated by a normal distribution with a mean
of 300 kg and standard deviation of 15 kg.

a) Use R to find the probability of randomly sampling a sea lion with a
weight greater than 320 kg. Round your answer to 3 decimals.

b) Now suppose we independently sample 10 sea lions and we are inter-
ested in how many of the 10 have a weight larger than 320 kg. What
distribution would we use to model this and what are the parameters
of that distribution?

c) Calculate by hand the probability of observing only 1 sea lion with
a weight greater than 320 kg.

d) Use R to calculate the probability of all possible outcomes and pro-
duce a graph the PMF of this distribution.
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Chapter 3

Confidence Intervals via
Bootstrapping

suppressPackageStartupMessages({
library(ggplot2) # graphing functions
library(dplyr) # data summary tools
library(boot) # bootstrap
library(car) # for the bootstrap confint() function

})

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

3.1 Theory of Bootstrapping

Suppose that we had a population of interest and we wish to estimate the mean
of that population (the population mean we’ll denote as 𝜇). We can’t observe
every member of the population (which would be prohibitively expensive) so
instead we take a random sample and from that sample calculate a sample
mean (which we’ll denote ̄𝑥). We believe that ̄𝑥 will be a good estimator of 𝜇,
but it will vary from sample to sample and won’t be exactly equal to 𝜇.
Next suppose we wish to ask if a particular value for 𝜇, say 𝜇0, is consistent
with our observed data? We know that ̄𝑥 will vary from sample to sample, but
we have no idea how much it will vary between samples. However, if we could
understand how much ̄𝑥 varied sample to sample, we could answer the question.
For example, suppose that ̄𝑥 = 5 and we know that ̄𝑥 varied about ±2 from
sample to sample. Then I’d say that possible values of 𝜇0 in the interval 3 to

63
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7 (5 ± 2) are reasonable values for 𝜇 and anything outside that interval is not
reasonable.

Therefore, if we could take many, many repeated samples from the population
and calculate our test statistic ̄𝑥 for each sample, we could rule out possible
values of 𝜇. Unfortunately we don’t have the time or money to repeatedly sample
from the actual population, but we could sample from our best approximation
to what the population is like.

Suppose we were to sample from a population of shapes, and we observed 4/9 of
the sample were squares, 3/9 were circles, and a triangle and a diamond. Then
our best guess of what the population that we sampled from was a population
with 4/9 squares, 3/9 circles, and 1/9 of triangles and diamonds.
Sample Approximate Population

Using this approximated population (which is just many many copies of our
sample data), we can repeatedly sample ̄𝑥∗ values to create an estimate of the
sampling distribution of ̄𝑥.
Because our approximate population is just an infinite number of copies of our
sample data, then sampling from the approximate population is equivalent to
sampling with replacement from our sample data. If I take 𝑛 samples from 𝑛
distinct objects with replacement, then the process can be thought of as mixing
the 𝑛 objects in a bowl and taking an object at random, noting which it is,
replace it into the bowl, and then draw the next sample. Practically, this means
some objects will be selected more than once and some will not be chosen at
all. To sample our observed data with replacement, we can use the sample()
function in R.

names=c('Alison','Brandon','Casey','Derek','Elise')
sample(names, length(names), replace=T)

## [1] "Elise" "Alison" "Elise" "Alison" "Derek"

Notice Alison has selected twice, while Brandon has not been selected at all.
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The sampling from the estimated population via sampling from the observed
data is called bootstrapping because we are making no distributional assump-
tions about where the data came from, and the idiom “Pulling yourself up by
your bootstraps” seemed appropriate.
Example: Mercury Levels in Fish from Florida Lakes
A data set provided by the Lock5 introductory statistics textbook looks at the
mercury levels in fish harvested from lakes in Florida. There are approximately
7,700 lakes in Florida that are larger than 10 acres. As part of a study to assess
the average mercury contamination in these lakes, a random sample of 𝑛 = 53
lakes, an unspecified number of fish were harvested and the average mercury
level (in ppm) was calculated for fish in each lake. The goal of the study was
to assess if the average mercury concentration was greater than the 1969 EPA
“legally actionable level” of 0.5 ppm.

# read the Lakes data set
Lakes <- read.csv('http://www.lock5stat.com/datasets/FloridaLakes.csv')
# make a nice picture... dot plots are very similar to histograms
# dot plots can be informative for small samples. Unfortunately the
# y-axis is not meaningful in the geom_dotplot() version because of ... reasons.
ggplot(Lakes, aes(x=AvgMercury)) +
geom_dotplot()

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
AvgMercury

co
un

t

We can calculate mean average mercury level for the 𝑛 = 53 lakes

Lakes %>% summarise(xbar = mean( AvgMercury ))

## xbar
## 1 0.5271698

The sample mean is greater than 0.5 but not by too much. Is a true population
mean concentration 𝜇𝐻𝑔 that is 0.5 or less incompatible with our observed data?
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Is our data sufficient evidence to conclude that the average mercury content is
greater than 0.5? Perhaps the true average mercury content is less than (or
equal to) 0.5 and we just happened to get a random sample that with a mean
greater than 0.5?

3.2 Conducting a Bootstrap

The first step in answering these questions is to create an estimate of the sam-
pling distribution of ̄𝑥𝐻𝑔. To do this, we will sample from the approximate
population of lakes, which is just many many replicated copies of our sample
data. There are many ways to bootstrap using R, and chosen here is to intro-
duce the package boot for conducting the bootstrap for us with minimal code.
For alternative methods using base R or the package mosaic, see Appendix A.

library(boot)

To use the boot() function within the boot package, we will have to de-
fine a function for the resampling to occur. Below, we create the function
mean.function, that accepts a vector (our observations) and calculates the
mean. The index is so that boot() can do the resampling. How do you think
we could change this to bootstrap different statistics?

# functions we defined to be passed into boot() need to take a whatever data
# you'll ultimately pass into boot() (here we call that data x) and set of
# indices.
mean.function <- function(x, index) {
d <- x[index] # This first line will go in ever bootstrap function you make.
return(mean(d))

}

Once you have defined what you would like to bootstrap, the function boot()
is a simple call in R, and produces the number of iterations 𝑅 we choose. Let
us try running 𝑅 = 10000 bootstrap iterations.

# create the Estimated Sampling Distribution of xbar
BootDist <- boot(data = Lakes$AvgMercury, statistic = mean.function, R=10000)

There are many outputs available within the output of boot(). We are in-
terested in the calculated statistic for each redraw, which is saved within the
output as the variable 𝑡. We can place the calculated means for each redraw into
a data frame and produce a visualization of the estimated sampling distribution
of ̄𝑥.
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# The first few calculated means.
head(BootDist$t)

## [,1]
## [1,] 0.5209434
## [2,] 0.4884906
## [3,] 0.5766038
## [4,] 0.5275472
## [5,] 0.5830189
## [6,] 0.5245283

# show a histogram of the estimated sampling distribution of xbar
BootDist.graph <- data.frame(xbar=BootDist$t)
ggplot(BootDist.graph, aes(x=xbar)) +
geom_histogram() +
ggtitle('Estimated Sampling distribution of xbar' )
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3.3 Quantile-based Confidence Intervals

In many cases we have seen, the sampling distribution of a statistic is centered
on the parameter we are interested in estimating and is symmetric about that
parameter. There are actually several ways to create a confidence interval from
the estimated sampling distribution. The method presented here is called the
“percentile” method and works when the sampling distribution is symmetric
and the estimator we are using is unbiased. For example, we expect that the
sample mean ̄𝑥 should be a good estimate of the population mean 𝜇 and the
sampling distribution of ̄𝑥 should look something like the following.
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Sampling Distribution of x

µ

There are two points, (call them 𝐿 and 𝑈) where for our given sample size
and population we are sampling from, where we expect that 95% of the sample
means to fall within. That is to say, 𝐿 and 𝑈 capture the middle 95% of the
sampling distribution of ̄𝑥.

Sampling Distribution of x

L µ U

95%

of sample means

These sample means are randomly distributed about the population mean 𝜇.
Given our sample data and sample mean ̄𝑥, we can examine how our simulated
values of ̄𝑥∗ vary about ̄𝑥. I expect that these simulated sample means ̄𝑥∗

should vary about ̄𝑥 in the same way that ̄𝑥 values vary around 𝜇. Below are
three estimated sampling distributions that we might obtain from three different
samples and their associated sample means.
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µ

Sampling distribution of x

Estimated Sampling 
 distribution of x

L1

L2

L3

U1

U2

U3

For each possible sample, we could consider creating the estimated sampling
distribution of �̄� and calculating the 𝐿 and 𝑈 values that capture the middle
95% of the estimated sampling distribution. Below are twenty samples, where
we’ve calculated this interval for each sample.
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µ − a µ µ + a

95%

of sample means

Most of these intervals contain the true parameter 𝜇, that we are trying to esti-
mate. In practice, I will only take one sample and therefore will only calculate
one sample mean and one interval, but I want to recognize that the method I
used to produce the interval (i.e. take a random sample, calculate the mean and
then the interval) will result in intervals where only 95% of those intervals will
contain the mean 𝜇. Therefore, I will refer to the interval as a 95% confidence
interval.

After the sample is taken and the interval is calculated, the numbers lower and
upper bounds of the confidence interval are fixed. Because 𝜇 is a constant value
and the confidence interval is fixed, nothing is changing. To distinguish between
a future random event and the fixed (but unknown) outcome of if I ended up
with an interval that contains 𝜇 and we use the term confidence interval instead
of probability interval.

# calculate the 95% confidence interval using middle 95% of xbars
# Calculate this by hand
quantile( BootDist$t, probs=c(.025, .975) )

## 2.5% 97.5%
## 0.4364104 0.6184953

# Or using the `car` package which also makes more robust intervals.
# By default it uses the 'bca' method which is generally more robust
# and should be preferred. We won't talk about the differences here, though.
confint( BootDist, level=.95, type='perc')
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## Bootstrap percent confidence intervals
##
## 2.5 % 97.5 %
## 1 0.4362311 0.6186745

There are several ways to interpret this interval.

1. The process used to calculate this interval (take a random sample, cal-
culate a statistic, repeatedly re-sample, and take the middle 95%) is a
process that results in an interval that contains the parameter of interest
on 95% of the samples we could have collected, however we don’t know if
the particular sample we collected and its resulting interval of (0.44, 0.62)
is one of the intervals containing 𝜇.

2. We are 95% confident that 𝜇 is in the interval (0.44, 0.62). This is delight-
fully vague and should be interpreted as a shorter version of the previous
interpretation.

3. The interval (0.44, 0.62) is the set of values of 𝜇 that are consistent with
the observed data at the 0.05 threshold of statistical significance for a
two-sided hypothesis test.

3.4 Additional Examples

Example: Fuel Economy

Suppose we have data regarding fuel economy of 5 new vehicles of the same
make and model and we wish to test if the observed fuel economy is consistent
with the advertised 31 mpg at highway speeds. Here are the data:

CarMPG <- data.frame( ID=1:5, mpg = c(31.8, 32.1, 32.5, 30.9, 31.3) )
CarMPG %>% summarise( xbar=mean(mpg) )

## xbar
## 1 31.72

We will use the sample mean to assess if the sample fuel efficiency is consistent
with the advertised number. Because these cars could be considered a random
sample of all new cars of this make, we will create the estimated sampling
distribution using the bootstrap re-sampling of the data.
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# Run the bootstrap now with CarMPG$mpg as our data
BootDist <- boot(data = CarMPG$mpg, statistic = mean.function, R=10000)

# show a histogram of the sampling distribution of xbar
BootDist.graph <- data.frame(xbar=BootDist$t)
ggplot(BootDist.graph, aes(x=xbar)) +
geom_histogram() +
ggtitle('Sampling Distribution of mean(mpg)')
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# calculate the 95% confidence interval using middle 95% of xbars
# confint( BootDist, level=.95, type='perc')
quantile( BootDist$t, probs=c(.025, .975) )

## 2.5% 97.5%
## 31.22 32.20

We see that the 95% confidence interval is (31.2, 32.2) and does not actually
contain the advertised 31 mpg. However, I don’t think we would object to a car
manufacturer selling us a car that is better than advertised.

Example: Pulse Rate of College Students

In the package Lock5Data, the dataset GPAGender contains information taken
from undergraduate students in an Introductory Statistics course. This is a
convenience sample, but could be considered representative of students at that
university. One of the covariates measured was the students pulse rate and we
will use this to create a confidence interval for average pulse of students at that
university.

First we’ll look at the raw data.
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data(GPAGender, package='Lock5Data') # load the dataset
# Now a nice histogram
ggplot(GPAGender, aes(x=Pulse, y=..density..)) +
geom_histogram(binwidth=2) +
ggtitle('Sample Data')
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It is worth noting this was supposed to be measuring resting heart rates, but
there are two students had extremely high pulse rates and six with extremely low
rates. The two high values are approximately what you’d expect from someone
currently engaged in moderate exercise and the low values are levels we’d expect
from highly trained endurance athletes.

# Summary Statistics
GPAGender %>% summarise(xbar = mean(Pulse),

StdDev = sd(Pulse))

## xbar StdDev
## 1 69.90379 12.08569

So the sample mean is ̄𝑥 = 69.9 but how much should we expect our sample
mean to vary from sample to sample when our sample size is 𝑛 = 343 people?
We’ll estimate the sampling distribution of �̄� using the bootstrap.

# Create the bootstrap replicates
BootDist <- boot(data = GPAGender$Pulse, statistic = mean.function, R=10000)

# show a histogram of the sampling distribution of xbar
BootDist.graph <- data.frame(xbar=BootDist$t)
ggplot(BootDist.graph, aes(x=xbar)) +
geom_histogram() +
ggtitle('Sampling Distribution of mean(Pulse)')
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# confint( BootDist, level=.95, type='perc')
quantile( BootDist$t, probs=c(.025, .975) )

## 2.5% 97.5%
## 68.63265 71.18375

Based on the quantile approach, the 95% bootstrap confidence for the mean
pulse rate of undergraduates in the introductory statistics course is 68.7 to 71.2
beats per minutes.

3.5 Exercises

For several of these exercises, we will use data sets from the R package
Lock5Data, which greatly contributed to the pedagogical approach of these
notes. Install the package from CRAN using the RStudio point-and-click
interface Tools -> Install Packages….

1. Load the dataset BodyTemp50 from the Lock5Data package. This is a
dataset of 50 healthy adults. One of the columns of this dataset is the
Pulse of the 50 data points, which is the number of heartbeats per minute.

a) Create a histogram of the observed pulse values. Comment on the
graph and aspects of the graph that might be of scientific interest.
Below will help you load the data, and we want to use the Pulse
variable.

data( BodyTemp50, package='Lock5Data' )
#?BodyTemp50
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b) Calculate the sample mean ̄𝑥 and sample standard deviation 𝑠 of the
pulses.

c) Create a dataset of 10000 bootstrap replicates of ̄𝑥∗.
d) Create a histogram of the bootstrap replicates. Calculate the mean

and standard deviation of this distribution. Notice that the standard
deviation of the distribution is often called the Standard Error of ̄𝑥
and we’ll denote it as �̂��̄�.

e) Using the bootstrap replicates, create a 95% confidence interval for
𝜇, the average adult heart rate.

f) Calculate the interval

( ̄𝑥 − 2 ⋅ �̂��̄� , ̄𝑥 + 2 ⋅ �̂��̄�)

and comment on its similarity to the interval you calculated in part
(e).

2. Load the dataset EmployedACS from the Lock5Data package. This is a
dataset drawn from American Community Survey results which is con-
ducted monthly by the US Census Bureau and should be representative of
US workers. The column HoursWk represents the number of hours worked
per week.

a) Create a histogram of the observed hours worked. Comment on the
graph and aspects of the graph that might be of scientific interest.

b) Calculate the sample mean ̄𝑥 and sample standard deviation 𝑠 of the
worked hours per week.

c) Create a dataset of 10000 bootstrap replicates of ̄𝑥∗.
d) Create a histogram of the bootstrap replicates. Calculate the mean

and standard deviation of this distribution. Notice that the standard
deviation of the distribution is often called the Standard Error of ̄𝑥
and we’ll denote it as 𝜎�̄�.

e) Using the bootstrap replicates, create a 95% confidence interval for
𝜇, the average worked hours per week.

f) Calculate the interval

( ̄𝑥 − 2 ⋅ �̂��̄� , ̄𝑥 + 2 ⋅ �̂��̄�)

and comment on its similarity to the interval you calculated in part
(e).

3. Return to the BodyTemp50 data within the Lock5Data package, as in Ex-
ercise 1.

new.function <- function(x, index) {
d <- x[index]
return(mean(d)) } ## Hint: sd() calculates the standard deviation
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a) The code above was given in the chapter for calculate the mean of a
vector.
Modify the code below such that we can prepare a bootstrap confi-
dence interval of the standard deviation, 𝜎.

b) Create a dataset of 10000 bootstrap replicates of 𝜎∗.
c) Using the bootstrap replicates, create a 95% confidence interval for

𝜎, the standard deviation of adult heart rate.



Chapter 4

Sampling Distribution of �̄�

suppressPackageStartupMessages({
library(ggplot2)
library(dplyr)

})

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

# other packages I'll only use occasionally so instead of loading the
# whole package, I'll just do packageName::functionName() when I use
# the function.

In the previous chapter, we used bootstrapping to estimate the sampling distri-
bution of �̄�. We then used this bootstrap distribution to calculate a confidence
interval for the population mean. We noticed that the sampling distribution
of �̄� almost always looked like a normal distribution. Prior to the advent of
modern computing, statisticians used a theoretical approximation known as the
Central Limit Theorem (CLT). Statistical procedures based on the CLT are
widely used and often perform as well or better than the corresponding re-
sampling technique. In this chapter we’ll lay the theoretical foundations for
the CLT as well as introduce both hand computation and R code snippets to
complete various tasks.

4.1 Enlightening Example

Suppose we are sampling from a population that has a mean of 𝜇 = 5 and is
skewed. For this example, I’ll use a Chi-squared distribution with parameter

77
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𝜈 = 5.

# Population is a Chi-sq distribution with df=5
PopDist <- data.frame(x = seq(0,20,length=10000)) %>%
mutate(density=dchisq(x, df=5))

ggplot(PopDist, aes(x=x, y=density)) +
geom_area(fill='salmon') +
ggtitle('Population Distribution')
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We want to estimate the mean 𝜇 and take a random sample of 𝑛 = 6. Lets do
this a few times and notice that the sample mean ̄𝑥 is never exactly the same
as the population mean 𝜇 = 5, but is a bit off from that.

n <- 6 # Our Sample Size!
my_sample <- rchisq(n, df=5) # A sample of size n=6 with df = 5.
my_sample # Notice quite a spread of values, similar to the population graph

## [1] 3.163757 3.756699 9.759838 5.353820 10.014219 4.235995

mean(my_sample) # the sample mean

## [1] 6.047388

# Use a do() loop to repeatedly sample n=6 and calculate the sample mean
SampDist <- mosaic::do(3) * {
data.frame(xbar = mean(rchisq(n, df=5)))

}
SampDist # Show the 3 sample means...
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## xbar
## 1 6.727510
## 2 4.867022
## 3 6.430990

Now produce 10000 estimates from random samples of the population.

SampDist <- mosaic::do(10000) * {
data.frame(xbar = mean(rchisq(n, df=5)))

}

We will compare the population distribution to the sampling distribution graph-
ically.

ggplot() +
geom_area(data=PopDist, aes(x=x, y=density), fill='salmon') +
geom_histogram(data=SampDist, aes(x=xbar, y=..density..),

binwidth=.1,
alpha=.6) # alpha is the opacity of the layer
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From the histogram of the sample means, we notice three things:

• The sampling distribution of �̄� is centered at the population mean 𝜇.
• The sampling distribution of �̄� has less spread than the population dis-

tribution.
• The sampling distribution of �̄� is less skewed than the population distri-

bution.
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4.2 Mathematical details

4.2.1 Probability Rules for Expectations and Variances

Claim: For random variables 𝑋 and 𝑌 and constant 𝑎 the following statements
hold:

𝐸 (𝑎𝑋) = 𝑎𝐸 (𝑋)
𝑉 𝑎𝑟 (𝑎𝑋) = 𝑎2𝑉 𝑎𝑟 (𝑋)

𝐸 (𝑋 + 𝑌 ) = 𝐸 (𝑋) + 𝐸 (𝑌 )
𝐸 (𝑋 − 𝑌 ) = 𝐸 (𝑋) − 𝐸 (𝑌 )

𝑉 𝑎𝑟 (𝑋 ± 𝑌 ) = 𝑉 𝑎𝑟 (𝑋) + 𝑉 𝑎𝑟 (𝑌 ) if X,Y are independent

Proving these results is relatively straight forward and is done in almost all
introductory probability text books.

4.2.2 Mean and Variance of the Sample Mean

We have been talking about random variables drawn from a known distribution
and being able to derive their expected values and variances. We now turn to the
mean of a collection of random variables. Because sample values are random,
any function of them is also random. So even though the act of calculating a
mean is not a random process, the numbers that are fed into the algorithm are
random. Thus the sample mean will change from sample to sample and we are
interested in how it varies.

Using the rules we have just confirmed, it is easy to calculate the expectation
and variance of the sample mean. Given a sample 𝑋1, 𝑋2,… ,𝑋𝑛 of observations
where all the observations are independent of each other and all the observations
have expectation 𝐸 [𝑋𝑖] = 𝜇 and variance 𝑉 𝑎𝑟 [𝑋𝑖] = 𝜎2 then

𝐸 [�̄�] = 𝐸 [1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖]

= 1
𝑛𝐸 [

𝑛
∑
𝑖=1

𝑋𝑖]

= 1
𝑛

𝑛
∑
𝑖=1

𝐸 [𝑋𝑖]

= 1
𝑛

𝑛
∑
𝑖=1

𝜇

= 1
𝑛 𝑛𝜇

= 𝜇
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and

𝑉 𝑎𝑟 [�̄�] = 𝑉 𝑎𝑟 [ 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖]

= 1
𝑛2𝑉 𝑎𝑟 [

𝑛
∑
𝑖=1

𝑋𝑖]

= 1
𝑛2

𝑛
∑
𝑖=1

𝑉 𝑎𝑟 [𝑋𝑖]

= 1
𝑛2

𝑛
∑
𝑖=1

𝜎2

= 1
𝑛2 𝑛𝜎2

= 𝜎2

𝑛

Notice that the sample mean has the same expectation as the original distri-
bution that the samples were pulled from, but it has a smaller variance! So
the sample mean is an unbiased estimator of the population mean 𝜇 and the
average distance of the sample mean to the population mean decreases as the
sample size becomes larger.

4.3 Distribution of �̄�

If 𝑋𝑖
𝑖𝑖𝑑∼ 𝑁 (𝜇, 𝜎2) then it is well known (and proven in most undergraduate

probability classes) that �̄� is also normally distributed with a mean and variance
that were already established. That is

�̄� ∼ 𝑁 (𝜇�̄� = 𝜇, 𝜎2
�̄� = 𝜎2

𝑛 )

Notation: Because the expectations of 𝑋 and �̄� are the same, I could drop
the subscript for the expectation of �̄� but it is sometimes helpful to be precise.
Because the variances are different we will use 𝜎�̄� to denote the standard de-
viation of �̄� and 𝜎2

�̄� to denote variance of �̄�. If there is no subscript, we are
referring to the population parameter of the distribution from which we taking
the sample from.

Example: A researcher measures the wingspan of a captured Mountain
Plover three times. Assume that each of these 𝑋𝑖 measurements comes from a
𝑁 (𝜇 = 6 inches, 𝜎2 = 1 inches2) distribution.
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1. What is the probability that the first observation is greater than 7?

𝑃 (𝑋 ≥ 7) = 𝑃 (𝑋 − 𝜇
𝜎 ≥ 7 − 6

1 )

= 𝑃 (𝑍 ≥ 1)
= 0.1587

2. What is the distribution of the sample mean?

�̄� ∼ 𝑁 (𝜇�̄� = 6, 𝜎2
�̄� = 12

3 )

3. What is the probability that the sample mean is greater than 7?

𝑃 (�̄� ≥ 7) = 𝑃 ⎛⎜⎜
⎝

�̄� − 𝜇�̄�
𝜎�̄�

≥ 7 − 6
√ 1

3

⎞⎟⎟
⎠

= 𝑃 (𝑍 ≥
√
3)

= 𝑃 (𝑍 ≥ 1.73)
= 0.0418

Example: Suppose that the weight of an adult black bear is normally dis-
tributed with standard deviation 𝜎 = 50 pounds. How large a sample do I need
to take to be 95% certain that my sample mean is within 10 pounds of the true
mean 𝜇?
So we want

∣�̄� − 𝜇∣ ≤ 10
which we rewrite as

−10 ≤ �̄� − 𝜇�̄� ≤ 10

−10
( 50√𝑛)

≤ �̄� − 𝜇�̄�
𝜎�̄�

≤ 10
( 50√𝑛)

−10
( 50√𝑛)

≤ 𝑍 ≤ 10
( 50√𝑛)

Next we look in our standard normal table to find a 𝑧-value such that
𝑃 (−𝑧 ≤ 𝑍 ≤ 𝑧) = 0.95 and that value is 𝑧 = 1.96.
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data <- data.frame( z= seq(-3, 3, length=1000) ) %>%
mutate( y = dnorm(z) )

ggplot(data, aes(x=z, y=y)) +
geom_line() +
geom_area( data = data %>% filter(abs(z) <= 1.96), fill='grey', alpha=.7) +
geom_text( x=0, y=.2, label='95%')
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So all we need to do is solve the following equation for 𝑛

1.96 = 10
( 50√𝑛)

1.96
10 (50) = √𝑛

96 ≈ 𝑛

4.4 Central Limit Theorem

I know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the “Law of Frequency
of Error”. The law would have been personified by the Greeks and
deified, if they had known of it. It reigns with serenity and in com-
plete self-effacement, amidst the wildest confusion. The huger the
mob, and the greater the apparent anarchy, the more perfect is its
sway. It is the supreme law of Unreason. Whenever a large sample
of chaotic elements are taken in hand and marshaled in the order of
their magnitude, an unsuspected and most beautiful form of regu-
larity proves to have been latent all along.
Sir Francis Galton (1822-1911)
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It was not surprising that the average of a number of normal random variables
is also a normal random variable. However the average of a number of binomial
random variables cannot be binomial because the average could be something
besides a 0 or 1. Similarly the average of Poisson random variables is not Poisson
distributed because the average does not have to be an integer. The question
then arises, “What can we say the distribution of the sample mean if the data
comes from a non-normal distribution?” The answer turns out to be quite a lot,
provided the distribution sample from has a non-infinite variance and we have
a sufficient sample size.

Central Limit Theorem

Let 𝑋1,…𝑋𝑛 be independent observations collected from a distribution with
expectation 𝜇 and variance 𝜎2. Then the distribution of �̄� converges to a
normal distribution with expectation 𝜇 and variance 𝜎2/𝑛 as 𝑛 → ∞.

In practice this means that if 𝑛 is large (usually 𝑛 > 30 is sufficient), then

�̄� ⋅∼ 𝑁 (𝜇�̄� = 𝜇, 𝜎2
�̄� = 𝜎2

𝑛 )

So what does this mean?

1. Variables that are the sum or average of a bunch of other random vari-
ables will be close to normal. Example: human height is determined by
genetics, prenatal nutrition, food abundance during adolescence, etc. Sim-
ilar reasoning explains why the normal distribution shows up surprisingly
often in natural science.

2. With sufficient data, the sample mean will have a known distribution and
we can proceed as if the sample mean came from a normal distribution.

Example: Suppose the waiting time from order to delivery at a fast-food
restaurant is an exponential random variable with rate 𝜆 = 1/2 minutes and so
the expected wait time is 2 minutes and the variance is 4 minutes. What is the
approximate probability that we observe a sample of size 𝑛 = 40 with a mean
time greater than 2.5 minutes?

𝑃 (�̄� ≥ 2.5) = 𝑃 (�̄� − 𝜇�̄�
𝜎�̄�

≥ 2.5 − 𝜇�̄�
𝜎�̄�

)

≈ 𝑃 (𝑍 ≥ 2.5 − 2
2√
40

)

= 𝑃 (𝑍 ≥ 1.58)
= 0.0571
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# Answer obtained via simulation
SampDist <- mosaic::do(10000) *{ # make 10,000
Sample <- data.frame( x= rexp(n=40, rate=1/2 ) ) # simulated xbar
Sample %>% summarise( xbar = mean( x ) ) # values

}
SampDist %>% # What proportion of those
mutate(Greater = ifelse(xbar >= 2.5, 1, 0)) %>% # xbar values are
summarise( ProportionGreater = mean(Greater) ) # greater than 2.5?

## ProportionGreater
## 1 0.0611

Summary

Often we have sampled 𝑛 elements from some population 𝑌1, 𝑌2,… , 𝑌𝑛 inde-
pendently and 𝐸 (𝑌𝑖) = 𝜇 and 𝑉 𝑎𝑟 (𝑌𝑖) = 𝜎2 and we want to understand the
distribution of the sample mean, that is we want to understand how the sample
mean varies from sample to sample.

𝐸 ( ̄𝑌 ) = 𝜇. That states that the distribution of the sample mean will centered
at 𝜇. We expect to sometimes take samples where the sample mean is higher
than 𝜇 and sometimes less than 𝜇, but the average underestimate is the same
magnitude as the average overestimate.

𝑉 𝑎𝑟 ( ̄𝑌 ) = 𝜎2
𝑛 . This states that as our sample size increases, we trust the sample

mean to be close to 𝜇. The larger the sample size, the greater our expectation
that the ̄𝑌 will be close to 𝜇.
If 𝑌1, 𝑌2,… , 𝑌𝑛 were sampled from a 𝑁 (𝜇, 𝜎2) distribution then ̄𝑌 is normally
distributed.

̄𝑌 ∼ 𝑁 (𝜇 ̄𝑌 = 𝜇, 𝜎2
̄𝑌 = 𝜎2

𝑛 )

If 𝑌1, 𝑌2,… , 𝑌𝑛 were sampled from a distribution that is not normal but has
mean 𝜇 and variance 𝜎2, and our sample size is large, then ̄𝑌 is approximately
normally distributed.

̄𝑌 ⋅∼ 𝑁 (𝜇 ̄𝑌 = 𝜇, 𝜎2
̄𝑌 = 𝜎2

𝑛 )

4.5 Exercises

1. Suppose that the amount of fluid in a small can of soda can be well ap-
proximated by a Normal distribution. Let 𝑋 be the amount of soda (in
milliliters) in a single can and 𝑋 ∼ 𝑁 (𝜇 = 222, 𝜎2 = 52 = 25).
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a) 𝑃 (𝑋 > 230) =
b) Suppose we take a random sample of 6 cans such that the six cans

are independent. What is the expected value of the mean of those
six cans? In other words, what is 𝐸 (�̄�)?

c) What is 𝑉 𝑎𝑟 (�̄�)? (Recall we denote this as 𝜎2
�̄�)

d) What is the standard deviation of �̄�? (Recall we denote this as 𝜎�̄�)
e) What is the probability that the sample mean will be greater than

230 ml? That is, find 𝑃 (�̄� > 230).
2. Suppose that the number of minutes that I spend waiting for my order at

Big Foot BBQ can be well approximated by a Normal distribution with
mean 𝜇 = 10 minutes and standard deviation 𝜎 = 1.5 minutes.

a) Tonight I am planning on going to Big Foot BBQ. What is the prob-
ability I have to wait less than 9 minutes?

b) Over the next month, I’ll visit Big Foot BBQ 5 times. What is the
probability that the mean waiting time of those 5 visits is less than
9 minutes? (This assumes independence of visits but because I don’t
hit the same restaurant the same night each week, this assumption
is probably OK.)

3. A bottling company uses a machine to fill bottles with a tasty beverage.
The bottles are advertised to contain 300 milliliters (ml), but in reality
the amount varies according to a normal distribution with mean 𝜇 = 298
ml and standard deviation 𝜎 = 3 ml. (For this problem, we’ll assume 𝜎 is
known and carry out the calculations accordingly).

a) What is the probability that a randomly chosen bottle contains less
than 296 ml?

b) Given a simple random sample of size 𝑛 = 6 bottles, what is the
probability that the sample mean is less than 296 ml?

c) What is the probability that a single bottle is filled within 1 ml of
the true mean 𝜇 = 298 ml? Hint: Draw the distribution and shade
in what probability you want… then convert that to a question about
standard normals. To find the answer using a table or R, you need
to look up two values and perform a subtraction.

d) What is the probability that the mean of 10 randomly selected bottles
is within 1 ml of the mean? What about the mean of a sample of
𝑛 = 100 bottles?

e) If a sample of size 𝑛 = 50 has a sample mean of ̄𝑥 = 298, should
this be evidence that the filling machine is out of calibration? i.e.,
assuming the machine has a mean fill amount of 𝜇 = 300 and 𝜎 = 3,
what is 𝑃 (�̄� ≤ 298)?
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Confidence Intervals for 𝜇

suppressPackageStartupMessages({
library(ggplot2)
library(dplyr)
library(boot)
library(car)

})
# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

5.1 Asymptotic result (𝜎 known)

We know that our sample mean ̄𝑥, should be close to the population mean 𝜇. So
when giving a region of values for 𝜇 that are consistent with the observed data,
we would expect our CI formula to be something like ( ̄𝑥 − 𝑑, ̄𝑥 + 𝑑) for some
value 𝑑. That value of 𝑑 should be small if our sample size is big, representing
our faith that a large amount of data should result in a statistic that is very
close to the true value of 𝜇. Recall that if our data 𝑋𝑖 ∼ 𝑁 (𝜇, 𝜎2) or our
sample size was large enough, then we know

�̄� ∼ 𝑁 (𝜇, 𝜎2
�̄� = 𝜎2

𝑛 )

or is approximately so. Doing a little re-arranging, we see that

�̄� − 𝜇
( 𝜎√𝑛)

∼ 𝑁 (0, 1)

87
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So if we take the 0.025 and 0.975 quantiles of the normal distribution, which
are 𝑧0.025 = −1.96 and 𝑧0.975 = 1.96, we could write

0.95 = 𝑃 [−1.96 ≤ �̄� − 𝜇
𝜎/√𝑛 ≤ 1.96]

= 𝑃 [−1.96( 𝜎√𝑛) ≤ �̄� − 𝜇 ≤ 1.96( 𝜎√𝑛)]

= 𝑃 [�̄� − 1.96( 𝜎√𝑛) ≤ 𝜇 ≤ �̄� + 1.96( 𝜎√𝑛)]

Which suggests that a reasonable 95% Confidence Interval for 𝜇 is

̄𝑥 ± 1.96( 𝜎√𝑛)

In general for a (1 − 𝛼) ⋅100% confidence interval, we would use the formula ̄𝑥±
𝑧1−𝛼/2 ( 𝜎√𝑛). Notice that I could write the formula using 𝑧𝛼/2 instead of 𝑧1−𝛼/2
because the normal distribution is symmetric about 0 and we are subtracting
and adding the same quantity to ̄𝑥.
The interpretation of a confidence interval is that over repeated sampling,
100(1−𝛼)% of the resulting intervals will contain the population mean 𝜇 but we
don’t know if the interval we have actually observed is one of the good intervals
that contains the mean 𝜇 or not. Because this is quite the mouthful, we will say
“we are 100 (1 − 𝛼)% confident that the observed interval contains the mean
𝜇.”
Example: Suppose a bottling facility has a machine that supposedly fills bottles
to 300 milliliters (ml) and is known to have a standard deviation of 𝜎 = 3
ml. However, the machine occasionally gets out of calibration and might be
consistently overfilling or under-filling bottles. To discover if the machine is
calibrated correctly, we take a random sample of 𝑛 = 40 bottles and observe
the mean amount filled was ̄𝑥 = 299 ml. We calculate a 95% confidence interval
(CI) to be

̄𝑥 ± 𝑧1−𝛼/2 (
𝜎√𝑛)

299 ± 1.96( 3√
40)

299 ± 0.93
and conclude that we are 95% confident that the that the true mean fill amount
is in [298.07, 299.93] and that the machine has likely drifted off calibration.

5.2 Asymptotoic result (𝜎 unknown)

It is unrealistic to expect that we know the population variance 𝜎2 but do not
know the population mean 𝜇. So in calculations that involve 𝜎, we want to use
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the sample standard deviation 𝑠 instead.
Our previous results about confidence intervals assumed that �̄� ∼ 𝑁 (𝜇, 𝜎2

𝑛 )
(or is approximately so) and therefore

�̄� − 𝜇
√𝜎2

𝑛

∼ 𝑁 (0, 1)

I want to just replace 𝜎2 with 𝑆2 but the sample variance 𝑆2 is also a random
variable and incorporating it into the standardization function might affect the
distribution.

�̄� − 𝜇
√𝑆2

𝑛

∼ ???

Unfortunately this substitution of 𝑆2 for 𝜎2 comes with a cost and this quantity
is not normally distributed. Instead it has a 𝑡-distribution with 𝑛−1 degrees of
freedom. However as the sample size increases and 𝑆2 becomes a more reliable
estimator of 𝜎2, this penalty should become smaller.
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The 𝑡-distribution is often call “Student’s t-distribution” is named after William
Gosset who worked at Guinness Brewing and did work with small sample sizes in
both the brewery and at the farms that supplied the barley. Because Guinness
prevented its employees from publishing any of their work, he published under
the pseudonym “Student”.
Notice that as the sample size increases, the t-distribution gets closer and closer
to the normal distribution. From here on out, we will use the following stan-
dardization formula:

�̄� − 𝜇
𝑆√𝑛

∼ 𝑡𝑛−1

and emphasize that this formula is valid if the sample observations came from a
population with a normal distribution or if the sample size is large enough for the
Central Limit Theorem to imply that �̄� is approximately normally distributed.

http://en.wikipedia.org/wiki/William_Sealy_Gosset
http://en.wikipedia.org/wiki/William_Sealy_Gosset
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Substituting the sample standard deviation into the confidence interval formula,
we also substitute a t-quantile for the standard normal quantile. We will denote
𝑡1−𝛼/2
𝑛−1 as the 1−𝛼/2 quantile of a 𝑡-distribution with 𝑛− 1 degrees of freedom.
Therefore we will use the following formula for the calculation of 100 (1 − 𝛼)%
confidence intervals for the mean 𝜇:

̄𝑥 ± 𝑡1−𝛼/2
𝑛−1 ( 𝑠√𝑛)

Notation: We will be calculating confidence intervals for the rest of the course
and it is useful to recognize the skeleton of a confidence interval formula. The
basic form is always the same

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡1−𝛼/2
𝑑𝑓 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 )

In our current problem, ̄𝑥 is our estimate of 𝜇 and the estimated standard devia-
tion (which is commonly called the standard error) is 𝑠/√𝑛 and the appropriate
degrees of freedom are 𝑑𝑓 = 𝑛 − 1.
Example: Suppose we are interested in calculating a 95% confidence interval
for the mean weight of adult black bears. We collect a random sample of 40
individuals (large enough for the CLT to kick in) and observe the following data:

x =  383
s= 122

0
1
2
3
4
5

300 400 500 600 700
Weight (lbs)

co
un

t

Weights of 40 sampled Black Bears

Notice that the data do not appear to come from a normal distribution, but a
slightly heavier right tail. We’ll plot the histogram of data along with a normal
distribution with the same mean and standard deviation as our data.
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The observed sample mean is ̄𝑥 = 383 pounds and a sample standard deviation
𝑠 = 122 pounds. Because we want a 95% confidence interval 𝛼 = 0.05. Using
t-tables or the following R code

qt(.975, df=39)

## [1] 2.022691

we find that 𝑡1−𝛼/2
𝑛−1 = 2.022691. Therefore the 95% confidence interval is

̄𝑥 ± 𝑡1−𝛼/2
𝑛−1 ( 𝑠√𝑛)

383 ± 2.022691( 122√
40)

383 ± 39.0
or (344, 422) which is interpreted as “We are 95% confident that the true mean
𝜇 is in this interval” which is shorthand for “The process that resulted in this
interval (taking a random sample, and then calculating an interval using the
algorithm presented) will result in intervals such that 95% of them contain the
mean 𝜇, but we cannot know if this particular interval is one of the good ones
or not.”
We can wonder how well this interval matches up with the interval we would
have gotten if we had used the bootstrap method to create a confidence interval
for 𝜇. In this case, where the sample size 𝑛 is relatively large, the Central Limit
Theorem is certainly working and the distribution of the sample mean certainly
looks fairly normal.

boot.mean <- function(x, index){
d <- x[index]
return( mean(d) )

}
BootDist <- boot( bears$weight, statistic = boot.mean, R=10000)
confint(BootDist, type='perc')

## Bootstrap percent confidence intervals
##
## 2.5 % 97.5 %
## 1 347.0129 420.329

Grabbing the appropriate quantiles from the bootstrap estimate of the sampling
distribution, we see that the bootstrap 95% confidence interval matches up will
with the confidence interval we obtained from asymptotic theory.
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quantile( BootDist$xbar, probs=c(0.025, 0.975) )

## 2.5% 97.5%
## NA NA

Example: Assume that the percent of alcohol in casks of whiskey is normally
distributed. From the last batch of casks produced, the brewer samples 𝑛 = 5
casks and wants to calculate a 90% confidence interval for the mean percent
alcohol in the latest batch produced. The sample mean was ̄𝑥 = 55 percent and
the sample standard deviation was 𝑠 = 4 percent.

̄𝑥 ± 𝑡1−𝛼/2
𝑛−1 ( 𝑠√𝑛)

qt( 1 - .1/2, df=4) # 1-(.1)/2 = 1-.05 = .95

## [1] 2.131847

55 ± 2.13( 4√
5)

55 ± 3.8

Question: If we wanted a 95% confidence interval, would it have been wider or
narrower?

Question: If this interval is too wide to be useful, what could we do to make it
smaller?

5.3 Sample Size Selection

Often a researcher is in the position of asking how many sample observations
are necessary to achieve a specific width of confidence interval. Let the margin
of error, which we denote 𝑀𝐸, be the half-width desired (so the confidence
interval would be ̄𝑥 ± 𝑀𝐸). So given the desired confidence level, and if we
know 𝜎, then we can calculate the necessary number of samples to achieve a
particular 𝑀𝐸. To do this calculation, we must also have some estimate of the
population standard deviation 𝜎.

𝑀𝐸 = 𝑧1−𝛼/2 (
𝜎√𝑛)
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and therefore
𝑛 ≈ [𝑧1−𝛼/2 (

𝜎
𝑀𝐸)]

2

Notice that because
𝑛 ∝ [ 1

𝑀𝐸]
2

then if we want a margin of error that is twice as precise (i.e. the CI is half as
wide) then we need to quadruple our sample size! Second, this result requires
having some knowledge of 𝜎. We could acquire an estimate through: 1. a
literature search 2. a pilot study 3. expert opinion.

A researcher is interested in estimating the mean weight of an adult elk in Yel-
lowstone’s northern herd after the winter and wants to obtain a 90% confidence
interval with a half-width 𝑀𝐸 = 10 pounds. Using prior collection data from
the fall harvest (road side checks by game wardens), the researcher believes that
𝜎 = 60 lbs is a reasonable standard deviation number to use.

𝑛 ≈ [𝑧0.95 (
𝜎

𝑀𝐸)]
2

= [1.645(60
10)]

2

= 97.41

Notice that I don’t bother using the 𝑡-distribution in this calculations because
because I am assuming that 𝜎 is known. While this is a horrible assumption,
the difference between using a 𝑡 quantile instead of 𝑧 quantile is small and what
really matters is how good the estimate of 𝜎 is. As with many things, the quality
of the input values is reflected in the quality of the output. Typically this sort
of calculation is done with only a rough estimate of 𝜎 and therefore I would
subsequently regard the resulting sample size 𝑛 as an equally rough estimate.

We could be a bit more precise and use the 𝑡-quantile, but because the degrees
of freedom depend on 𝑛 as well, then we would have 𝑛 on both sides of the
equation and there is no convenient algebraic solution to solving for 𝑛. Later
on we’ll use an R function that accounts for this, but for now we will use the
rough approximation.

5.4 Exercises

1. An experiment is conducted to examine the susceptibility of root stocks
of a variety of lemon trees to a specific larva. Forty of the plants are
subjected to the larvae and examined after a fixed period of time. The
response of interest is the logarithm of the number of larvae per gram of
of root stock. For these 40 plants, the sample mean is ̄𝑥 = 11.2 and the
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sample standard deviation is 𝑠 = 1.3. Use these data to construct a 90%
confidence interval for 𝜇, the mean susceptibility of lemon tree root stocks
from which the sample was taken.

2. A social worker is interested in estimating the average length of time spent
outside of prison for first offenders who later commit a second crime and
are sent to prison again. A random sample of 𝑛 = 100 prison records in
the count courthouse indicates that the average length of prison-free life
between first and second offenses is 4.2 years, with a standard deviation
of 1.1 years. Use this information to construct a 95% confidence interval
for 𝜇, the average time between first and second offenses for all prisoners
on record in the county courthouse.

3. A biologist wishes to estimate the effect of an antibiotic on the growth
of a particular bacterium by examining the number of colony forming
units (CFUs) per plate of culture when a fixed amount of antibiotic is
applied. Previous experimentation with the antibiotic on this type of
bacteria indicates that the standard deviation of CFUs is approximately 4.
Using this information, determine the number of observations (i.e. cultures
developed) necessary to calculate a 99% confidence interval with a half-
width of 1.

4. In the R package Lock5Data, the dataset FloridaLakes contains infor-
mation about the mercury content of fish in 53 Florida lakes. For this
question, we’ll be concerned with the average ppm of mercury in fish from
those lakes which is encoded in the column AvgMercury.

a) Using the bootstrapping method, calculate a 95% confidence interval
for 𝜇, the average ppm of mercury in fish in all Florida lakes.

b) Using the asymptotic approximations discussed in this chapter, cal-
culate a 95% confidence interval for 𝜇, the average ppm of mercury
in fish in all Florida lakes.

c) Comment on the similarity of these two intervals.

5. In the R package Lock5Data, the dataset Cereal contains nutrition in-
formation about a random sample of 30 cereals taken from an on-line
nutrition information website (see the help file for the dataset to get the
link). For this problem, we’ll consider the column Sugars which records
the grams of sugar per cup.

a) Using the bootstrapping method, calculate a 90% confidence interval
for 𝜇, the average grams of sugar per cup of all cereals listed on the
website.

b) Using the asymptotic approximations discussed in this chapter, cal-
culate a 90% confidence interval for 𝜇, the average grams of sugar
per cup of all cereals listed on this website.

c) Comment on the similarity of these two intervals.
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d) We could easily write a little program (or pay an undergrad) to obtain
the nutritional information about all the cereals on the website so
the random sampling of 30 cereals is unnecessary. However, a bigger
concern is that the website cereals aren’t representative of cereals
Americans eat. Why? For example, consider what would happen if
we added 30 new cereals that were very nutritious but were never
sold.
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Chapter 6

Hypothesis Tests for the
mean of a population

Chapter still being edited.

library(dplyr)
library(tidyr)
library(ggplot2)

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

Science is about observing how the world works, making a conjecture (or hy-
pothesis) about the mechanism and then performing experiments to see if real
data agrees or disagrees with the proposed hypothesis.

Example: Suppose Rancher A wants to buy some calves from Rancher B.
Rancher B claims that the average weight of his calves is 500 pounds. Rancher
A decides to buy 10 calves. A few days later he starts looking at the cows and
begins to wonder if the average really is 500 pounds. Rancher A weighs his 10
calves and the sample mean is ̄𝑥 = 475 and the sample standard deviation is
𝑠 = 50. Below are the data

cows <- data.frame(
weight = c(553, 466, 451, 421, 523, 517, 451, 510, 392, 466) )

cows %>% summarise( xbar=mean(weight), s=sd(weight) )

## xbar s
## 1 475 49.99556

97
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There are two possibilities. Either Rancher A was just unlucky in his random
selection of 10 calves from the heard, or the true average weight within the herd
is less than 500.

𝐻0 ∶ 𝜇 = 500

𝐻𝑎 ∶ 𝜇 < 500

For this calculation we’ll assume the weight of a calf is normally distributed
𝑁 (𝜇, 𝜎), and therefore �̄� is normally distributed 𝑁 (𝜇, 𝜎√𝑛). If true mean is
500, how likely is it to get a sample mean of 475 (or less)? One way to think
about this is that we want a measure of how extreme the event is that we
observed, and one way to do that is to calculate how much probability there is
for events that are even more extreme.

To calculate how far into the tail our observed sample mean ̄𝑥 = 475 is by
measuring the area of the distribution that is farther into the tail than the
observed value.

𝑃 (�̄� ≤ 475) = 𝑃 (�̄� − 𝜇
( 𝑠√𝑛)

≤ 475 − 500
( 50√

10)
)

= 𝑃 (𝑇9 ≤ −1.58)
= 0.074

We see that the observed �̄� is in the tail of the distribution and tends to not
support 𝐻0.

P-value is the probability of seeing the observed data or something more extreme
given the null hypothesis is true. By “something more extreme”, we mean
samples that would be more evidence for the alternative hypothesis.

p-value = 𝑃(𝑇9 < −1.58) = 0.074

The above value is the actual value calculated using R

# pt(-1.58, df=9) # No Graph
mosaic::xpt(-1.58, df=9, ncp=0) # With a graph; Non-Centrality Parameter = 0
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A:0.074

B:0.926

## [1] 0.07428219

but using tables typically found in intro statistics books, the most precise thing
you would be able to say is 0.05 ≤ p-value ≤ 0.10 So there is a small chance that
Rancher A just got unlucky with his ten calves. While the data isn’t entirely
supportive of 𝐻0, we don’t have strong enough data to out right reject 𝐻0. So
we will say that we fail to reject 𝐻0. Notice that we aren’t saying that we accept
the null hypothesis, only that there is insufficient evidence to call Rancher B a
liar.

6.1 Writing Hypotheses

6.1.1 Null and alternative hypotheses

In elementary school most students are taught the scientific method follows the
following steps:

1. Ask a question of interest.
2. Construct a hypothesis.
3. Design and conduct an experiment that challenges the hypothesis.
4. Depending on how consistent the data is with the hypothesis:

a) If the observed data is inconsistent with the hypothesis, then we have
proven it wrong and we should consider competing hypotheses.

b) If the observed data is consistent with the hypothesis, design a more
rigorous experiment to continue testing the hypothesis.

Through the iterative process of testing ideas and refining them under the ever
growing body of evidence, we continually improve our understanding of how
our universe works. The heart of the scientific method is the falsification of
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hypothesis and statistics is the tool we’ll use to assess the consistency of our
data with a hypothesis.

Science is done by examining competing ideas for how the world works and
throwing evidence at them. Each time a hypothesis is removed, the remain-
ing hypotheses appear to be more credible. This doesn’t mean the remaining
hypotheses are correct, only that they are consistent with the available data.

1. In approximately 300 BC, Eratosthenes showed that the world was not
flat. (Carl Sagan has an excellent episode of Cosmos on this topic. He did
this by measuring the different lengths of shadows of identical sticks in two
cities that were 580 miles apart but lay on the same meridian (Alexandria
is directly north of Aswan). His proposed alternative was that the Earth
was a sphere. While his alternative is not technically true (it is actually
an oblate spheroid that bulges at the equator), it was substantially better
than the flat world hypothesis.

2. At one point it was believed that plants “ate” the soil and turned it into
plant mass. An experiment to test this hypothesis was performed by Jo-
hannes Baptista van Helmont in 1648 in which he put exactly 200 pounds
of soil in a pot and then grew a willow tree out of it for five years. At
the end of the experiment, the pot contained 199.875 pounds of soil and
168 pounds of willow tree. He correctly concluded that the plant matter
was not substantially taken from the soil but incorrectly jumped to the
conclusion that the mass must of have come from the water that was used
to irrigate the willow.

It is helpful to our understanding to label the different hypotheses, both the
ones being tested and the different alternatives. We’ll label the hypothesis
being tested as 𝐻0 which we often refer to as the null hypothesis. The al-
ternative hypothesis, which we’ll denote 𝐻𝑎, should be the opposite of the
null hypothesis. Had Eratosthenes known about modern scientific methods, he
would have correctly considered 𝐻0: the world is flat verses 𝐻𝑎: the world is
not flat and not incorrectly concluded that the world is a sphere. Amusingly
Eratosthenes’ data wasn’t inconsistent with the hypothesis that the world was
shaped like a doughnut, but he thought the sphere to be more likely. Likewise
Helmont should have considered the hypotheses 𝐻0: plants only consume soil
versus the alternative 𝐻𝑎: plants consume something besides soil.

In both cases, the observed data was compared to what would have been ex-
pected if the null hypothesis was true. If the null was true Eratosthenes would
have seen the same length shadow in both cities and Helmont would have seen
168 pounds of willow tree and 200 − 168 = 32 pounds of soil remaining.

http://en.wikipedia.org/wiki/Eratosthenes
https://www.youtube.com/watch?v=G8cbIWMv0rI


6.1. WRITING HYPOTHESES 101

6.1.2 Error

Unfortunately the world is not a simple place and experiments rarely can isolate
exactly the hypothesis being tested. We can repeat an experiment and get
slightly different results each time due to variation in weather, temperature, or
diligence of the researcher. If we are testing the effectiveness of a new drug to
treat a particular disease, we don’t trust the results of a single patient, instead
we wish to examine many patients (some that receive the new drug and some the
receive the old) to average out the noise between the patients. The questions
about how many patients do we need to have and how large of a difference
between the treatments is large enough to conclude the new drug is better are
the heart of modern statistics.
Suppose we consider the population of all US men aged 40-60 with high blood
pressure (there might be about 20 million people in this population). We want
to know if exercise and ACE inhibitors lower systolic blood pressure better
than exercise alone for these people. We’ll consider the null hypothesis that
exercise is equivalent to exercise and ACE inhibitors versus exercise is different
than exercise and ACE inhibitors. If we could take every single member of the
population and expose them to exercise or exercise with ACE inhibitors, we
would know for certain how the population reacts to the different treatments.
Unfortunately this is too expensive and ethically dubious.
Instead of testing the entire population we’ll take a sample of 𝑛 men from
the population and treat half of them with exercise alone and half of them
with exercise and ACE inhibitors. What might our data look like if there is a
difference between the two treatments at different samples sizes compared to
if there is no difference? At small sample sizes it is difficult to distinguish the
effect of the treatment when it is masked by individual variation. At high sample
sizes, the individual variation is smoothed out and the difference between the
treatments can be readily seen.

n = 10 n = 200 n = 40
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systolic

Group
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Exercise + Inhibitor

Comparing possible data assuming there is a difference between treatments ver-
sus no difference. In the top row of graphs, there is a difference between the
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Exercise and the Exercise + Inhibitor treatments. However, at small sample
sizes, we can’t tell if the observed difference is due to the difference in treat-
ment or just random variation in the data. In the second row, there is no
difference between the treatments.

When the sample size is large it is easy to see if the treatments differ in their
effect on systolic blood pressure, but at medium or small sample sizes, the
question is much harder. It is important to recognize that the core of the
problem is still “is the observed data consistent with the null hypothesis?” but
we now have to consider an addition variability term that is unrelated to the
research hypothesis of interest. In the above example, the small sample data is
consistent with the null hypothesis even when the null hypothesis is false!

6.2 Conducting a Hypothesis Test for 𝜇
Perhaps the hardest part about conducting a hypothesis test is figuring out
what the null and alternative hypothesis should be. The null hypothesis is a
statement about a population parameter.

𝐻0 ∶ population parameter = hypothesized value

and the alternative will be one of

𝐻𝑎 ∶ population parameter < hypothesized value
𝐻𝑎 ∶ population parameter > hypothesized value
𝐻𝑎 ∶ population parameter ≠ hypothesized value

The hard part is figuring which of the possible alternatives we should examine.
The alternative hypothesis is what the researcher believes is true. By show-
ing that the complement of 𝐻𝑎 (that is 𝐻0) can not be true, we support the
alternative which we believe to be true.

𝐻0 is often a statement of no effect, or no difference between the claimed and
observed.

Example: A light bulb company advertises that their bulbs last for 1000 hours.
Consumers will be unhappy if the bulbs last less time, but will not mind if the
bulbs last longer. Therefore Consumer Reports might perform a test and would
consider the hypotheses

𝐻0 ∶ 𝜇 = 1000
𝐻𝑎 ∶ 𝜇 < 1000

Suppose we perform an experiment with 𝑛 = 20 light bulbs and observe ̄𝑥 = 980
and 𝑠 = 64 hours and therefore our test statistic is

𝑡19 = ̄𝑥 − 𝜇
𝑠/√𝑛 = 980 − 1000

64/
√
20 = −1.40
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Then the p-value would be

# pt(-1.4, df=19) # No Graph
mosaic::xpt(-1.4, df=19, ncp=0 ) # With a Graph

0.0

0.1

0.2

0.3

0.4

−2 0 2

de
ns

ity

probability

A:0.089

B:0.911

## [1] 0.08881538

and we calculate p-value = 𝑃 (𝑇19 < −1.4) = 0.0888. A conclusion can then
be drawn based on a chosen significance level. Most commonly 𝛼 is set to be
5%, or 𝛼 = 0.05. In this case, we would fail to reject 𝐻0 and conclude at 5%
significance that the data fails to reject 𝜇 = 1000 hours.

Example: A computer company is buying resistors from another company.
The resistors are supposed to have a resistance of 2 Ohms and too much or too
little resistance is bad. Here we would be testing

𝐻0 ∶ 𝜇 = 2
𝐻𝑎 ∶ 𝜇 ≠ 2

Suppose we perform a test of a random sample of resistors and obtain a test
statistics of 𝑡9 = 1.8. Because the p-value is “the probability of your data or
something more extreme” and in this case more extreme implies extreme values
in both tails then

mosaic::xpt( c(-1.8, 1.8), df=9, ncp=0)
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0.0
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A:0.053

B:0.895

C:0.053

## [1] 0.05269534 0.94730466

and we calculate

p-value = 𝑃 (|𝑇9| > 1.8) = 2𝑃 (𝑇9 < −1.8) = 2 (0.0527) = 0.105

using the R commands

2 * pt(-1.8, df=9)

## [1] 0.1053907

This test would conclude that at 5% significance, we fail to reject 𝐻0. This
indicates the data fails to reject that 𝜇 = 2 Ohms and the resistors can be used
under the conditions required.

6.2.1 Why should hypotheses use 𝜇 and not ̄𝑥?

There is no need to make a statistical test of the form

𝐻0 ∶ ̄𝑥 = 3
𝐻𝑎 ∶ ̄𝑥 ≠ 3

because we know the value of ̄𝑥; we calculated the value there is no uncertainty
to what it is. However I want to use the sample mean ̄𝑥 as an estimate of the
population mean 𝜇 and because I don’t know what 𝜇 is but know that it should
be somewhere near ̄𝑥, my hypothesis test is a question about 𝜇 and if it is near
the value stated in the null hypothesis.

Hypotheses are always statements about population parameters such as 𝜇 or 𝜎
and never about sample statistic values such as ̄𝑥 or 𝑠.
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6.2.2 A note on calculating p-values

Students often get confused by looking up probabilities in tables and don’t
know which tail of the distribution supports the alternative hypothesis. This is
further exacerbated by tables sometimes giving area to the left, sometimes area
to the right, and R only giving area to the left. In general, your best approach
to calculating p-values correctly is to draw the picture of the distribution of
the test statistic (usually a t-distribution) and decide which tail(s) supports
the alternative and figuring out the area farther out in the tail(s) than your
test statistic. However, since some students need a more algorithmic set of
instructions, the following will work:

1. If your alternative has a ≠ sign

a) Look up the value of your test statistic in whatever table you are
going to use and get some probability… which I’ll call 𝑝∗.

b) Is 𝑝∗ > 0.5? If so, you just looked up the area in the wrong tail. To
fix your error, subtract from one… that is 𝑝∗ ← 1− 𝑝∗

c) Because this is a two sided test, multiply 𝑝∗ by two and that is your
p-value. p-value = 2 (𝑝∗)

d) A p-value is a probability and therefore must be in the range
[0, 1]. If what you’ve calculated is outside that range, you’ve
made a mistake.

2. If your alternative is < (or >) then the p-value is the area to the left (or
to the right) of your test statistic.

a) Look up the value of your test statistic in whatever table you are
using and get the probability… which again I’ll call 𝑝∗

b) If 𝑝∗ > 0.5, then you have to consider if they alternative hypothesis
was posed correctly or if you have made a mistake. Be careful here,
because if your alternative is “greater than” and your test
statistic is negative, then the p-value really is greater than
0.5. The same holds true for an alternative of “less than”
and a test statistic that is positive.

c) For a one-tailed test, the p-value is 𝑝∗ with no multiplication neces-
sary.

6.3 Additional Examples

1. A potato chip manufacturer advertises that it sells 16 ounces of chips per
bag. A consumer advocacy group wants to test this claim. They take a
sample of 𝑛 = 18 bags and carefully weights the contents of each bag and
calculate a sample mean ̄𝑥 = 15.8 oz and a sample standard deviation of
𝑠 = 0.2.
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a) State an appropriate null and alternative hypothesis.

𝐻0 ∶ 𝜇 = 16 oz
𝐻𝑎 ∶ 𝜇 < 16 oz

b) Calculate an appropriate test statistic given the sample data.

𝑡 = ̄𝑥 − 𝜇0
𝑠√𝑛

= 15.8 − 16
.2√
18

= −4.24

c) Calculate the p-value.

p-value = 𝑃(𝑇17 < −4.24) = 0.000276

d) Do you reject or fail to reject the null hypothesis at the 𝛼 = 0.05
level? Because the p-value is less than 𝛼 = 0.05 we will reject the
null hypothesis.

e) State your conclusion in terms of the problem. There is statistically
significant evidence to conclude that the mean weight of chips is less
than 16 oz.

2. A pharmaceutical company has developed an improved pain reliever and
believes that it acts faster than the leading brand. It is well known that
the leading brand takes 25 minutes to act. They perform an experiment
on 16 people with pain and record the time until the patient notices pain
relief. The sample mean is ̄𝑥 = 23 minutes, and the sample standard
deviation was 𝑠 = 10 minutes.

a) State an appropriate null and alternative hypothesis.

𝐻0 ∶ 𝜇 = 25 minutes
𝐻𝑎 ∶ 𝜇 < 25 minutes

b) Calculate an appropriate test statistic given the sample data.

𝑡15 = ̄𝑥 − 𝜇0
𝑠√𝑛

= 23 − 25
10√
16

= −0.8

c) Calculate the p-value.

p-value = 𝑃(𝑇15 < −0.8) = 0.218

d) Do you reject or fail to reject the null hypothesis at the 𝛼 = .10 level?
Since the p-value is larger than my 𝛼-level, I will fail to reject the
null hypothesis.

e) State your conclusion in terms of the problem. These data do not
provide statistically significant evidence to conclude that this new pain
reliever acts faster than the leading brand.
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3. Consider the case of SAT test preparation course. They claim that their
students perform better than the national average of 1019. We wish to
perform a test to discover whether or not that is true.

𝐻0 ∶ 𝜇 = 1019
𝐻𝑎 ∶ 𝜇 > 1019

They take a sample of size 𝑛 = 10 and the sample mean is ̄𝑥 = 1020, with
a sample standard deviation 𝑠 = 50. The test statistic is

𝑡9 = ̄𝑥 − 𝜇0
𝑠√𝑛

= 1
50√
10

= .06

So the p-value is p-value = 𝑃(𝑇9 > .06) ≈ 0.5 and we fail to reject the
null hypothesis. However, what if they had performed this experiment
with 𝑛 = 20000 students and gotten the same results?

𝑡19999 = ̄𝑥 − 𝜇0
𝑠√𝑛

= 1
50√
20000

= 2.83

and thus p-value = 𝑃(𝑇19999 > 2.83) = 0.0023 At 𝛼 = .05, we will
reject the null hypothesis and conclude that there is statistically significant
evidence that the students who take the course perform better than the
national average.

So what just happened and what does “statistically significant” mean? It ap-
pears that there is very slight difference between the students who take the
course versus those that don’t. With a small sample size we can not detect that
difference, but by taking a large sample size, I can detect the difference of even
1 SAT point. So here I would say that there is a statistical difference between
the students who take the course versus those that don’t because given such a
large sample, we are very unlikely to see a sample mean of ̄𝑥 = 1020 if the true
mean is 𝜇 = 1019. So statistically significant really means “unlikely to occur by
random chance”.
But is there a practical difference in 1 SAT point? Not really. Since SAT scores
are measured in multiple of 5 (you can score 1015, or 1020, but not 1019), there
isn’t any practical value of raising a students score by 1 point. By taking a
sample so large, I have been able to detect a completely worthless difference.
Thus we have an example of a statistically significant difference, but it is not a
practical difference.

6.4 P-values vs cutoff values

We have been calculating p-values and then comparing those values to the de-
sired alpha level. It is possible, however, to use the alpha level to back-calculate
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a cutoff level for the test statistic, or even original sample mean. Often these
cutoff values are referred to as critical values. Neither approach is wrong, but
is generally a matter of preference, although knowing both techniques can be
useful.
Example: We return to the pharmaceutical company that has developed a new
pain reliever. Recall the null and alternative hypotheses were

𝐻0 ∶ 𝜇 = 25 minutes
𝐻𝑎 ∶ 𝜇 < 25 minutes

and we had observed a test statistic

𝑡 = ̄𝑥 − 𝜇0
𝑠√𝑛

= 23 − 25
10√
16

= −0.8

with 15 degrees of freedom. Using an 𝛼 = 0.10 level of significance, if this
test statistic is smaller than the 0.10th quantile of a 𝑡-distribution with 15
degrees of freedom, then we will reject the null hypothesis. This cutoff value is
𝑡0.115 = 𝑡𝑐𝑟𝑖𝑡 = −1.341. This is shown below using R:

qt(0.1, df=15)

## [1] -1.340606

Because the observed test statistic 𝑡𝑠 = −0.8 is less extreme (not as far into the
tail) as the cutoff value 𝑡𝑐𝑟𝑖𝑡 = −1.341, we failed to reject the null hypothesis.
We can push this idea even farther and calculate a critical value on the original
scale of ̄𝑥 by solving

𝑡𝑐𝑟𝑖𝑡 =
̄𝑥𝑐𝑟𝑖𝑡 − 𝜇0
( 𝑠√𝑛)

−1.341 = ̄𝑥𝑐𝑟𝑖𝑡 − 25
( 10√

16)

−1.341( 10√
16) + 25 = ̄𝑥𝑐𝑟𝑖𝑡

21.65 = ̄𝑥𝑐𝑟𝑖𝑡

So if we observe a sample mean ̄𝑥 < 21.65 then we would reject the null hypoth-
esis. Here we actually observed ̄𝑥 = 23 so this comparison still fails to reject
the null hypothesis and concludes there is insufficient evidence to reject that
the new pain reliever has the same time till relief as the old medicine.
In general calculating and reporting p-values is preferred, because they account
for any ambiguity about one-sided or two-sided tests and how many degrees of
freedom were available.
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6.5 Running a t-test in R

While it is possible to do t-tests by hand, most people will use a software package
to perform these calculations. Here we will use the R function t.test(). This
function expects a vector of data (so that it can calculate ̄𝑥 and 𝑠) and a
hypothesized value of 𝜇.
Example. Suppose we have data regarding fuel economy of 5 vehicles of the same
make and model and we wish to test if the observed fuel economy is consistent
with the advertised 31 mpg at highway speeds. Assuming the fuel economy
varies normally among cars of the same make and model, we test

𝐻0 ∶ 𝜇 = 31
𝐻𝑎 ∶ 𝜇 ≠ 31

and calculate

cars <- data.frame(mpg = c(31.8, 32.1, 32.5, 30.9, 31.3))
cars %>% summarise(mean(mpg), sd(mpg))

## mean(mpg) sd(mpg)
## 1 31.72 0.6340347

The test statistic is:

𝑡 = ̄𝑥 − 𝜇0
𝑠/√𝑛 = 31.72 − 31

( 0.634√
5 )

= 2.54

The p-value is
p-value = 2 ⋅ 𝑃 (𝑇4 > 2.54) = 0.064

and a 95% confidence interval is

̄𝑥 ± 𝑡1−𝛼/2
𝑛−1 ( 𝑠√𝑛)

31.72 ± 2.776445(0.63403√
5 )

31.72 ± 0.7872
[30.93, 32.51]

These results can be confirmed quickly through the use of t.test().

t.test( cars$mpg, mu=31, alternative='two.sided' )
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##
## One Sample t-test
##
## data: cars$mpg
## t = 2.5392, df = 4, p-value = 0.06403
## alternative hypothesis: true mean is not equal to 31
## 95 percent confidence interval:
## 30.93274 32.50726
## sample estimates:
## mean of x
## 31.72

The t.test() function supports testing one-sided alternatives (alternative='less'
or alternative='greater') and more information can be found in the R help
system using help(t.test).

6.6 Type I and Type II Errors

We can think of the p-value as measuring how much evidence we have for the
null hypothesis. If the p-value is small, the evidence for the null hypothesis is
small. Conversely if the p-value is large, then the data is supporting the null
hypothesis.

There is an important philosophical debate about how much evidence do we
need in order to reject the null hypothesis. Since the p-value is a measure of
support for the null hypothesis, if the p-value drops below a specified threshold
(call it 𝛼), we will choose to reject the null hypothesis. Different scientific
disciplines have different levels of rigor. Therefore, they set commonly used 𝛼
levels differently. For example physicists demand a high degree of accuracy and
consistency, thus might use 𝛼 = 0.01, while ecologists deal with very messy data
and might use an 𝛼 = 0.10.
The most commonly used 𝛼-level is 𝛼 = 0.05, which is traditional due to an off-
hand comment by R.A. Fisher. There is nothing that fundamentally forces us to
use 𝛼 = 0.05 other than tradition. However, when sociologists do experiments
presenting subjects with unlikely events, it is usually when the events have a
probability around 0.05 that the subjects begin to suspect they are being duped.

People who demand rigor might want to set 𝛼 as low as possible, but there is a
trade off. Consider the following possibilities, where the “True State of Nature”
is along the top, and the decision is along the side.

𝐻0 True 𝐻0 False
Fail to reject
𝐻0

Correct Result Type II Error (𝛽)

Reject 𝐻0 Type I Error (𝛼) Correct Result
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There are two ways to make a mistake. The type I error is to reject 𝐻0 when it
is true. This error is controlled by 𝛼. We can think of 𝛼 as the probability of
rejecting 𝐻0 when we shouldn’t. However there is a trade off. If 𝛼 is very small
then we will fail to reject 𝐻0 in cases where 𝐻0 is not true. This is called a type
II error and we will define 𝛽 as the probability of failing to reject 𝐻0 when it is
false.

This trade off between type I and type II errors can be seen by examining
our legal system. A person is presumed innocent until proven guilty. So the
hypothesis being tested in the court of law are

𝐻0 ∶ defendent is innocent
𝐻𝑎 ∶ defendent is guilty

Our legal system theoretically operates under the rule that it is better to let
10 guilty people go free, than wrongly convict 1 innocent. In other words, it
is worse to make a type I mistake (concluding guilty when innocent), than to
make a type II mistake (concluding not guilty when guilty). Critically, when
a jury finds a person “not guilty” they are not saying that defense team has
proven that the defendant is innocent, but rather that the prosecution has not
proven the defendant guilty.

This same idea manifests itself in science with the 𝛼-level. Typically we decide
that it is better to make a type II mistake. An experiment that results in a large
p-value does not prove that 𝐻0 is true, but that there is insufficient evidence to
conclude 𝐻𝑎.

If we still suspect that 𝐻𝑎 is true, then we must repeat the experiment with
a larger samples size. A larger sample size makes it possible to detect smaller
differences.

6.6.1 Power and Sample Size Selection

Just as we calculated the necessary sample size to achieve a confidence interval
of a specified width, we are also often interested in calculating the necessary
sample size to find a significant difference from the hypothesized mean 𝜇0. Just
as in the confidence interval case where we had to specify the margin of error
𝑀𝐸 and some estimate of the population standard deviation �̂�, we now must
specify a difference we want to be able to detect 𝛿 and an estimate of the
population standard deviation �̂�.
Example: Suppose that I work in Quality Control for a company that manu-
factures a type of rope. This rope is supposed to have a mean breaking strength
of 5000 pounds and long experience with the process suggests that the standard
deviation is approximately 𝑠 = 50. As with many manufacturing processes,
sometimes the machines that create the rope get out of calibration. So each
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morning we take a random sample of 𝑛 = 7 pieces of rope and using 𝛼 = 0.05,
test the hypothesis

𝐻0 ∶ 𝜇 = 5000
𝐻𝑎 ∶ 𝜇 < 5000

Notice that I will reject the null hypothesis if ̄𝑥 is less than some cut-off value
(which we denote ̄𝑥𝑐𝑟𝑖𝑡), which we calculate by first recognizing that the critical
t-value is

𝑡𝑐𝑟𝑖𝑡 = 𝑡𝛼𝑛−1 = −1.943
and then solving the following equation for ̄𝑥𝑐𝑟𝑖𝑡

𝑡𝑐𝑟𝑖𝑡 =
̄𝑥𝑐𝑟𝑖𝑡 − 𝜇0

𝑠√𝑛

𝑡𝑐𝑟𝑖𝑡 (
𝑠√𝑛) + 𝜇0 = ̄𝑥𝑐𝑟𝑖𝑡

−1.943( 50√
7) + 5000 = ̄𝑥𝑐𝑟𝑖𝑡

4963 = ̄𝑥𝑐𝑟𝑖𝑡

There is a trade off between the Type I and Type II errors. By making a Type
I error, I will reject the null hypothesis when the null hypothesis is true. Here I
would stop manufacturing for the day while re-calibrating the machine. Clearly
a Type I error is not good. The probability of making a Type I error is denoted
𝛼.
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A type II error occurs when I fail to reject the null hypothesis when the alter-
native is true. This would mean that we would be selling ropes that have a
breaking point less than the advertised amount. This opens the company up to
a lawsuit. We denote the probability of making a Type II error is denoted as 𝛽
and define Power = 1 − 𝛽. But consider that I don’t want to be shutting down
the plant when the breaking point is just a few pounds from the true mean.
The head of engineering tells me that if the average breaking point is more
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than 50 pounds less than 5000, we have a problem, but less than 50 pounds is
acceptable.

So I want to be able to detect if the true mean is less than 4950 pounds. Consider
the following where we assume 𝜇 = 4950.
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The the probability of a type II error is

𝛽 = 𝑃 (�̄� > 4963.3 | 𝜇 = 4950)

= 𝑃 (�̄� − 4950
50/

√
7 > 4963.3 − 4950

50/
√
7 )

= 𝑃 (𝑇6 > 0.703)
= 0.254

and therefore my power for detecting a mean breaking strength less than or equal
to 4950 is 1−𝛽 = 0.7457 which is very close to what any statistical package will
calculate for us.The power calculation should done using a t-distribution with
non-centrality parameter instead of just shifting the distribution. The difference
is slight, but is enough to cause our calculation to be slightly off. This power is
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rather low and I would prefer to have the power be near 0.95. We can improve
our power by using a larger sample size. We’ll repeat these calculations using
𝑛 = 15.
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Power calculations are relatively tedious to do by hand, but fortunately there
are several very good resources for exploring how power and sample size interact.
We can do these calculations in R using the function power.t.test().

Fundamentally there are five values that can be used and all power calculators
will allow a user to input four of them and the calculator will calculate the fifth.

1. The difference 𝛿 from the hypothesized mean 𝜇0 that we wish to detect.
2. The population standard deviation 𝜎.
3. The significance level of the test 𝛼.
4. The power of the test 1 − 𝛽.
5. The sample size 𝑛.

power.t.test(delta=50, sd=50, sig.level=0.05, n=7,
type="one.sample", alternative="one.sided")
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##
## One-sample t test power calculation
##
## n = 7
## delta = 50
## sd = 50
## sig.level = 0.05
## power = 0.7543959
## alternative = one.sided

power.t.test(delta=50, sd=50, sig.level=0.05, power=0.95,
type="one.sample", alternative="one.sided")

##
## One-sample t test power calculation
##
## n = 12.32052
## delta = 50
## sd = 50
## sig.level = 0.05
## power = 0.95
## alternative = one.sided

The general process for selecting a sample size is to

1. Pick a 𝛼-level. Usually this is easy and people use 𝛼 = 0.05.
2. Come up with an estimate for the standard deviation 𝜎. If you don’t have

an estimate, then a pilot study should be undertaken to get a rough idea
what the variability is. Often this is the only good data that comes out
of the first field season in a dissertation.

3. Decide how large of an effect is scientifically interesting.
4. Plug the results of steps 1-3 into a power calculator and see how large a

study you need to achieve a power of 90% or 95%.

6.7 Exercises

1. One way the amount of sewage and industrial pollutants dumped into a
body of water affects the health of the water is by reducing the amount
of dissolved oxygen available for aquatic life. Over a 2-month period, 8
samples were taken from a river at a location 1 mile downstream from a
sewage treatment plant. The amount of dissolved oxygen in the samples
was determined and is reported in the following table.



116CHAPTER 6. HYPOTHESIS TESTS FOR THE MEAN OF A POPULATION

5.1 4.9 5.6 4.2 4.8 4.5 5.3 5.2

Current research suggests that the mean dissolved oxygen level must be
at least 5.0 parts per million (ppm) for fish to survive. Do the calculations
in parts (b) and (e) by hand.

a) Use R to calculate the sample mean and standard deviation.
b) Using the asymptotic results and the quantities you calculated, by

hand calculation create a 95% two-sided confidence interval for the
mean dissolved oxygen level during the 2-month period. What as-
sumption is being made for this calculation to be valid?

c) Calculate a 95% two-sided confidence interval using the bootstrap
method. Examine the bootstrap distribution of the sample means,
does it appear normal? If so, what does that imply about the as-
sumption you made in the calculation in the previous part?

d) Using the confidence interval calculated in part (b), do the data sup-
port the hypothesis that the mean dissolved oxygen level is equal to
5 ppm?

e) Using the quantities you calculated in part (a), by hand perform a
1-sided hypothesis test that the mean oxygen level is less that 5 ppm
with a significance level of 𝛼 = 0.05.

f) Use the function t.test in R to repeat the calculations you made in
parts (b) and (e).

2. We are interested in investigating how accurate radon detectors sold to
homeowners are. We take a randomly selection of 𝑛 = 12 detectors and
expose them to 105 pico-curies per liter (pCi/l) of radon. The following
values were given by the radon detectors.

91.9 97.8 111.4 122.3 105.4 95.0
103.8 99.6 96.6 119.3 104.8 101.7

Do all of the following calculations by hand (except for the calculations of
the mean and standard deviation).

a) Calculate a 90% confidence interval using the asymptotic method.
b) State an appropriate null and alternative hypothesis for a two-sided

t-test. Why is a two-sided test appropriate here?
c) Calculate an appropriate test statistic.
d) Calculate a p-value.
e) At an 𝛼 = 0.10 level, what is your conclusion. Be sure to state your

conclusion in terms of the problem.
f) Use the function t.test() to redo the the hand calculations you did in

parts (a), (c), (d).
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3. Given data such that 𝑋𝑖 ∼ 𝑁 (𝜇, 𝜎2 = 52), the following graph shows
the distribution of a sample mean of 𝑛 = 8 observations under the null
hypothesis 𝐻0 ∶ 𝜇 = 5. We are interested in testing the alternative 𝐻𝑎 ∶
𝜇 > 5 at the 𝛼 = 0.05 level and therefore the cut off point for rejecting
the null hypothesis is 𝑡𝑐𝑟𝑖𝑡 = 1.895 and ̄𝑥𝑐𝑟𝑖𝑡 = 1.895 ∗ 5 + 5 = 8.35.
a) Add the plot of the distribution of the sample mean if 𝜇 = 11 and

denote which areas represent 𝛼, 𝛽, and the power in the figure be-
low. I expect most people will print out the graph and shade/label
everything by hand.
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b) Under the same alternative value of 𝜇 = 11, find the prob-
ability of a Type II error. That is, calculate the value of
𝛽 = 𝑃 (�̄� < 8.35 | 𝜇 = 11).

4. A study is to be undertaken to study the effectiveness of connective tissue
massage therapy on the range of motion of the hip joint for elderly clients.
Practitioners think that a reasonable standard deviation of the differences
(post - pre) would be 𝜎 = 20 degrees.

a) Suppose an increase of 5 degrees in the range would be a clinically
significant result. How large of a sample would be necessary if we
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wanted to control the Type I error rate by 𝛼 = 0.1 and the Type II
error rate with 𝛽 = 0.1 (therefore the power is 1 − 𝛽 = 0.90)? Use
the use the power.t.test() function available in the package pwr
to find the necessary sample size.

b) Suppose we were thought that only increases greater than 10 degrees
were substantive. How large must our minimum sample size be in
this case? Comment on how much larger a sample size must be to
detect a difference half as small.



Chapter 7

Two-Sample Hypothesis
Tests and Confidence
Intervals

library(ggplot2)
library(dplyr)
library(tidyr)
library(boot)

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

There are two broad classification types for research, observational studies and
designed experiments. These two types of research differ in the way that the
researcher interacts with the subjects being observed. In an observational study,
the researcher doesn’t force a subject into some behavior or treatment, but
merely observes the subject (making measurements but not changing behaviors).
In contrast, in an experiment, the researcher imposes different treatments onto
the subjects and the pairing between the subject and treatment group happens
at random.
Example: For many years hormone (Estrogen and Progestin) replacement ther-
apy’s primary use for post-menopausal woman was to reduce the uncomfortable
side-effects of menopause but it was thought to also reduced the rate of breast
cancer in post-menopausal women. This belief was the result of many obser-
vational studies where women who chose to take hormone replacement therapy
also had reduced rates of breast cancer. The lurking variable that the obser-
vational studies missed was that hormone therapy is relatively expensive and

119
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was taken by predominately women of a high socio- economic status. Those
women tended to be more health conscious, lived in areas with less pollution,
and were generally at a lower risk for developing breast cancer. Even when re-
searchers realized that socio-economic status was confounded with the therapy,
they couldn’t be sure which was the cause of the reduced breast cancer rates.
Two variables are said to be confounded if the design of a given experiment or
study cannot distinguish the effect of one variable from the other. To correctly
test this, nearly 17,000 women underwent an experiment in which each women
was randomly assigned to take either the treatment (E+P) or a placebo. The
Women’s Health Initiative (WHI) Estrogen plus Progestin Study (E+P) was
stopped on July 7, 2002 (after an average 5.6 years of follow-up) because of in-
creased risks of cardiovascular disease and breast cancer in women taking active
study pills, compared with those on placebo (inactive pills). The study showed
that the overall risks exceeded the benefits, with women taking E+P at higher
risk for heart disease, blood clots, stroke, and breast cancer, but at lower risk
for fracture and colon cancer. Lurking variables such as income levels and ed-
ucation are correlated to overall health behaviors and with an increased use of
hormone replacement therapy. By randomly assigning each woman to a treat-
ment, the unidentified lurking variables were evenly spread across treatments
and the dangers of hormone replacement therapy were revealed.

In the previous paragraph, we introduced the idea of a lurking variable where
a lurking variable is a variable the researcher hasn’t considered but affects the
response variable. In observational studies a researcher will try to measure all
the variables that might affect the response but will undoubtedly miss some-
thing.

There is a fundamental difference between imposing treatments onto subjects
versus taking a random sample from a population and observing relationships
between variables. In general, designed experiments allow us to determine cause-
and-effect relationships while observational studies can only determine if vari-
ables are correlated. This difference in how the data is generated will result
in different methods for generating a sampling distribution for a statistic of in-
terest. In this chapter we will focus on experimental designs, though the same
analyses are appropriate for observational studies.

7.1 Difference in means between two groups

Often researchers will obtain a group of subjects and divide them into two
groups, provide different treatments to each, and observe some response. The
goal is to see if the two groups have different mean values, as this is the most
common difference to be interested in.

The first thing to consider is that the group of subjects in our sample should
be representative of a population of interest. Because we cannot impose an
experiment on an entire population, we often are forced to examine a small
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sample and we hope that the sample statistics (the sample mean ̄𝑥, and sample
standard deviation 𝑠) are good estimates of the population parameters (the
population mean 𝜇, and population standard deviation 𝜎). First recognize that
these are a sample and we generally think of them to be representative of some
population.

Example: Finger Tapping and Caffeine

The effects of caffeine on the body have been well studied. In one experiment,
a group of male college students were trained in a particular tapping movement
and to tap at a rapid rate. They were randomly divided into caffeine and non-
caffeine groups and given approximately two cups of coffee (with either 200
mg of caffeine or none). After a 2-hour period, the students tapping rate was
measured.

The population that we are trying to learn about is male college-aged students
and we the most likely question of interest is if the mean tap rate of the caf-
feinated group is different than the non-caffeinated group. Notice that we want
to take this sample of 20 students to make inference on the population of male
college-aged students. The hypotheses we are interested in are

𝐻0 ∶ 𝜇𝑛𝑐 = 𝜇𝑐
𝐻𝑎 ∶ 𝜇𝑛𝑐 ≠ 𝜇𝑐

where 𝜇𝑐 is the mean tap rate of the caffeinated group and 𝜇𝑛𝑐 is the mean
tap rate of the non-caffeinated group. We could equivalently express these
hypotheses via

𝐻0 ∶ 𝜇𝑛𝑐 − 𝜇𝑐 = 0
𝐻𝑎 ∶ 𝜇𝑛𝑐 − 𝜇𝑐 ≠ 0

Or we could let 𝛿 = 𝜇𝑛𝑐 − 𝜇𝑐 and write the hypotheses as

𝐻0 ∶ 𝛿 = 0
𝐻𝑎 ∶ 𝛿 ≠ 0

The data are available in many different formats at http://www.lock5stat.com/
datapage.html

data(CaffeineTaps, package='Lock5Data') # load the data from the Lock5Data package
str(CaffeineTaps)

## 'data.frame': 20 obs. of 2 variables:
## $ Taps : int 246 248 250 252 248 250 246 248 245 250 ...
## $ Group: Factor w/ 2 levels "Caffeine","NoCaffeine": 1 1 1 1 1 1 1 1 1 1 ...

http://www.lock5stat.com/datapage.html
http://www.lock5stat.com/datapage.html
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The dataset contains two variables. Taps are the response of interest. Group
is a factor (or categorical variable) that has 2 levels. These are the different
groupings of Caffeine and NoCaffeine. The first thing we should do is, as always,
graph the data.

ggplot(CaffeineTaps, aes(x=Taps)) +
geom_dotplot(binwidth=.2) +
facet_grid(Group ~ .) # two graphs stacked by Group (Caffeine vs non)
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From this view, it looks like the caffeine group has a higher tapping rate. It
will be helpful to summarize the difference between these two groups with a
single statistic by calculating the mean for each group and then calculate the
difference between the group means.

CaffeineTaps %>%
group_by(Group) %>% # group the summary stats by Treatment group
summarise(xbar=mean(Taps), s=sd(Taps))

## # A tibble: 2 x 3
## Group xbar s
## <fct> <dbl> <dbl>
## 1 Caffeine 248. 2.21
## 2 NoCaffeine 245. 2.39

We can find then find the difference in the sample means.

# No Caffeine - Caffeine
# 244.8 - 248.3
CaffeineTaps %>% group_by(Group) %>%
summarise(xbar=mean(Taps)) %>%
summarise(d = diff(xbar))
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## # A tibble: 1 x 1
## d
## <dbl>
## 1 -3.5

Notationally, lets call this statistic 𝑑 = ̄𝑥𝑛𝑐 − ̄𝑥𝑐 = −3.5. We are interested
in testing if this observed difference might be due to just random chance and
we just happened to assigned more of the fast tappers to the caffeine group.
How could we test the null hypothesis that the mean of the caffeinated group is
different than the non-caffeinated?

7.1.1 Inference via resampling

The key idea is “How could the data have turned out if the null hypothesis is
true?” If the null hypothesis is true, then the caffeinated/non-caffeinated group
treatment had no effect on the tap rate and it was just random chance that
the caffeinated group got a larger percentage of fast tappers. That is to say
the group variable has no relationship to tap rate. I could have just as easily
assigned the fast tappers to the non-caffeinated group purely by random chance.
So our simulation technique is to shuffle the group labels and then calculate a
difference between the group means!

Below we demonstrate what it would look like to shuffle the groups. This is the
core concept behind the permutation methods, and how we can work to make
an inference via resampling.

# shuffle(): takes an input column and reorders it randomly
CaffeineTaps %>% mutate(ShuffledGroup = mosaic::shuffle(Group))

## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2

## Taps Group ShuffledGroup
## 1 246 Caffeine NoCaffeine
## 2 248 Caffeine Caffeine
## 3 250 Caffeine Caffeine
## 4 252 Caffeine NoCaffeine
## 5 248 Caffeine NoCaffeine
## 6 250 Caffeine Caffeine
## 7 246 Caffeine Caffeine
## 8 248 Caffeine NoCaffeine
## 9 245 Caffeine Caffeine
## 10 250 Caffeine Caffeine
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## 11 242 NoCaffeine NoCaffeine
## 12 245 NoCaffeine NoCaffeine
## 13 244 NoCaffeine Caffeine
## 14 248 NoCaffeine NoCaffeine
## 15 247 NoCaffeine NoCaffeine
## 16 248 NoCaffeine NoCaffeine
## 17 242 NoCaffeine Caffeine
## 18 244 NoCaffeine NoCaffeine
## 19 246 NoCaffeine Caffeine
## 20 242 NoCaffeine Caffeine

We can then calculate the mean difference but this time using the randomly
generated groups, and now the non-caffeinated group just happens to have a
slightly higher mean tap rate just by the random sorting into two groups.

CaffeineTaps %>%
mutate( ShuffledGroup = mosaic::shuffle(Group) ) %>%
group_by( ShuffledGroup ) %>%
summarise(xbar=mean(Taps)) %>%
summarise(d.star = diff(xbar))

## # A tibble: 1 x 1
## d.star
## <dbl>
## 1 1.30

We could repeat this shuffling several times and see the possible values we might
have seen if the null hypothesis is correct and the treatment group doesn’t matter
at all.

mosaic::do(5) * {
CaffeineTaps %>%
mutate( ShuffledGroup = mosaic::shuffle(Group) ) %>%
group_by( ShuffledGroup ) %>%
summarise(xbar=mean(Taps)) %>%
summarise(d.star = diff(xbar))

}

## d.star
## 1 -0.9
## 2 -0.1
## 3 0.3
## 4 1.5
## 5 1.3
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Of course, five times isn’t sufficient to understand the sampling distribution of
the mean difference under the null hypothesis, we should do more.

PermutationDist <- mosaic::do(10000) * {
CaffeineTaps %>%
mutate( ShuffledGroup = mosaic::shuffle(Group) ) %>%
group_by( ShuffledGroup ) %>%
summarise(xbar=mean(Taps)) %>%
summarise(d.star = diff(xbar))

}

We can then take the results of our 10000 permutations and view a histogram
of the resulting difference in the shuffled group means (𝑑∗).

ggplot(PermutationDist, aes(x=d.star)) +
geom_histogram(binwidth=.2) +
ggtitle('Permutation dist. of d* assuming H0 is true') +
xlab('d*') +
geom_vline(xintercept = c(-3.5, 3.5), lwd=1.5, col='red')
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Permutation dist. of d* assuming H0 is true

We are then interested in how often from our permutations did we observe
something more extreme than the mean difference from the original groupings.
Because this is a two-tailed test, we will look for how many observations are
either below -3.5 or above +3.5. The original difference in the means are marked
as vertical red lines in the graph above.

We have almost no cases where the randomly assigned groups produced a differ-
ence as extreme as the actual observed difference of 𝑑 = −3.5. We can calculate
the percentage of the sampling distribution of the difference in means that is
farther from zero
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PermutationDist %>%
mutate( MoreExtreme = ifelse( abs(d.star) >= 3.5, 1, 0)) %>%
summarise( p.value = mean(MoreExtreme))

## p.value
## 1 0.0055

We see that only 58/10,000 simulations of data produced assuming 𝐻0 is true
produced a 𝑑∗ value more extreme than our observed difference in sample means.
This is exactly the definition we have given to a p-value; thus, we can reject the
null hypothesis 𝐻0 ∶ 𝜇𝑛𝑐 − 𝜇𝑐 = 0 in favor of the alternative 𝐻𝑎 ∶ 𝜇𝑛𝑐 − 𝜇𝑐 ≠ 0
at an 𝛼 = 0.05 or any other reasonable 𝛼 level.

7.1.1.1 Using coin

To make the code less cumbersome, we can incorporate the use of the coin
package. This package will allow us to perform a variety of permutation tests
without having to produce code such as that shown above. We will only need to
ensure that our data is prepared properly. However, for those who are interested
more in the R coding that can be done to produce permutation tests, please see
Appendix B : Alternative Permutation Test Code.

The data in CaffeineTaps has the data separated as Taps and Group, which
is exactly the form we need it in. We can run the permutation using coin
simply by using the oneway_test() command and asking it to approximate
the p-value. It will then run the permutation test for us. The same number of
reshuffles as above (10000) is used.

library(coin)
oneway_test(Taps~Group, data=CaffeineTaps, alternative="two.sided",

distribution=approximate(nresample=10^4))

##
## Approximative Two-Sample Fisher-Pitman Permutation Test
##
## data: Taps by Group (Caffeine, NoCaffeine)
## Z = 2.723, p-value = 0.0049
## alternative hypothesis: true mu is not equal to 0

We observe excellent agreement to the simulation run above, but with much less
involvement on how to handle the code.
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7.1.1.2 Different Alternative Hypothesis

Everything we know about the biological effects of ingesting caffeine suggests
that we should have expected the caffeinated group to tap faster. We might
want to set up our experiment so only faster tapping represents “extreme” data
compared to the null hypothesis. In this case we want an alternative of 𝐻𝑎 ∶
𝜇𝑛𝑐 − 𝜇𝑐 < 0 We can state our null and alternative hypothesis as

𝐻0 ∶ 𝜇𝑛𝑐 − 𝜇𝑐 ≥ 0
𝐻𝑎 ∶ 𝜇𝑛𝑐 − 𝜇𝑐 < 0

The creation of the sampling distribution of the mean difference 𝑑∗ is identical
to our previous technique because if our observed difference 𝑑 is so negative
that it is incompatible with the hypothesis that 𝜇𝑛𝑐 − 𝜇𝑐 = 0 then it must also
be incompatible with any positive difference. We can perform the permutation
test and generate the distribution of estimated differences in the same manner
as above. The only difference in the analysis is at the end when we calculate the
p-value and don’t consider the positive tail. That is, the p-value is the percent
of simulations where 𝑑∗ < 𝑑.

PermutationDist %>%
summarize( p.value = mean( d.star <= -3.5 ))

## p.value
## 1 0.0024

We can perform a left-tailed test using coin, but need to be sure we call ‘No-
Caffeine’ the first group. We can do this with relevel().

CaffeineTaps$Group <- relevel(CaffeineTaps$Group, 'NoCaffeine')
oneway_test(Taps~Group, data=CaffeineTaps, alternative="less",

distribution=approximate(nresample=10^4))

##
## Approximative Two-Sample Fisher-Pitman Permutation Test
##
## data: Taps by Group (NoCaffeine, Caffeine)
## Z = -2.723, p-value = 0.0021
## alternative hypothesis: true mu is less than 0

From both methods we see that the p-value is approximately cut in half by
ignoring the upper tail, which makes sense considering the observed symmetry
in the sampling distribution of 𝑑∗.
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In general, we prefer to use a two-sided test because if the two-sided test leads
us to reject the null hypothesis then so would the appropriate one-sided hy-
pothesis (except in the case where the alternative was chosen before the data
was collected and the observed data was in the other tail). Second, by using
a two-sample test, it prevents us from from “tricking” ourselves when we don’t
know the which group should have a higher mean going into the experiment,
but after seeing the data, thinking we should have known and using the less
stringent test. Some statisticians go so far as to say that using a 1-sided test is
outright fraudulent. Generally, we’ll concentrate on two-sided tests as they are
the most widely acceptable.

7.1.1.3 Inference via Bootstrap Confidence Interval

Just as we could use bootstrapping to evaluate a confidence interval for one-
sample, we can do the same for two-samples. We need only update the function
we are give the boot function.

diff.mean.function <- function(data, index){
m1 = mean(subset(data[index, 1], data[index, 2] == levels(data[,2])[1]))
m2 = mean(subset(data[index, 1], data[index, 2] == levels(data[,2])[2]))
return(m1 - m2)

}

This function works slightly different than the Chapter 3 version. We must now
ensure that we give it a data.frame where the first column are the observations
and the second column the factored group labels. This code will then calculate
the difference in the means while bootstrapping the elements observed. We can
run the bootstrap in a nearly identical fashion to Chapter 3. Notice my data is
no longer a vector of values, but the data.frame we have been working with.

BootDist <- boot(data = CaffeineTaps, statistic = diff.mean.function, R=10000)

We can visualize the results identical to the earlier chapters, but now recog-
nizing this sampling distribution represents the difference in the means of the
NoCaffeine and Caffeine groups.

BootDist.graph <- data.frame(dbar=BootDist$t)
ggplot(BootDist.graph, aes(x=dbar)) +
geom_histogram() +
ggtitle('Difference in Mean NoCaffeine Taps and Mean Caffeine Taps')
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CI <- quantile( BootDist$t, probs=c(0.025, 0.975) )
CI

## 2.5% 97.5%
## -5.5 -1.5

Thus, we can state that with 95% confidence the difference between the mean
NoCaffeine taps and mean Caffeine taps is between -5.4 and -1.5 taps. Notice
that the null hypothesis value, 𝛿 = 0, is not a value supported by the data
because 0 is not in the 95% confidence interval. A subtle point in the above
bootstrap code does not re-sampled each group separately. Because the experi-
mental protocol was to have 10 in each group, we might want to use bootstrap
code that accounts for the correct design. For now, we might end up with 12
caffeinated and 8 decaffeinated subjects, which is data that our experimental
design couldn’t have generated. This should have minimal consequence and our
bootstraps can still be conducted relatively easy.

7.1.2 Inference via asymptotic results (unequal variance
assumption)

Previously we’ve seen that the Central Limit Theorem gives us a way to estimate
the distribution of the sample mean. So it should be reasonable to assume that
for our two groups (1=NoCaffeine, 2=Caffeine),

�̄�1
⋅∼ 𝑁 (𝜇1,

𝜎2
1

𝑛1
) and �̄�2

⋅∼ 𝑁 (𝜇2,
𝜎2
2

𝑛2
)

It turns out that because �̄�𝐶 and �̄�𝑁𝐶 both have approximately normal dis-
tributions, then the difference between them also does. This shouldn’t be too
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surprising after looking at the permutation and bootstrap distributions of the
𝑑∗ values.

So our hypothesis tests and confidence interval routine will follow a similar
pattern as our one-sample tests, but we now need to figure out the correct
standardization formula for the difference in means. The only difficulty will be
figuring out what the appropriate standard deviation term �̂�𝐷 should be.

Recall that if two random variables, A and B, are independent then

𝑉 𝑎𝑟 (𝐴 − 𝐵) = 𝑉 𝑎𝑟(𝐴) + 𝑉 𝑎𝑟(𝐵)

and therefore
𝑉 𝑎𝑟 (𝐷) = 𝑉 𝑎𝑟 (�̄�1 − �̄�2)

= 𝑉 𝑎𝑟 (�̄�1) + 𝑉 𝑎𝑟 (�̄�2)

= 𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

and finally we have

𝑆𝑡𝑑𝐸𝑟𝑟 (𝐷) = √𝑠21
𝑛1

+ 𝑠22
𝑛2

and therefore my standardized value for the difference will be

𝑡Δ = estimate − null hypothesized value
𝑆𝑡𝑑𝐸𝑟𝑟 ( estimate )

The test statistic under unequal variance conditions is given by

𝑡Δ = ( ̄𝑥1 − ̄𝑥2)
√ 𝑠21

𝑛1
+ 𝑠22

𝑛2

For the data evaluated here, we thus have

𝑡Δ = (−3.5) − 0
√ 2.392

10 + 2.212
10

= −3.39

This is somewhat painful, but reasonable. The last question is what t-
distribution should we compare this to? Previously we’ve used 𝑑𝑓 = 𝑛 − 1 but
now we have two samples. So our degrees of freedom ought to be somewhere
between min (𝑛1, 𝑛2) − 2 = 8 and (𝑛1 + 𝑛2) − 1 = 19.
There is no correct answer, but the best approximation to what it should be
is called Satterthwaite’s Approximation. We will give this degree of freedom a
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special character, Δ, to keep it clear when we are using it.

Δ = (𝑉1 + 𝑉2)
2

𝑉 2
1

𝑛1−1 + 𝑉 2
2

𝑛2−1

where
𝑉1 = 𝑠21

𝑛1
and 𝑉2 = 𝑠22

𝑛2

So for our example we have

𝑉1 = 2.392
10 = 0.5712 and 𝑉2 = 2.212

10 = 0.4884

and

Δ = (0.5712 + 0.4884)2
(0.5712)2

9 + (0.4884)2
9

= 17.89

So now we can compute our two-tailed p-value as

p-value = 2 ∗ 𝑃 (𝑇17.89 < −3.39)

2*pt(-3.39, df=17.89, ncp=0)

## [1] 0.00328554

7.1.2.1 Confidence Interval

Similar to the theory discussed earlier, we can calculate the asymptotic con-
fidence interval for the difference in the means. Recall that in general the
confidence interval is given by

Est ± 𝑡1−𝛼/2
Δ StdErr ( Est )

For the difference of two means under unequal variance conditions, this can be
written

( ̄𝑥1 − ̄𝑥2) ± 𝑡1−𝛼/2
Δ √𝑠21

𝑛1
+ 𝑠22

𝑛2

Working this through for the data set evaluated here, we find obtain
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−3.5 ± 2.10√2.392
10 + 2.212

10
−3.5 ± 2.16

Where the critical t-score was found at Δ degrees of freedom

qt(0.975, 17.89)

## [1] 2.101848

Giving a 95% confidence interval for the difference in mean taps for NoCaffeine
and Caffeine groups as

(−5.66, −1.34)

It is probably fair to say that this is an ugly calculation to do by hand. Fortu-
nately it isn’t too hard to make R do these calculations for you. The function
t.test() will accept two arguments, a vector of values from the first group
and a vector from the second group. We can also give it a formula, which is
good to start understanding. Here we use Response ~ Predictors, which will
be important for understanding linear models. We want to test if the response
Taps differs between the two Group levels.

t.test(Taps ~ Group, data=CaffeineTaps)

##
## Welch Two Sample t-test
##
## data: Taps by Group
## t = -3.3942, df = 17.89, p-value = 0.003255
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.667384 -1.332616
## sample estimates:
## mean in group NoCaffeine mean in group Caffeine
## 244.8 248.3

7.1.3 Inference via asymptotic results (equal variance as-
sumption)

In the CaffeineTaps example, the standard deviations of each group are quite
similar. Instead of thinking of the data as

�̄�1
⋅∼ 𝑁 (𝜇1,

𝜎2
1

𝑛1
) and �̄�2

⋅∼ 𝑁 (𝜇2,
𝜎2
2

𝑛2
)
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we could consider the model where we assume that the variance term is the
same for each sample.

�̄�1
⋅∼ 𝑁 (𝜇1,

𝜎2

𝑛1
) and �̄�2

⋅∼ 𝑁 (𝜇2,
𝜎2

𝑛2
)

First, we can estimate 𝜇1 and 𝜇2 with the appropriate sample means ̄𝑥1 and ̄𝑥2.
Next we need to calculate an estimate of 𝜎 using all of the data. First recall the
formula for the sample variance for one group was

𝑠2 = 1
𝑛 − 1 [

𝑛
∑
𝑗=1

(𝑥𝑗 − ̄𝑥)2]

In the case with two samples, we want a similar formula but it should take
into account data from both sample groups. Define the notation 𝑥1𝑗 to be the
𝑗th observation of group 1, and 𝑥2𝑗 to be the 𝑗th observation of group 2 and
in general 𝑥𝑖𝑗 as the 𝑗th observation from group 𝑖. We want to subtract each
observation from the its appropriate sample mean and then, because we had
to estimate two means, we need to subtract two degrees of freedom from the
denominator.

𝑠2𝑝𝑜𝑜𝑙𝑒𝑑 = 1
𝑛1 + 𝑛2 − 2 [

𝑛1

∑
𝑗=1

(𝑥1𝑗 − ̄𝑥1)
2 +

𝑛2

∑
𝑗=1

(𝑥2𝑗 − ̄𝑥2)
2]

= 1
𝑛1 + 𝑛2 − 2 [

𝑛1

∑
𝑗=1

𝑒21𝑗 +
𝑛2

∑
𝑗=1

𝑒22𝑗]

= 1
𝑛1 + 𝑛2 − 2 [

2
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑒2𝑖𝑗]

where ̄𝑥1 and ̄𝑥2 are the sample means and 𝑒𝑖𝑗 = 𝑥𝑖𝑗 − ̄𝑥𝑖 is the residual error
of the 𝑖, 𝑗 observation. A computationally convenient formula for this same
quantity is

𝑠2𝑝𝑜𝑜𝑙𝑒𝑑 = 1
𝑛1 + 𝑛2 − 2 [(𝑛1 − 1) 𝑠21 + (𝑛2 − 1) 𝑠22]

Finally we notice that this pooled estimate of the variance term 𝜎2 has 𝑛1+𝑛2−2
degrees of freedom. One benefit of the pooled procedure is that we don’t have to
mess with the Satterthwaite’s approximate degrees of freedom.
Recall our test statistic in the unequal variance case was

𝑡Δ = ( ̄𝑥1 − ̄𝑥2) − 0
√ 𝑠21

𝑛1
+ 𝑠22

𝑛2

Now in the equal variance case, we will use the pooled estimate of the variance
term 𝑠2𝑝𝑜𝑜𝑙𝑒𝑑 instead of 𝑠21 and 𝑠22, and we have known 𝑑𝑓 = (𝑛1 + 𝑛2 − 2).
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𝑡𝑛1+𝑛2−2 = ( ̄𝑥1 − ̄𝑥2) − 0
√ 𝑠2𝑝𝑜𝑜𝑙

𝑛1
+ 𝑠2𝑝𝑜𝑜𝑙

𝑛2

= ( ̄𝑥1 − ̄𝑥2) − 0
𝑠𝑝𝑜𝑜𝑙√ 1

𝑛1
+ 1

𝑛2

where we note that

𝑆𝑡𝑑𝐸𝑟𝑟 (�̄�1 − �̄�2) = 𝑠𝑝𝑜𝑜𝑙𝑒𝑑√(1/𝑛1) + (1/𝑛2)

7.1.3.1 Caffeine Example

We can now rework the analysis of the Caffeine data under equal variance as-
sumptions, allowing us to pool our estimate of the variance.

Recall our hypothesis for the CaffeineTaps data

𝐻0 ∶𝜇𝑛𝑐 − 𝜇𝑐 = 0
𝐻𝑎 ∶𝜇𝑛𝑐 − 𝜇𝑐 ≠ 0

First we have to calculate the summary statistics for each group.

CaffeineTaps %>%
group_by(Group) %>%
summarise(xbar.i = mean(Taps), # sample mean for each group

s2.i = var(Taps), # sample variances for each group
s.i = sd(Taps), # sample standard deviations for each group
n.i = n() ) # sample sizes for each group

## `summarise()` ungrouping output (override with `.groups` argument)

## # A tibble: 2 x 5
## Group xbar.i s2.i s.i n.i
## <fct> <dbl> <dbl> <dbl> <int>
## 1 NoCaffeine 245. 5.73 2.39 10
## 2 Caffeine 248. 4.9 2.21 10

We can then use the descriptive statistics to determine the pooled variance
estimate 𝜎𝑝𝑜𝑜𝑙𝑒𝑑).
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CaffeineTaps %>%
group_by(Group) %>%
summarize( n.i = n(),

s2.i = var(Taps) ) %>%
summarize( s2.p = sum( (n.i-1)*s2.i ) / ( sum(n.i)-2 ),

s.p = sqrt(s2.p) )

## `summarise()` ungrouping output (override with `.groups` argument)

## # A tibble: 1 x 2
## s2.p s.p
## <dbl> <dbl>
## 1 5.32 2.31

Next we can calculate

𝑡18 = (244.8 − 248.3) − 0
2.31√ 1

10 + 1
10

= −3.39

Finally we estimate our p-value

p.value <- 2 * pt(-3.39, df=18) # 2-sided test, so multiply by 2
p.value

## [1] 0.003262969

The change in the assumption of the variance makes little difference for the
Caffeine data set, and we can still conclude that there is a difference in the
mean taps between the Caffeine and NoCaffeine groups.

7.1.3.2 Confidence Interval

The associated 95% confidence interval when working under the equal variance
assumption is

( ̄𝑥1 − ̄𝑥2) ± 𝑡1−𝛼/2
𝑛1+𝑛2−2 (𝑠𝑝𝑜𝑜𝑙√

1
𝑛1

+ 1
𝑛2

)

We now find the critical t-score at the known degree of freedom

qt( .975, df=18 )
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## [1] 2.100922

Then calculate the confidence interval

−3.5 ± 2.10(2.31√ 1
10 + 1

10)

−3.5 ± 2.17
(−5.67, −1.33)

This p-value and 95% confidence interval are quite similar to the values we got
in the case where we assumed unequal variances.

As usual, these calculations are pretty annoying to do by hand and we wish to
instead do them using R. Again the function t.test() will do the annoying
calculations for us. We must only state that we want to do the test under equal
variance or var.equal=TRUE.

# Do the t-test
t.test( Taps ~ Group, data=CaffeineTaps, var.equal=TRUE )

##
## Two Sample t-test
##
## data: Taps by Group
## t = -3.3942, df = 18, p-value = 0.003233
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.66643 -1.33357
## sample estimates:
## mean in group NoCaffeine mean in group Caffeine
## 244.8 248.3

Maybe we would like to evaluate a higher confidence level.

# Do the t-test at 99% confidence
t.test( Taps ~ Group, data=CaffeineTaps, var.equal=TRUE, conf.level=.99 )

##
## Two Sample t-test
##
## data: Taps by Group
## t = -3.3942, df = 18, p-value = 0.003233
## alternative hypothesis: true difference in means is not equal to 0
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## 99 percent confidence interval:
## -6.4681918 -0.5318082
## sample estimates:
## mean in group NoCaffeine mean in group Caffeine
## 244.8 248.3

7.1.4 Additional Example

Example: Does drinking beer increase your attractiveness to mosquitoes?

In places in the country substantial mosquito populations, the question of
whether drinking beer causes the drinker to be more attractive to the mosquitoes
than drinking something else has plagued campers. To answer such a ques-
tion, researchers conducted a study to determine if drinking beer attracts more
mosquitoes than drinking water. Of 𝑛 = 43 subjects, 𝑛𝑏 = 25 drank a liter beer
and 𝑛𝑤 = 18 drank a liter of water and mosquitoes were caught in traps as they
approached the different subjects. The critical part of this study is that the
treatment (beer or water) was randomly assigned to each subject.

For this study, we want to test

𝐻0 ∶ 𝛿 = 0 vs 𝐻𝑎 ∶ 𝛿 < 0

where we define 𝛿 = 𝜇𝑤−𝜇𝑏 and 𝜇𝑏 is the mean number of mosquitoes attracted
to a beer drinker and 𝜇𝑤 is the mean number attracted to a water drinker. As
usual we begin our analysis by plotting the data.

# I can't find this dataset on-line so I'll just type it in.
Mosquitoes <- data.frame(
Number = c(27,19,20,20,23,17,21,24,31,26,28,20,27,

19,25,31,24,28,24,29,21,21,18,27,20,
21,19,13,22,15,22,15,22,20,
12,24,24,21,19,18,16,23,20),

Treat = c( rep('Beer', 25), rep('Water',18) ) )

# Set up the Treatment Variable so that Water is the Reference Group
Mosquitoes <- Mosquitoes %>%
mutate(Treat = forcats::fct_relevel(Treat, 'Water'))

# Plot the data
ggplot(Mosquitoes, aes(x=Number)) +
geom_histogram(binwidth=1) +
facet_grid( Treat ~ . )
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For this experiment and the summary statistic that captures the difference we
are trying to understand is 𝑑 = ̄𝑥𝑤− ̄𝑥𝑏 where ̄𝑥𝑤 is the sample mean number of
mosquitoes attracted by the water group and ̄𝑥𝑏 is the sample mean number of
mosquitoes attracted by the beer group. Because of the order we chose for the
subtraction, a negative value for d is supportive of the alternative hypothesis
that mosquitoes are more attracted to beer drinkers.

Mosquitoes %>% group_by(Treat) %>%
summarise(xbar.i = mean(Number),

s2.i = var(Number),
s.i = sd(Number),
n.i = n())

## # A tibble: 2 x 5
## Treat xbar.i s2.i s.i n.i
## <fct> <dbl> <dbl> <dbl> <int>
## 1 Water 19.2 13.5 3.67 18
## 2 Beer 23.6 17.1 4.13 25

Here we see that our statistic of interest is

𝑑 = ̄𝑥𝑤 − ̄𝑥𝑏
= 19.22 − 23.6
= −4.377̄

We can use our numerical methods to evaluate statistical significance. First we
perform the hypothesis test by creating the sampling distribution of 𝑑∗ assuming
𝐻0 is true by repeatedly shuffling the group labels and calculating differences.
We use coin to simplify the work.
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### library(coin) required
coin::oneway_test(Number~Treat, data=Mosquitoes, alternative="less",

distribution=approximate(nresample=10^4))

##
## Approximative Two-Sample Fisher-Pitman Permutation Test
##
## data: Number by Treat (Water, Beer)
## Z = -3.1673, p-value = 5e-04
## alternative hypothesis: true mu is less than 0

From 10000 permutations, we obtain a p-value estimate of 0.0004.
The associated confidence interval (lets do a 90% confidence level), is created via
bootstrapping. The diff.mean.func was defined earlier in the chapter. Our
data is in the form we need it, so we can run the bootstrap with the same setup
as earlier.

BootDist <- boot(data = Mosquitoes, statistic = diff.mean.function, R=10000)

We can visualize the distribution of the difference in means.

BootDist.graph <- data.frame(dbar=BootDist$t)
ggplot(BootDist.graph, aes(x=dbar)) +
geom_histogram() +
ggtitle('Difference in mean number of Mosquitoes between Water and Beer')
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Difference in mean number of Mosquitoes between Water and Beer

We can then extract the quantile-based 90% confidence interval.
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CI <- quantile( BootDist$t, probs=c(0.05, 0.95) )
CI

## 5% 95%
## -6.347715 -2.456786

The calculated p-value is extremely small and the associated two-sided 90%
confidence interval does not contain 0, so we can conclude at 10% significance
that the choice of drink does cause a change in attractiveness to mosquitoes.
If we wanted to perform the same analysis using asymptotic methods we could
do the calculations by hand, or just use R.

t.test( Number ~ Treat, data=Mosquitoes,
var.equal=TRUE, conf.level=0.90)

##
## Two Sample t-test
##
## data: Number by Treat
## t = -3.587, df = 41, p-value = 0.0008831
## alternative hypothesis: true difference in means is not equal to 0
## 90 percent confidence interval:
## -6.431666 -2.323889
## sample estimates:
## mean in group Water mean in group Beer
## 19.22222 23.60000

Because we releveled the groups to make Water first, this calculation matches
everything demonstrated above.

7.2 Difference in means between two groups:
Paired Data

If the context of study is such that we can logically pair an observation from the
first population to a particular observation in the second, then we can perform
what is called a Paired Test. In a paired test, we will take each set of paired
observations, calculate the difference, and then perform a 1-sample regular hy-
pothesis test on the differences.
For example, in the package Lock5Data there is a dataset that examines the
age in which men and women get married. The data was obtained by taking a
random sample from publicly available marriage licenses in St. Lawrence County,
NY.
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data(MarriageAges, package='Lock5Data')
head(MarriageAges)

## Husband Wife
## 1 53 50
## 2 38 34
## 3 46 44
## 4 30 36
## 5 31 23
## 6 26 31

Unfortunately the format of this dataset is not particularly convenient for mak-
ing graphs. Instead I want to turn this data into a “long” dataset where I have
one row per person, not one row per marriage. We will also want to retain the
groupings, so another column is created with this information (Marriage).

# Make a dataset that is more convenient for graphing.
MarriageAges.Long <- MarriageAges %>%
mutate(Marriage = factor(1:n())) %>% # Give each row a unique ID
gather('Spouse', 'Age', Husband, Wife) %>% # pivot from Husband/Wife to Spouse/Age
arrange(Marriage, desc(Spouse)) # Sort by Marriage, then (Wife,Husband)

head(MarriageAges.Long)

## Marriage Spouse Age
## 1 1 Wife 50
## 2 1 Husband 53
## 3 2 Wife 34
## 4 2 Husband 38
## 5 3 Wife 44
## 6 3 Husband 46

We can then visualize the ages for each type of Spouse.

# Make a graph of ages, by Spouse Type
ggplot(MarriageAges.Long, aes(x=Age)) +
geom_histogram(binwidth=5) +
facet_grid(Spouse ~ .)
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Looking at this view of the data, it doesn’t appear that the husbands tend to
be older than the wives. A t-test to see if the average age of husbands is greater
than the average age of wives gives an insignificant difference. We will want to
test if

𝐻0 ∶𝜇ℎ − 𝜇𝑤 = 0
𝐻𝑎 ∶𝜇ℎ − 𝜇𝑤 > 0

t.test( Age ~ Spouse, data=MarriageAges.Long, alternative='greater' )

##
## Welch Two Sample t-test
##
## data: Age by Spouse
## t = 1.8055, df = 203.12, p-value = 0.03624
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.2398733 Inf
## sample estimates:
## mean in group Husband mean in group Wife
## 34.66667 31.83810

But critically, we are ignoring that while the average ages might not be different,
for a given marriage, the husband tends to be older than the wife. Instead of
looking at the difference in the means (i.e 𝑑 = ℎ̄ − �̄�) we should actually be
looking at the mean of the differences ̄𝑑 = 1

𝑛 ∑𝑑𝑖 where 𝑑𝑖 = ℎ𝑖 −𝑤𝑖.

MarriageAges <- MarriageAges %>%
mutate( d = Husband - Wife )
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ggplot(MarriageAges, aes(x = d)) +
geom_histogram(binwidth=2)
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Given this set of differences, we’d like to know if this data is compatible with
the null hypothesis that husbands and wives tend to be the same age versus the
alternative that husbands tend to be older. (We could chose the two-sided test
as well).

𝐻0 ∶ 𝛿 = 0
𝐻𝐴 ∶ 𝛿 > 0

Because we have reduced our problem to a 1-sample test, we can perform the
asymptotic t-test easily enough in R. Notice now we are testing against the null
hypothesis that 𝛿 = 0.

t.test( MarriageAges$d, mu=0 )

##
## One Sample t-test
##
## data: MarriageAges$d
## t = 5.8025, df = 104, p-value = 7.121e-08
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 1.861895 3.795248
## sample estimates:
## mean of x
## 2.828571

The result is highly statistically significant, and we see the mean difference in
ages for the husband to be 2.8 years older.



144CHAPTER 7. TWO-SAMPLE HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

To perform the same analysis using re-sampling methods, we need to be care-
ful to do the re-sampling correctly. Notice that if we use coin how we set it
up before, that we get something similar to when we were working under the
assumption that the two groups were independent. The coin package requires
objects be factors (the data.frame has it contained as a character or chr).

oneway_test(Age~factor(Spouse), data=MarriageAges.Long, alternative="greater", distribution=approximate(nresample=10^4-1))

##
## Approximative Two-Sample Fisher-Pitman Permutation Test
##
## data: Age by factor(Spouse) (Husband, Wife)
## Z = 1.7958, p-value = 0.0384
## alternative hypothesis: true mu is greater than 0

The issue is that the permutations were done without taking into account that
the Spouses are paired. The permutation test must be updated such that the
paired nature of the marriages is taken into account. We can introduce this
pairing using a conditional statement, where we want to ensure that we group
the Spouse variable given the marriage they are in Marriage.

oneway_test(Age~factor(Spouse)|factor(Marriage), data=MarriageAges.Long, alternative="greater", distribution=approximate(nresample=10^4-1))

##
## Approximative Two-Sample Fisher-Pitman Permutation Test
##
## data: Age by
## factor(Spouse) (Husband, Wife)
## stratified by factor(Marriage)
## Z = 5.0675, p-value < 1e-04
## alternative hypothesis: true mu is greater than 0

After 10000 permutations, no mean difference in age was ever observed as ex-
treme as the original and can only state that p-value < 1𝑒 − 4. This is in
agreement with the t.test performed above on the difference in ages for each
marriage.

Finally, we can also perform bootstrap analysis. This now only requires that
we use our bootstrap method from Chapter 3, as we only need to bootstrap the
differences. We have not introduced mean.function so I must provide it now.
I then run the bootstrap on the difference in ages for each marriage.

mean.function <- function(x, index) {
d <- x[index]
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return(mean(d)) }

BootDist <- boot(data = MarriageAges$d, statistic = mean.function, R=10000)

I omit the visualization, but give the resulting 95% confidence interval.

quantile( BootDist$t, probs=c(.025, .975) )

## 2.5% 97.5%
## 1.904762 3.800000

We observe a similar p-value and confidence interval as we did using the asymp-
totic test as expected. We now have a variety of tests and conditions, and
can perform the analysis under asymptotic assumptions or through numerical
strategies.

7.2.1 Additional Example

Example: Traffic Flow

Engineers in Dresden, Germany were looking at ways to improve traffic flow by
enabling traffic lights to communicate information about traffic flow with nearby
traffic lights and modify their timing sequence appropriately. The engineers
wished to compare new flexible timing system with the standard fixed timing
sequence by evaluating the delay at a randomly selected 𝑛 = 24 intersections in
Dresden. The data show results of one experiment where they simulated buses
moving along a street and recorded the delay time for both systems. Because
each simulation is extremely intensive, they only simulated 𝑛 = 24 intersections
instead of simulating the whole city.

data(TrafficFlow, package='Lock5Data')
head(TrafficFlow)

## Timed Flexible Difference
## 1 88 45 43
## 2 90 46 44
## 3 91 45 46
## 4 99 51 48
## 5 101 48 53
## 6 101 48 53

We change the shape of the data to make it easier to work with.
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# A data set more convenient for Graphing and Permutation Tests.
TrafficFlow.Long <- TrafficFlow %>%
mutate(Light = factor(1:n())) %>% # Give each row a unique ID
gather('Seq', 'Delay', Flexible, Timed) %>% # pivot to SequenceType and Delay amount
arrange(Light, Seq) # Sort by Light, then by SequenceType

head(TrafficFlow.Long)

## Difference Light Seq Delay
## 1 43 1 Flexible 45
## 2 43 1 Timed 88
## 3 44 2 Flexible 46
## 4 44 2 Timed 90
## 5 46 3 Flexible 45
## 6 46 3 Timed 91

As usual, we’ll first examine the data with a graph.

ggplot(TrafficFlow.Long, aes(x=Delay)) +
geom_histogram(binwidth=2) + # histograms of Delay time
facet_grid(Seq ~ .) # two plots, stacked by SequenceType

F
lexible

T
im

ed

60 90 120

0

2

4

6

8

0

2

4

6

8

Delay

co
un

t

ggplot(TrafficFlow, aes(x=Difference)) +
geom_histogram(binwidth=2) +
ggtitle('Difference (Standard - Flexible)')
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All of the differences were positive, so it is almost ridiculous to do a hypothesis
test that there is no decrease in delays with the flexible timing system. We
continue through the analysis. We begin with the asymptotic results, using the
paired differences.

t.test( TrafficFlow$Difference )

##
## One Sample t-test
##
## data: TrafficFlow$Difference
## t = 19.675, df = 23, p-value = 6.909e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 54.58639 67.41361
## sample estimates:
## mean of x
## 61

As expected, there is significant evidence that mean difference between Standard
and Flexible. We can also run the permutation test under paired conditions.
We are interested in the response Delay and how it is influenced by Seq the
sequence time. We then also ensure that we properly pair the data, where are
groupings are now the variable Light.

oneway_test(Delay~factor(Seq)|factor(Light), data=TrafficFlow.Long,
alternative="two.sided", distribution=approximate(nresample=10^4-1))

##
## Approximative Two-Sample Fisher-Pitman Permutation Test
##
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## data: Delay by
## factor(Seq) (Flexible, Timed)
## stratified by factor(Light)
## Z = -4.7596, p-value < 1e-04
## alternative hypothesis: true mu is not equal to 0

We observe after 10000 iterations that again, no mean difference was ever as
extreme as the original data set. Thus, we have p-value < 1𝑒−4. We finish with
the bootstrap, performed on the differences.

BootDist <- boot(data = TrafficFlow$Difference, statistic = mean.function, R=10000)

I omit the visualization, but give the resulting 95% confidence interval.

quantile( BootDist$t, probs=c(.025, .975) )

## 2.5% 97.5%
## 55.50000 67.41667

The confidence interval suggests that these data support that the mean dif-
ference between the flexible timing sequence versus the standard fixed timing
sequence in Dresden is in the interval (55.5, 67.5) seconds.

7.3 Exercises

1. In the 2011 article “Methane contamination of drinking water accompa-
nying gas-well drilling and hydraulic fracturing” in the Proceedings of the
National Academy of Sciences, 𝑛1 = 21 sites in proximity to a fracking
well had a mean methane level of ̄𝑥1 = 19.2 mg 𝐶𝐻4𝐿−1 with a sample
standard deviation 𝑠1 = 30.3. The 𝑛2 = 13 sites in the same region with
no fracking wells within 1 kilometer had mean methane levels of ̄𝑥2 = 1.1
mg 𝐶𝐻4𝐿−1 and standard deviation 𝑠2 = 6.3. Perform a one-sided, two-
sample t-test with unpooled variance and an 𝛼 = 0.05 level to investigate
if the presence of fracking wells increases the methane level in drinking-
water wells in this region. Notice that because I don’t give you the data,
you can only analyze the data using the asymptotic method and plugging
in the give quantities into the formulas presented.

a) State an appropriate null and alternative hypothesis.
b) Calculate an appropriate test statistic (making sure to denote the

appropriate degrees of freedom, if necessary).
c) Calculate an appropriate p-value.
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d) At an significance level of 𝛼 = 0.05, do you reject or fail to reject the
null hypothesis?

e) Restate your conclusion in terms of the problem.

2. All persons running for public office must report the amount of money
raised and spent during their campaign. Political scientists contend that
it is more difficult for female candidates to raise money. Suppose that we
randomly sample 30 male and 30 female candidates for state legislature
and observe the male candidates raised, on average, ̄𝑦 = $350, 000 with
a standard deviation of 𝑠𝑦 = $61, 900 and the females raised on average
̄𝑥 = $245, 000 with a standard deviation of 𝑠𝑥 = $52, 100. Perform a one-

sided, two-sample t-test with pooled variance to test if female candidates
generally raise less in their campaigns that male candidates. Notice that
because I don’t give you the data, you can only analyze the data using the
asymptotic method and plugging in the give quantities into the formulas
presented.

a) State an appropriate null and alternative hypothesis. (Be sure to use
correct notation!)

b) Calculate an appropriate test statistic (making sure to denote the
appropriate degrees of freedom, if necessary).

c) Calculate an appropriate p-value.
d) At an significance level of 𝛼 = 0.05, do you reject or fail to reject the

null hypothesis?
e) Restate your conclusion in terms of the problem.

3. In the Lock5Data package, the dataset Smiles gives data “…from a study
examining the effect of a smile on the leniency of disciplinary action for
wrongdoers. Participants in the experiment took on the role of members of
a college disciplinary panel judging students accused of cheating. For each
suspect, along with a description of the offense, a picture was provided
with either a smile or neutral facial expression. Note, that for each indi-
vidual only one picture was submitted. A leniency score was calculated
based on the disciplinary decisions made by the participants.”

a) Graph the leniency score for the smiling and non-smiling groups.
Comment on if you can visually detect any difference in leniency
score.

b) Calculate the mean and standard deviation of the leniencies for each
group. Does it seem reasonable that the standard deviation of each
group is the same?

c) Do a two-sided two-sample t-test using pooled variance using the
asymptotic method. Report the test statistic, p-value, and a 95%
CI.

d) Do a two-side two-sample t-test using re-sampling methods. Report
the p-value and a 95% CI.
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e) What do you conclude at an 𝛼 = 0.05 level? Do you feel we should
have used a more stringent 𝛼 level?

4. In the Lock5Data package, the dataset StorySpoilers is data from an
experiment where the researchers are testing if a “spoiler” at the beginning
of a short story negatively affects the enjoyment of the story. A set of
𝑛 = 12 stories were selected and a spoiler introduction was created. Each
version of each story was read by at least 30 people and rated. Reported
are the average ratings for the spoiler and non-spoiler versions of each
story. The following code creates the “long” version of the data.

library(dplyr)
library(tidyr)
data(StorySpoilers, package='Lock5Data')
StorySpoilers.Long <- StorySpoilers %>%

gather('Type', 'Rating', Spoiler, Original) %>%
mutate( Story = factor(Story), # make Story and Type into

Type = factor(Type) ) %>% # categorical variables
arrange(Story)

a) Based on the description, a 1-sided test is appropriate. Explain why.
b) Graph the ratings for the original stories and the modified spoiler

version. Comment on if you detect any difference in ratings between
the two.

c) Graph the difference in ratings for each story. Comment on if the
distribution of the differences seems to suggest that a spoiler lowers
the rating.

d) Do a paired one-sided t-test using the asymptotic method. Also
calculate a 95% confidence interval.

e) Do a paired one-sided t-test using the permutation method. Also
calculate a 95% confidence interval using the bootstrap.

f) Based on your results in parts (d) and (e), what do you conclude?

5. In the Lock5Data package, the dataset Wetsuits describes an experiment
with the goal of quantifying the effect of wearing a wetsuit on the speed
of swimming. (It is often debated among triathletes whether or not to
wear a wetsuit when it is optional.) A set of 𝑛 = 12 swimmers and
triathletes did a 1500 m swim in both the wetsuit and again in regular
swimwear. The order in which they swam (wetsuit first or non-wetsuit
first) was randomized for each participant. Reported is the maximum
velocity during each swim.

# Code for creating the "long" version of the data
library(dplyr)
library(tidyr)
data('Wetsuits', package='Lock5Data')
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Wetsuits.Long <- Wetsuits %>%
mutate(Participant = factor(1:12) ) %>%
gather('Suit', 'MaxVelocity', Wetsuit,NoWetsuit) %>%
arrange( Participant, Suit) %>%
mutate(Suit = factor(Suit))

a) Why did the researcher randomize which suit was worn first?
b) Plot the velocities for the wetsuit and non-wetsuit for each partici-

pant. Comment on if you detect any difference in the means of these
two distributions.

c) Ignore the pairing and do a two-sided two-sample t-test using the
asymptotic method. What would you conclude doing the t-test this
way?

d) Plot the difference in velocity for each swimmer. Comment on if the
observed difference in velocity seems to indicate that which should
be preferred (wetsuit or non-wetsuit).

e) Do a paired two-sided t-test using the asymptotic method. Also
calculate the 95% confidence interval. What do you conclude?

f) Do a paired two-sided t-test using the permutation method. Also
calculate the 95% confidence interval using the bootstrap method.
What do you conclude?
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Chapter 8

Testing Model Assumptions

library(ggplot2)
library(dplyr)

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

Performing a t-test requires that the data was drawn from a normal distribu-
tion or that the sample size is large enough that the Central Limit Theorem
will guarantee that the sample means are approximately normally distributed.
However, how do you decide if the data were drawn from a normal distribution,
say if your sample size is between 10 and 20? If we are using a model that
assumes equal variance between groups, how should we test if that assumption
is true?

8.1 Testing Normality

8.1.1 Visual Inspection - QQplots

If we are taking a sample of size 𝑛 = 10 from a standard normal distribution,
then I should expect that the smallest observation will be negative. Intuitively,
you would expect the smallest observation to be near the 10th percentile of
the standard normal, and likewise the second smallest should be near the 20th
percentile.

This idea needs a little modification because the largest observation cannot be
near the 100th percentile (because that is ∞). So we’ll adjust the estimates to
still be spaced at (1/n) quantile increments, but starting at the 0.5/n quantile

153
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instead of the 1/n quantile. So the smallest observation should be near the
0.05 quantile, the second smallest should be near the 0.15 quantile, and the
largest observation should be near the 0.95 quantile. I will refer to these as the
theoretical quantiles.
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I can then graph the theoretical quantiles vs my observed values and if they lie
on the 1-to-1 line, then my data comes from a standard normal distribution.

n <- 10
data <- data.frame( observed = sort( rnorm(n, mean=0, sd=1) ),

theoretical = qnorm( (1:n -.5)/n, mean=0, sd=1 ) )
library(ggplot2)
ggplot(data) +
geom_point( aes(x=theoretical, y=observed) ) +
geom_line( aes(x=theoretical, y=theoretical) ) +
labs(x='Theoretical', y='Observed', title='Q-Q Plot: Observed vs Normal Distribution')
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Q−Q Plot: Observed vs Normal Distribution
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Q−Q Plot: Observed vs Normal Distribution

If I think my data are normal, but with some mean 𝜇 and standard deviation 𝜎,
we still make the same graph, but the 1-to-1 line will be moved to pass through
the 1st and 3rd quartiles. Again, the data points should be near the line. This
is common enough that R has built in functions to make this graph:

n <- 10
x <- rnorm(n, mean=100, sd=10)
qqnorm(x)
qqline(x)
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We now will examine a sample of 𝑛 = 40 from a bunch of different distributions
that are not normal and see what the normal QQ plot looks like. In the following
graphs, pay particular attention to the tails. Notice the the t-distribution has
significantly heavier tails than the normal distribution and that is reflected in
the dots being lower than the line on the left and higher on the right. Likewise
the logNormal distribution, which is defined by log(𝑋) ∼ Normal has too light
of a tail on the left (because logNormal variables must be greater than 0) and
too heavy on the right. The uniform distribution, which is cut off at 0 and 1,
has too light of tails in both directions.
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8.1.2 Tests for Normality

It seems logical that there should be some sort of statistical test for if a sample
is obviously non-normal. Two common ones are the Shapiro-Wilks test and
the Anderson-Darling test. The Shapiro-Wilks test is available in the base
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installation of R with the function shapiro.test(). The Anderson-Darling test is
available in the package nortest. Here we will not focus on the theory of these
tests, but instead their use. In both tests the null hypothesis is that the data
are normally distributed.

𝐻0 ∶ data are normally distributed
𝐻𝑎 ∶ data are not normally distributed

Therefore a small p-value is evidence against normality.

Often we want to know if our data comes from a normal distribution because
our sample size is too small to rely on the Central Limit Theorem to guarantee
that the sampling distribution of the sample mean is Normal. So how well do
these tests detect non-normality in a small sample size case?

x <- rlnorm(n=10, meanlog=2, sdlog=2)
shapiro.test(x)

##
## Shapiro-Wilk normality test
##
## data: x
## W = 0.39539, p-value = 2.207e-07

So the Shapiro-Wilks test detects the non-normality in the extreme case of a
logNormal distribution, but what about something closer to normal like the
gamma distribution?

x <- rgamma(n=10, shape=5, rate=1/5)
shapiro.test(x)

##
## Shapiro-Wilk normality test
##
## data: x
## W = 0.92703, p-value = 0.4193

Here the Shapiro test fails to detect the sample has non-normality due to the
small sample size. Unfortunately, the small sample-size case is exactly when we
need a good test. So what do we do?

My advise is to look at the histograms of your data, normal QQ plots, and to
use the Shapiro-Wilks test to find extreme non-normality, but recognize that in
the small sample case, we have very little power and can only detect extreme
departures from normality. If I cannot detect non-normality and my sample
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size is moderate (15-30), I won’t worry too much since the data isn’t too far
from normal and the CLT will help normalize the sample means but for smaller
sample sizes, I will use non-parametric methods (such as the bootstrap) that do
not make distributional assumptions.

8.2 Testing Equal Variance

8.2.1 Visual Inspection

Often a test procedure assumes equal variances among groups or constant vari-
ance along a prediction gradient. The most effect way of checking to see if that
assumption is met is to visually inspect the data. For the case of t-tests, boxplots
are an excellent visual check. If the lengths of the boxes are not substantially
different, then the equal variance assumption is acceptable.

Consider an experiment where we measure the speed of reaction to a stimulus.
The subjects are told to press a button as soon as they hear a noise. Between
2 and 30 seconds later an extremely loud noise is made. Of primary interest
is how inebriation affects the reaction speed. Since we can’t surprise subjects
twice, only one measurement per subject is possible and a paired test is not
possible. Subjects were randomly assigned to a control or alcohol group

Alcohol <- data.frame(
time=c( 0.90, 0.37, 1.63, 0.83, 0.95, 0.78, 0.86, 0.61, 0.38, 1.97,

1.46, 1.45, 1.76, 1.44, 1.11, 3.07, 0.98, 1.27, 2.56, 1.32 ),
trt = rep(c('control','alcohol'), each=10))

ggplot(Alcohol, aes(x=trt, y=time)) +
geom_boxplot()
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8.2.2 Tests for Equal Variance

Consider having samples drawn from normal distributions

𝑋𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗 ∼ 𝑁 (0, 𝜎2
𝑖 )

where the 𝑖 subscript denotes which population the observation was drawn from
and the 𝑗 subscript denotes the individual observation and from the 𝑖th popu-
lation we observe 𝑛𝑖 samples. In general I might be interested in evaluating if
𝜎2
𝑖 = 𝜎2

𝑗 .

Let’s consider the simplest case of two populations and consider the null and
alternative hypotheses:

𝐻0 ∶ 𝜎2
1 = 𝜎2

2
𝐻𝑎 ∶ 𝜎2

1 ≠ 𝜎2
2

If the null hypothesis is true, then the ratio 𝑠21/𝑠22 should be approximately one.
It can be shown that under the null hypothesis,

𝑓 = 𝑠21
𝑠22

∼ 𝐹𝑑𝑓1,𝑑𝑓2

where 𝑑𝑓1 and 𝑑𝑓2 are the associated degrees of freedom for 𝑠21 and 𝑠22. The
order of these is traditionally given with the degrees of freedom of the top term
first and the degrees of freedom of the bottom term second.

Variables that follow a F distribution must be non-negative and two F distribu-
tions are shown below. The F distribution is centered at 𝐸 (𝐹𝑑𝑓1,𝑑𝑓2

) = 𝑑𝑓2
𝑑𝑓2−2 ≈

1 for large values of 𝑑𝑓2. The variance of this distribution goes to 0 as 𝑑𝑓1 and
𝑑𝑓2 get large.
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If the value of my test statistic 𝑓 = 𝑠21/𝑠22 is too large or too small, then we will
reject the null hypothesis. If we preform an F-test with an 𝛼 = 0.05 level of
significance then we’ll reject 𝐻0 if 𝑓 < 𝐹0.025,𝑛1−1,𝑛2−1 or if 𝑓 > 𝐹0.975,𝑛1−1,𝑛2−1.
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Example. Suppose we have two samples drawn from normally distributed
populations. The first has 𝑛1 = 7 observations and a sample variance of 𝑠21 = 25
and the second sample has 𝑛2 = 10 and 𝑠22 = 64. Then 𝑓6,9 = 25

64 = 0.391 and
we notice this value is is in between the lower and upper cut-off values

qf( c(0.025, .975), 6, 9)

## [1] 0.1810477 4.3197218

so we will fail to reject the null hypothesis. Just for good measure, we can
calculate the p-value as

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2 ⋅ 𝑃 (𝐹𝑛1−1,𝑛2−1 < 0.391)
= 2 ⋅ 𝑃 (𝐹6,9 < 0.391)

2*pf(0.391, 6, 9)

## [1] 0.2654714

We calculate the p-value by finding the area to the left and multiplying by two
because my test statistic was less than 1 (the expected value of f if 𝐻0 is true).
If my test statistic was greater than 1, we would have found the area to the
right of 𝑓 and multiplied by two.

8.2.3 Symmetry of the F-distribution

When testing
𝐻0 ∶ 𝜎2

1 = 𝜎2
2

𝐻𝑎 ∶ 𝜎2
1 ≠ 𝜎2

2

The labeling of group 1 and group 2 is completely arbitrary and I should view
𝑓 = 𝑠21/𝑠22 as the same evidence against null as 𝑓∗ = 𝑠22/𝑠21. Therefore we have

𝑃 (𝐹𝑑𝑓1, 𝑑𝑓2
> 𝑠21

𝑠22
) = 𝑃 (𝐹𝑑𝑓2, 𝑑𝑓1

< 𝑠22
𝑠21

)

For example, suppose that 𝑛1 = 5 and 𝑛2 = 20 and 𝑠21 = 6 and 𝑠22 = 3 then

𝑃 (𝐹4, 19 > 6
3) = 𝑃 (𝐹19, 4 < 3

6)
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1 - pf(6/3, 4, 19)

## [1] 0.1354182

pf(3/6, 19, 4)

## [1] 0.1354182
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8.3 Power of the F-test

We now turn to the question of how well does this test work? To find out we’ll
take samples from normal distributions with different variances and apply our
F-test to see how sensitive the test is.

set.seed(535)

sigma1 <- 1
sigma2 <- 2
n1 <- 10
n2 <- 10
v1 <- var(rnorm(n1, mean=0, sd=sigma1))
v2 <- var(rnorm(n2, mean=0, sd=sigma2))
f <- v1/v2
if( f < 1 ){
p.value <- 2 * pf( f, df1 = n1-1, df2 = n2-1 )

}else{
p.value <- 2 * (1 - pf( f, df1 = n1-1, df2 = n2-1))

}
p.value
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## [1] 0.1142902

So even though the standard deviation in the second sample was twice as large
as the first, we were unable to detect it do to the small sample sizes. What
happens when we take a larger sample size?

sigma1 <- 1
sigma2 <- 2
n1 <- 30
n2 <- 30
v1 <- var(rnorm(n1, mean=0, sd=sigma1))
v2 <- var(rnorm(n2, mean=0, sd=sigma2))
f <- v1/v2
if( f < 1 ){
p.value <- 2 * pf( f, df1 = n1-1, df2 = n2-1 )

}else{
p.value <- 2 * (1 - pf( f, df1 = n1-1, df2 = n2-1))

}
p.value

## [1] 4.276443e-06

What this tells us is that just like every other statistical test, sample size effects
the power of the test. In small sample situations, you cannot rely on a statistical
test to tell you if your samples have unequal variance. Instead you need to think
about if the assumption is scientifically valid or if you can use a test that does
not rely on the equal variance assumption.

8.4 Theoretical distribution vs bootstrap

Returning to the research example with the alcohol and control group, an F-test
for different variances results in a p-value of

# Calculating everything by hand
F <- Alcohol %>%
group_by(trt) %>% # for each trt group,
summarise( s2 = var(time)) %>% # calculate variance.
summarise( F = s2[1] / s2[2] ) # and then take the ratio

## `summarise()` ungrouping output (override with `.groups` argument)
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F

## # A tibble: 1 x 1
## F
## <dbl>
## 1 1.70

obs.F <- as.numeric( F ) # Convert 1-by-1 data frame to simple number
pvalue <- 2* (1-pf( obs.F, 9,9 ))
pvalue

## [1] 0.4390223

# Using Rs built in function
var.test( time ~ trt, data=Alcohol )

##
## F test to compare two variances
##
## data: time by trt
## F = 1.7048, num df = 9, denom df = 9, p-value = 0.439
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4234365 6.8633246
## sample estimates:
## ratio of variances
## 1.704753

We can wonder how well the theoretical estimate of the sampling distribution
(F_{9,9}) compares to the simulation based estimate of the sampling distribu-
tion.

# Permutation distribution of Observed F-statistic assuming H0 is true.
PermDist <- mosaic::do(10000) *
var.test(time ~ mosaic::shuffle(trt), data=Alcohol)$statistic

## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2

# Figure which parts of the distribution are more extreme than my observed F
PermDist <- PermDist %>%
mutate( extreme = F > obs.F | F < 1/obs.F )
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# Make a histogram of the permutation distribution along with the theoretical
ggplot(PermDist, aes(x=F, y=..density..)) +
geom_histogram(binwidth=.25) +
geom_area( data=data.frame(x=seq(0,10,length=1000)) %>%

mutate(y=df(x, 9,9)),
aes(x=x, y=y), alpha=.3, fill='red')
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# p-value... what percent is more extreme than what I observed?
PermDist %>% summarise(p.value = mean(extreme))

## p.value
## 1 0.6144

The theoretical sampling distribution is more concentrated near 1 than the
simulation estimate. As a result, the p-value is a bit larger, but in both cases,
we cannot reject equal variances.

Example: Lets consider a case where we have two groups of moderate sample
sizes where there is a difference in variance. Suppose we consider the set of
times in takes me to bike to work in the morning versus biking home. On the
way to work, I get to go down Beaver street, but on the way home there is a
lot of elevation gain. Also surprisingly often on the way home I run into other
cyclists I know and we stop and chat or we end up riding some place neither of
us has to go.

Commute <- data.frame(
time = c(21.0, 22.1, 19.3, 22.4, 19.6, 19.8,

19.6, 20.4, 21.1, 19.7, 19.9, 20.0,
25.0, 27.8, 25.2, 25.1, 25.4, 25.9,
30.3, 29.5, 25.1, 26.4, 24.4, 27.7,
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25.8, 27.1),
type = c( rep('Morning',12), rep('Evening',14)))

ggplot(Commute, aes(x=type, y=time)) +
geom_boxplot() +
labs(title='Commute Times', y='Time (minutes)', x='Time of Day') +
theme_bw()
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We now test to see if there is a significant difference between the variances of
these two groups. If we feel comfortable with assuming that these data come
from normal distributions, then the theoretical method is appropriate.

var.test( time ~ type, data=Commute )

##
## F test to compare two variances
##
## data: time by type
## F = 3.039, num df = 13, denom df = 11, p-value = 0.07301
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8959971 9.7171219
## sample estimates:
## ratio of variances
## 3.038978

But if we are uncomfortable with the normality assumption (the Shapiro-Wilks
test indicates moderate evidence to reject normality for both samples due to
the positive skew in both) we could compare our observed F-statistic to the
simulation based estimate of the sampling distribution.



166 CHAPTER 8. TESTING MODEL ASSUMPTIONS

# obs.F = 3.04
obs.F <- var.test(time ~ type, data=Commute)$statistic

# create the permutation distribution of F-values
PermDist <- mosaic::do(10000) *
var.test(time ~ mosaic::shuffle(type), data=Commute)$statistic

# Figure which parts of the distribution are more extreme than my observed F
PermDist <- PermDist %>%
mutate( extreme = F > obs.F | F < 1/obs.F ) # F > 3.04 or F < 1/3.04

# Make a histogram of the permutation distribution and theoretical
ggplot(PermDist, aes(x=F, y=..density..)) +
geom_histogram(binwidth=.1) +
geom_area( data=data.frame(x=seq(0,10,length=1000)) %>%

mutate(y=df(x, 13, 11)),
aes(x=x, y=y), alpha=.3, fill='red')
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# p-value... what proportion is more extreme than what I observed?
PermDist %>% summarise(p.value = mean(extreme))

## p.value
## 1 0.001

We again see that with this small of a data set, our simulation based p-value
is different from the theoretical based p-value. This is primarily due to the
non-normality of our data along with the small sample sizes. In general as our
sample sizes increase the simulation based and theoretical based distributions
should give similar inference and p-values.
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8.5 Exercises

1. To find the probabilities for the F-distribution, we will use the function
pf(f, df1, df2) where the f is the value for which we want to find the
probability of finding a value less than. That is

𝑃 (𝐹2,10 < 4.2) =

pf(4.2, df1=2, df2=10)

## [1] 0.9525855

a) Using the probability function for the F-distribution in R, find the
following probabilities:
i. 𝑃 (𝐹5,5 < 1

2)
ii. 𝑃 (𝐹5,5 > 2

1)
iii. 𝑃 (𝐹4,10 > 6

1)
iv. 𝑃 (𝐹10,4 < 1

6)
b) From what you calculated in part (a), comment on the reciprocal

symmetry of the F-distribution.

2. In this exercise we will examine the variability of samples from various
distributions and how easily departures from normality are detected using
qqplots and the Shapiro-Wilks test. Under no circumstances should you
turn in page after page of output or graphs. Produce a table that sum-
marizes how often the test rejects the null hypotheses and include at most
one figure of QQ-plots. To receive credit, you must comment on the table
and graph and describe what you observe and why you observed what you
did.

a) The following code will create a random sample from a normal distri-
bution and draw the qqplot. Also notice the results of the Shapiro-
Wilks test. Investigate the behavior of repeated samples (ie run this
code at least 10 times). Repeat with increased sample sizes (do this
for n=5,25,100,400). Describe your results.

par(mfrow=c(1,2)) # 1 row of 2 graphs, side-by-side
n <- 5 # sample size is 5
x <- rnorm(n, mean=25, sd=5) # draw random sample from a normal distribution
hist(x) # histogram
qqnorm(x) # qqplot for normality
qqline(x) # add a line to the above plot
shapiro.test(x) # do the test for normality
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b) Repeat problem (a) but consider samples drawn from a distribution
that is not normal, in this case, the gamma distribution with param-
eters shape=3, and rate=2.

par(mfrow=c(1,2)) # 1 row of 2 graphs, side-by-side
n <- 5 # sample size is 5
x <- rgamma(n, shape=3, rate=2) # draw random sample from a gamma distribution
hist(x) # histogram
qqnorm(x) # qqplot for normality
qqline(x) # add a line to the above plot
shapiro.test(x) # do the test for normality

3. In this exercise, we will examine the variability of samples from a nor-
mal distribution. The following code will generate random samples from
a normal distribution, create boxplots, and perform an F-test for equal
variance. Run the code many times (again 20 or more times) and investi-
gate the effects of changing your sample size and the mean and standard
deviation of each group. Under no circumstances should you turn in page
after page of output or graphs. For each question produce a table that
summarizes how often the test rejects the null hypotheses and include at
most one figure of boxplots. To receive credit, you must comment on the
table and graph and describe what you observe and why you observed what
you did.

par(mfrow=c(1,1)) # 1 row of 1: Just one graph
n <- 5
sigma <- c(2,2) # Standard deviations of each group
my.data <- data.frame(y = c(rnorm( n, mean=0, sd=sigma[1] ),

rnorm( n, mean=0, sd=sigma[2] )),
group = c( rep('g1',n), rep('g2',n) ))

boxplot(y ~ group, data=my.data)
var.test(y ~ group, data=my.data)

a) How often does the F-test reject (at 𝛼 = 0.05 level) equal variance
when the variances of the two groups are equal? (Run the above
code 20 or more times.) Does this appear to change as the sample
size gets larger?

b) How often does the F-test reject (at 𝛼 = 0.05 level) equal variance
when the variances are different, say 𝜎1 = 2 and 𝜎2 = 4? (Run your
code many times!)

c) Is it surprising to you how much variability there is in the widths of
the boxplots when the data are generated having the same standard
deviation? With both groups having the same standard deviation,
investigate the variability in boxplot widths as 𝑛 is 5, 20, and 50.

4. We are interested in testing if the variance is equal among two populations
that are known to be normal. A sample of size 𝑛1 = 15 from the first
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population resulted in a sample mean and standard deviation of ̄𝑥1 = 52
and 𝑠1 = 7 while the sample of size 𝑛2 = 20 from the second population
had a sample mean and standard deviation of ̄𝑥2 = 42 and 𝑠2 = 4. Perform
an F-test with 𝛼 = 0.05 to test if the variances are different. Because the
data is not given, all calculations must be done by-hand, except the usual
probability look up.

5. The life span of an electrical component was studied under two operating
voltages (110 and 220). Ten components were randomly assigned to op-
erate at 110 volts and 16 were assigned to 220 volts. The time to failure
(in hundreds of hours) for the 26 components were obtained:

110 19.25 19.7 19.75 19.9 19.95 20.05 20.13 20.2
20.4 20.6

220 9.7 9.75 9.8 9.82 9.85 9.90 9.92 9.96
10.01 10.02 10.10 10.11 10.13 10.19 10.28 10.31

a) Calculate the mean and variance of each sample group
b) Test the assumption that the data in each group is normally dis-

tributed.
i. Create the QQplots first and comment on their fit.
ii. Perform the Shapiro-Wilks test to assess normality.

c) Test the assumption that the variances in each group are equal
i. By hand, perform a two-side hypothesis test that variances in

each group are equal. Here, “by hand” means to calculate the
f-statistic by hand and then form the probability statement that
defines the p-value. Then use the pf() function to calculate the
actual p-value.

ii. Using the R function var.test() confirm your calculations in
part (ii).
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Chapter 9

Analysis of Variance
(ANOVA)

library(dplyr)
library(ggplot2)
library(ggfortify) # for autoplot( lm ) functions

We are now moving into a different realm of statistics. We have covered enough
probability and the basic ideas of hypothesis tests and p-values to move onto
the type of inference that you took this class to learn. The heart of science is
comparing and evaluating which hypothesis is better supported by the data.

To evaluate a hypothesis, scientists will write a grant, hire grad students (or
under-grads), collect the data, and then analyze the data using some sort of
model that reflects the hypothesis under consideration. It could be as simple as
“What is the relationship between iris species and petal width?” or as complex
as “What is the temporal variation in growing season length in response to
elevated CO2 in desert ecosystems?”

At the heart of the question is which predictors should be included in my model
of the response variable. Given twenty different predictors, I want to pare them
down to just the predictors that matter. I want to make my model as simple as
possible, but still retain as much explanatory power as I can.

Our attention now turns to building models of our observed data in a fashion
that allows us to ask if a predictor is useful in the model or if we can remove it.
Our model building procedure will be consistent:

1. Write two models, one that is perhaps overly simple and another that is
a complication of the simple model.

171
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2. Verify that the assumptions that are made in both models are satisfied.
3. Evaluate if the complex model explains significantly more of the variability

in the data than the simple model.

Our goal here isn’t to find “the right model” because no model is right. Instead
our goal is to find a model that is useful and helps me to understand the science.

We will start by developing a test that helps me evaluate if a model that has
a categorical predictor variable for a continuous response should have a mean
value for each group or just one overall mean.

9.1 Model

The two-sample t-test provided a convenient way to compare the means from
two different populations and test if they were equal. We wish to generalize this
test to more than two different populations. Later when we have more tools
in our statistical tool box, it is useful to notice that ANOVA uses a categorical
variable (which group) to predict a continuous response.

Suppose that my data can be written as

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎)

and 𝜇𝑖 is the mean of group 𝑖 and 𝜖𝑖𝑗 are the deviations from the group means.
Let the first subscript denote which group the observation is from 𝑖 ∈ {1,…𝑘}
and the second subscript is the observation number within that sample. Each
group has its own mean 𝜇𝑖 and we might allow the number of observations in
each group 𝑛𝑖 to be of different across the populations.

Assumptions: 1. The error terms come from a normal distribution 2. The
variance of each group is the same 3. The observations are independent 4. The
observations are representative of the population of interest

In general I want to test the hypotheses

𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘
𝐻𝑎 ∶ at least on mean is different than the others

Example 1. Suppose that we have three hybrids of a particular plant and we
measure the leaf area for each hybrid.

In the following graph, there does not appear to be a difference between the
hybrid means:
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However, in this case, it looks like there is a difference in the means of each
hybrid:
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What is the difference between these two?

1. If the variance between hybrids is small compared the variance within
a hybrid variance is huge compared, then I would fail to reject the null
hypothesis of equal means (this would be the first case). In this case,
the additional model complexity doesn’t result in more accurate model,
so Occam’s Razor would lead us to prefer the simpler model where each
group has the same mean.

2. If there is a large variance between hybrids compared to the variance
within a hybrid then I’d conclude there is a difference (this would be the
second case). In this case, I prefer the more complicated model with each
group having separate means.
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9.2 Theory

Notation:

1. 𝑛 = 𝑛1 + 𝑛2 +⋯+ 𝑛𝑘 as the total number of observations
2. ̄𝑦𝑖⋅ = 1

𝑛𝑖
∑𝑛𝑖

𝑗=1 𝑦𝑖𝑗 as the sample mean from the 𝑖th group
3. ̄𝑦⋅⋅ be the mean of all the observations.

Regardless of if the null hypothesis is true, the following is an estimate of 𝜎2. We
could use a pooled variance estimate similar to the estimator in the pooled two-
sample t-test. We will denote this first estimator as the within-group estimate
because the sums in the numerator are all measuring the variability within a
group.

𝑠2𝑊 =
∑𝑘

𝑖=1 ∑
𝑛𝑘
𝑗=1 (𝑦𝑖𝑗 − ̄𝑦𝑖⋅)

2

𝑛 − 𝑘

=
∑𝑛1

𝑗=1 (𝑦1𝑗 − ̄𝑦1⋅)
2 +∑𝑛2

𝑗=1 (𝑦2𝑗 − ̄𝑦2⋅)
2 +⋯+∑𝑛𝑘

𝑗=1 (𝑦𝑘𝑗 − ̄𝑦𝑘⋅)
2

(𝑛1 − 1) + (𝑛2 − 1) + ⋯+ (𝑛𝑘 − 1)

= (𝑛1 − 1) 𝑠21 + (𝑛2 − 1) 𝑠22 +⋯+ (𝑛𝑘 − 1) 𝑠2𝑘
𝑛 − 𝑘

If the null hypothesis is true and 𝜇1 = ⋯ = 𝜇𝑘, then a second way that I could
estimate the 𝜎2 term is using the sample means. If 𝐻0 is true then each sample
mean has sampling distribution ̄𝑌𝑖⋅ ∼ 𝑁 (𝜇, 𝜎2

𝑛𝑖
). In the simple case where

𝑛1 = 𝑛2 = ⋯ = 𝑛𝑘 then the sample variance of the 𝑘 sample means ̄𝑦1, ̄𝑦2,… , ̄𝑦𝑘
has expectation 𝜎2/𝑛𝑖 and could be used to estimate 𝜎2. In the case of unequal
sample sizes, the formula will be slightly different.

𝑠2𝐵 = 1
𝑘 − 1

𝑘
∑
𝑖=1

𝑛𝑖 ( ̄𝑦𝑖⋅ − ̄𝑦⋅⋅)
2

Under the null hypothesis, these two estimates are both estimating 𝜎2 and
should be similar and the ratio 𝑠2𝐵/𝑠2𝑊 follows an F-distribution with numerator
degrees of freedom 𝑘 − 1 and denominator degrees of freedom 𝑛 − 𝑘 degrees of
freedom. We define our test statistic as

𝑓 = 𝑠2𝐵
𝑠2𝑊

In the case that the null hypothesis is false (non-equal means 𝜇1, 𝜇2,… , 𝜇𝑘), 𝑠2𝐵
should be much larger than 𝑠2𝑊 and our test statistic 𝑓 will be very large and
so we will reject the null hypothesis if 𝑓 is greater than the 1−𝛼 quantile from
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the F-distribution with 𝑘 − 1 and 𝑛− 𝑘 degrees of freedom. If 𝑠2𝐵 is small, then
the difference between the group means and the overall means is small and we
shouldn’t reject the null hypothesis. So this F-test will always be a one sided
test, rejecting only if f is large.

p-value = 𝑃 (𝐹𝑘−1,𝑛𝑡−𝑘 > 𝑓)

9.2.1 Anova Table

There are several sources of variability that we are dealing with.
SSW: Sum of Squares Within - This is the variability within sample groups.

𝑆𝑆𝑊 =
𝑘

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦𝑖⋅)
2 𝑑𝑓𝑊 = 𝑛 − 𝑘

SSB: Sum of Squares Between - This is the variability between sample groups.

𝑆𝑆𝐵 =
𝑘

∑
𝑖=1

𝑛𝑖 ( ̄𝑦𝑖⋅ − ̄𝑦⋅⋅)
2 𝑑𝑓𝐵 = 𝑘 − 1

SST: Sum of Squares Total - This is the total variability in the data set. It has
an associated df=n-1 because under the null hypothesis there is only one mean
𝜇.

𝑆𝑆𝑇 =
𝑘

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦⋅⋅)
2 𝑑𝑓𝑇 = 𝑛 − 1

## `summarise()` ungrouping output (override with `.groups` argument)

Sum of Squares − Within Groups

Group

LA
I

1 2 3

3
4

5
6

Sum of Squares − Between Groups

Group

LA
I

1 2 3

3
4

5
6

Sum of Squares − Total

Group

LA
I

1 2 3

3
4

5
6
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An anova table is usually set up the in the following way (although the total
row is sometimes removed):

Source df Sum of Sq. Mean Sq. F-Stat p-value
Between 𝑘 − 1 𝑆𝑆𝐵 𝑠2𝐵 = 𝑆𝑆𝐵/𝑑𝑓𝐵 𝑓 = 𝑠2𝐵/𝑠2𝑊 𝑃(𝐹𝑘−1,𝑛−𝑘 ≥ 𝑓)
Within 𝑛 − 𝑘 𝑆𝑆𝑊 𝑠2𝑊 = 𝑆𝑆𝑊/𝑑𝑓𝑊
Total 𝑛 − 1 𝑆𝑆𝑇

It can be shown that 𝑆𝑆𝑇 = 𝑆𝑆𝐵 + 𝑆𝑆𝑊 and we can think about what these
sums actually mean by returning to our idea about simple vs complex models.

9.2.2 ANOVA using Simple vs Complex models.

The problem under consideration can also be considered as a question about
how complicated of a model should we fit to the observed data. If a more
complicated model doesn’t “fit” the data better, then I am better of keeping a
simple model and view of the process at hand.

Upon the second reading of these notes, the student is likely asking why we
even bothered introducing the ANOVA table using SST, SSW, SSB. The an-
swer is that these notations are common in the ANOVA literature and that we
can’t justify using an F-test without variance estimates. Both interpretations
are valid, but the Simple/Complex models are a better paradigm as we move
forward.

Simple Model

The simple model is

𝑌𝑖𝑗 = 𝜇 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎2)

and has each observation having the same expectation 𝜇. Thus we use the
overall mean of the data ̄𝑦⋅⋅ as the estimate of 𝜇 and therefore our error terms
are

𝑒𝑖𝑗 = 𝑦𝑖𝑗 − ̄𝑦⋅⋅
The sum of squared error associated with the simple model is thus

𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 =
𝑘

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑒2𝑖𝑗

=
𝑘

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦⋅⋅)
2

= 𝑆𝑆𝑇
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Complex Model

The more complicated model

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎2)

has each observation having the expectation of its group mean 𝜇𝑖. We’ll use the
group means ̄𝑦𝑖⋅ as estimates for 𝜇𝑖 and thus the error terms are

𝑒𝑖𝑗 = 𝑦𝑖𝑗 − ̄𝑦𝑖⋅
and the sum of squared error associated with the complex model is thus

𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
𝑘

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑒2𝑖𝑗

=
𝑘

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦𝑖⋅)
2

= 𝑆𝑆𝑊

Difference

The difference between the simple and complex sums of squared error is denoted
𝑆𝑆𝐸𝑑𝑖𝑓𝑓 and we see

𝑆𝑆𝐸𝑑𝑖𝑓𝑓 = 𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 − 𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥
= 𝑆𝑆𝑇 − 𝑆𝑆𝑊
= 𝑆𝑆𝐵

Note that 𝑆𝑆𝐸𝑑𝑖𝑓𝑓 can be interpreted as the amount of variability that is ex-
plained by the more complicated model vs the simple. If this 𝑆𝑆𝐸𝑑𝑖𝑓𝑓 is large,
then we should use the complex model. Our only question becomes “How large
is large?”

First we must account for the number of additional parameters we have added.
If we added five parameters, I should expect to account for more variability
that if I added one parameter, so first we will divide 𝑆𝑆𝐸𝑑𝑖𝑓𝑓 by the number of
added parameters to get 𝑀𝑆𝐸𝑑𝑖𝑓𝑓 which is the amount of variability explained
by each additional parameter. If that amount is large compared to the leftover
from the complex model, then we should use the complex model.

These calculations are preformed in the ANOVA table, and the following table
is identical to the previous ANOVA table, and we have only changed the names
given to the various quantities.
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Source df
Sum of
Sq. Mean Sq. F-Stat p-value

Difference𝑘−
1

𝑆𝑆𝐸𝑑𝑖𝑓𝑓 𝑀𝑆𝐸𝑑𝑖𝑓𝑓 = 𝑆𝑆𝐸𝑑𝑖𝑓𝑓
𝑘−1 𝑓 = 𝑀𝑆𝐸𝑑𝑖𝑓𝑓

𝑀𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑃(𝐹𝑘−1,𝑛−𝑘 ≥
𝑓)

Complex𝑛−
𝑘

𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑀𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑛−𝑘
Simple 𝑛−

1
𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒

9.2.3 Parameter Estimates and Confidence Intervals

As usual, the group sample means ̄𝑦𝑖⋅ is a good estimator for the mean of group
𝜇𝑖.
But what about 𝜎2? If we conclude that we should use the complex model, and
because one of our assumptions is that each group has equal variance, then I
should use all of the residual terms 𝑒𝑖𝑗 = 𝑦𝑖𝑗 − ̄𝑦𝑖⋅ in my estimation of 𝜎. In this
case we will use

�̂�2 = 𝑠2𝑊 = 𝑀𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 1
𝑛 − 𝑘

𝑘
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦𝑖⋅)
2

as the estimate of 𝜎2. Notice that this is analogous to the pooled estimate of
the variance in a two-sample t-test with the assumption of equal variance.
Therefore an appropriate confidence interval for 𝜇𝑖 is

̄𝑦𝑖⋅ ± 𝑡1−𝛼/2
𝑛−𝑘 ( �̂�√𝑛𝑖

)

9.3 Anova in R

First we must define a data frame with the appropriate columns. We start with
two vectors, one of which has the leaf area data and the other vector denotes
the species. Our response variable must be a continuous random variable and
the explanatory is a discrete variable. In R discrete variables are called factors
and can you can change a numerical variable to be a factor using the function
factor().
The analysis of variance method is an example of a linear model which can be fit
in a variety of ways. We can use either lm() or aov() to fit this model, and in
these notes we concentrate on using lm(). The first argument to this function is
a formula that describes the relationship between the explanatory variables and
the response variable. In this case it is extremely simple, that LAI is a function
of the categorical variable Species.
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data <- data.frame(LAI = c(2.88, 2.87, 3.23, 3.24, 3.33,
3.83, 3.86, 4.03, 3.87, 4.16,
4.79, 5.03, 4.99, 4.79, 5.05),

Species = factor( rep(1:3, each=5) ) )
str(data)

## 'data.frame': 15 obs. of 2 variables:
## $ LAI : num 2.88 2.87 3.23 3.24 3.33 3.83 3.86 4.03 3.87 4.16 ...
## $ Species: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 2 2 2 2 2 ...

model <- lm(LAI ~ Species, data=data)

As is always good practice, the first thing we should do is graph our data.

ggplot(data, aes(x=Species, y=LAI)) + geom_boxplot()
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It looks like the equal variance question isn’t a worry and it certainly appears
that the mean value for each species is not the same. I expect that we will
certainly prefer the complex model in this case.

The lm() command is the command that does all the calculations necessary to
fit an ANOVA model. This command returns a list object that is useful for
subsequent analysis and it is up to the use to know what subsequent functions
to call that answer questions of interest.

In the call to lm() we created a formula. Formulas in R always are of the form Y
~ X where Y is the dependent variable and the X variables are the independent
variables.

Before we examine the anova table and make any conclusion, we should double
check that the anova assumptions have been satisfied. To check the normality
assumption, we will look at the qqplot of the residuals 𝑒𝑖𝑗 = 𝑦𝑖𝑗 − ̄𝑦𝑖⋅. These
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residuals are easily accessed in R using the resid function on the model object.
To check the variance assumption, we will examine the boxplot of the data

autoplot( model, which=2) # The which argument specifies which plot to make

## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
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The qqplot doesn’t look too bad, with only two observations far from the nor-
mality line. To get the Analysis of Variance table, we’ll extract it from the
model object using the function anova().

anova(model)

## Analysis of Variance Table
##
## Response: LAI
## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 8.2973 4.1487 147.81 3.523e-09 ***
## Residuals 12 0.3368 0.0281
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Notice that R does not give you the third line in the ANOVA table. This was a
deliberate choice by the Core Development Team of R, but one that is somewhat
annoying. Because the third line is just the total of the first two, it isn’t hard
to calculate, if necessary.
The row labeled Species corresponds to the difference between the simple and
complex models, while the Residuals row corresponds to the complex model.
Notice that 𝑆𝑆𝐸𝑑𝑖𝑓𝑓 is quite large, but to decide if it is large enough to justify
the use of the complex model, we must go through the calculations to get the
p-value, which is quite small. Because the p-value is smaller than any reasonable
𝛼-level, we can reject the null hypothesis and conclude that at least one of the
means is different than the others.
But which mean is different? The first thing to do is to look at the point
estimates and confidence intervals for 𝜇𝑖. These are

̂𝜇𝑖 = ̄𝑦𝑖⋅

̂𝑦𝑖⋅ ± 𝑡1−𝛼/2
𝑛−𝑘 ( �̂�√𝑛𝑖

)

and can be found using the coef() and confint() functions.

# To get coefficients in the way we have represented the
# complex model (which we will call the cell means model), we
# must add a -1 to the formula passed to lm()
# We'll explore this later in this chapter.
model.2 <- lm(LAI ~ Species - 1, data=data)
coef(model.2)

## Species1 Species2 Species3
## 3.11 3.95 4.93

# alternatively we could use the emmeans package
# using either model representation
emmeans::emmeans(model, ~Species)

## Species emmean SE df lower.CL upper.CL
## 1 3.11 0.0749 12 2.95 3.27
## 2 3.95 0.0749 12 3.79 4.11
## 3 4.93 0.0749 12 4.77 5.09
##
## Confidence level used: 0.95

Are the all the species different from each other? In practice I will want to
examine each group and compare it to all others and figure out if they are
different. How can we efficiently do all possible t-tests and keep the correct 𝛼
level correct?
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9.4 Multiple comparisons

Recall that for every statistical test there is some probability of making a type
I error and we controlled that probability by setting a desired 𝛼-level. If I were
to do 20 t-tests of samples with identical means, I would expect, on average,
that one of them would turn up to be significantly different just by chance. If
I am making a large number of tests, each with a type I error rate of 𝛼, I am
practically guaranteed to make at least one type I error.

set.seed(-1035) # So that I get the same dataset each time I build the book.
k <- 5 ; n <- 10
mydata <- data.frame(mu=rep(0,k*n), Grp=factor(rep(1:k, each=n))) %>%
mutate( Y=mu+rnorm(k*n), Group=Grp)

letterdata <- lm( Y~Grp, data=mydata ) %>%
emmeans::emmeans( ~ Grp) %>%
multcomp::cld( Letters=letters, adjust='none' ) %>% # Force no p-value adjustment
dplyr::select(Grp, .group) %>%
dplyr::mutate( Y = 3 )

# Visualize a made up data set: mydata
ggplot(mydata, aes(x=Grp, y=Y)) +
geom_boxplot() +
geom_text(data=letterdata, aes(label=.group)) +
ggtitle( expression(paste(X[ij],' ~ N(0,1) where ', n[i], ' = 10')) ) +
xlab('Group') + ylab('Response')

 a  ab ab  ab  b

−2

−1

0

1

2

3

1 2 3 4 5
Group

R
es

po
ns

e

Xij ~ N(0,1)   where ni = 10

With 5 groups, there are 10 different comparisons to be made, and just by
random chance, one of those comparisons might come up significant. In this
sampled data, performing 10 different two sample t-tests without making any
adjustments to our 𝛼-level, we find one statistically significant difference even
though all of the data came from a standard normal distribution.
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I want to be able to control the family-wise error rate so that the probability
that I make one or more type I errors in the set of m of tests I’m considering is
𝛼. One general way to do this is called the Bonferroni method. In this method
each test is performed using a significance level of 𝛼/𝑚. (In practice I will
multiple each p-value by m and compare each p-value to my desired family-wise
𝛼-level). Unfortunately for large 𝑚, this results in unacceptably high levels of
type II errors. Fortunately there are other methods for addressing the multiple
comparisons issue and they are built into R.

John Tukey’s test of “Honestly Significant Differences” is commonly used to
address the multiple comparisons issue when examining all possible pairwise
contrasts. This method is available in R by the function in several different
methods. This test is near optimal when each group has the same number
of samples (which is often termed “a balanced design”), but becomes more
conservative (fails to detect differences) as the design becomes more unbalanced.
In extremely unbalanced cases, it is preferable to use a Bonferroni adjustment.

Using function emmeans::emmeans() function, which by default does Tukey’s
adjustment, the adjusted p-value for the difference between groups 1 and 4 is
no longer significant.

model <- lm(Y ~ Grp, mydata)
t1 <- emmeans::emmeans(model, pairwise ~ Grp)
t1

## $emmeans
## Grp emmean SE df lower.CL upper.CL
## 1 0.441 0.316 45 -0.196 1.0776
## 2 -0.116 0.316 45 -0.753 0.5203
## 3 0.201 0.316 45 -0.436 0.8377
## 4 -0.548 0.316 45 -1.184 0.0891
## 5 -0.184 0.316 45 -0.820 0.4532
##
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## 1 - 2 0.557 0.447 45 1.247 0.7244
## 1 - 3 0.240 0.447 45 0.537 0.9830
## 1 - 4 0.989 0.447 45 2.211 0.1943
## 1 - 5 0.624 0.447 45 1.397 0.6330
## 2 - 3 -0.317 0.447 45 -0.710 0.9532
## 2 - 4 0.431 0.447 45 0.964 0.8695
## 2 - 5 0.067 0.447 45 0.150 0.9999
## 3 - 4 0.749 0.447 45 1.674 0.4597
## 3 - 5 0.384 0.447 45 0.860 0.9099
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## 4 - 5 -0.364 0.447 45 -0.814 0.9248
##
## P value adjustment: tukey method for comparing a family of 5 estimates

It is also straightforward to generate the letter display using the function cld()
which stands for compact letter display.

emmeans::emmeans(model, ~ Grp) %>% # don't have the pairwise here or else
multcomp::cld( Letters=letters ) # the cld() function gets confused...

## Grp emmean SE df lower.CL upper.CL .group
## 4 -0.548 0.316 45 -1.184 0.0891 a
## 5 -0.184 0.316 45 -0.820 0.4532 a
## 2 -0.116 0.316 45 -0.753 0.5203 a
## 3 0.201 0.316 45 -0.436 0.8377 a
## 1 0.441 0.316 45 -0.196 1.0776 a
##
## Confidence level used: 0.95
## P value adjustment: tukey method for comparing a family of 5 estimates
## significance level used: alpha = 0.05

Likewise if we are testing the ANOVA assumption of equal variance, we cannot
rely on doing all pairwise F-tests and we must use a method that controls the
overall error rate. The multiple comparisons version of var.test() is Levene’s
test which is called similarly to lm().

# leveneTest() is a function that is defined in the "car" package.
car::leveneTest(Y~Group, mydata)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 4 0.6173 0.6524
## 45

Example 2. (Example 8.2 from the Ott and Longnecker) A clinical psycholo-
gist wished to compare three methods for reducing hostility levels in university
students, and used a certain test (HLT) to measure the degree of hostility.
A high score on the test indicated great hostility. The psychologist used 24
students who obtained high and nearly equal scores in the experiment. Eight
subjects were selected at random from among the 24 problem cases and were
treated with method 1, seven of the remaining 16 students were selected at ran-
dom and treated with method 2 while the remaining nine students were treated
with method 3. All treatments were continued for a one-semester period. Each
student was given the HLT test at the end of the semester, with the results
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show in the following table. Use these data to perform an analysis of variance
to determine whether there are differences among the mean scores for the three
methods using a significance level of 𝛼 = 0.05.

# define the data
Hostility <- data.frame(
HLT = c(96,79,91,85,83,91,82,87,

77,76,74,73,78,71,80,
66,73,69,66,77,73,71,70,74),

Method = c( rep('M1',8), rep('M2',7), rep('M3',9) ) )

The first thing we will do (as we should do in all data analyses) is to graph our
data.

ggplot(Hostility, aes(x=Method, y=HLT)) +
geom_boxplot()
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These box plots make it clear that there is a difference between the three groups
(at least group M1 is different from M2 or M3). An ANOVA model assumes
equal variance between groups and that the residuals are normally distributed.
Based on the box plot, the equal variance assumption might be suspect (al-
though with only ≈ 8 observations per group, it might not be bad). We’ll
examine a QQ-plot of the residuals to consider the normality.

# Is there equal variance in residuals across groups?
# Are the residuals approximately normal?
model <- lm( HLT ~ Method, data=Hostility )
autoplot(model, which=c(1,2))
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To examine the Normality of the residuals, we’ll use a Shapiro-Wilk’s test and
we’ll also use Levene’s test for homogeneity of variances.

# Test for equal variances between groups
car::leveneTest(HLT~Method, data=Hostility)

## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 1.6817 0.2102
## 21

# Test for Normality
shapiro.test(resid(model))

##
## Shapiro-Wilk normality test
##
## data: resid(model)
## W = 0.98358, p-value = 0.9516

The results of the Shapiro-Wilks test agree with the QQ-plot, and Levene’s test
fails to detect differences in the variances between the two groups. This is not
to say that there might not be a difference, only that we do not detect one.

model <- lm( HLT ~ Method, data=Hostility )
anova(model)
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## Analysis of Variance Table
##
## Response: HLT
## Df Sum Sq Mean Sq F value Pr(>F)
## Method 2 1090.62 545.31 29.574 7.806e-07 ***
## Residuals 21 387.21 18.44
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Because the p-value in the ANOVA table is smaller than 𝛼 = 0.05, we can reject
the null hypothesis of equal means and conclude that at least one of the means
is different from the others. Our estimate of 𝜎2 is �̂�2 = 18.44 so the estimate of
𝜎 is �̂� =

√
18.44 = 4.294.

To find out which means are different we look at the group means and confidence
intervals as well as all the pairwise contrasts between the groups. We will control
for the multiple comparisons issue by using Tukey’s method.

emmeans::emmeans(model, pairwise~Method)

## $emmeans
## Method emmean SE df lower.CL upper.CL
## M1 86.8 1.52 21 83.6 89.9
## M2 75.6 1.62 21 72.2 78.9
## M3 71.0 1.43 21 68.0 74.0
##
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## M1 - M2 11.18 2.22 21 5.030 0.0002
## M1 - M3 15.75 2.09 21 7.548 <.0001
## M2 - M3 4.57 2.16 21 2.112 0.1114
##
## P value adjustment: tukey method for comparing a family of 3 estimates

If we feel uncomfortable with the equal variance assumption, we can do each
pairwise t-test using non-pooled variance and then correct for the multiple com-
parisons using Bonferroni’s p-value correction. If we have 𝑘 = 3 groups, the we
have 𝑘(𝑘 − 1)/2 = 3 different comparisons, so I will calculate each p-value and
multiply by 3.

pairwise.t.test(Hostility$HLT, Hostility$Method,
pool.sd=FALSE, p.adjust.method='none')
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##
## Pairwise comparisons using t tests with non-pooled SD
##
## data: Hostility$HLT and Hostility$Method
##
## M1 M2
## M2 0.0005 -
## M3 2.2e-05 0.0175
##
## P value adjustment method: none

pairwise.t.test(Hostility$HLT, Hostility$Method,
pool.sd=FALSE, p.adjust.method='bonferroni')

##
## Pairwise comparisons using t tests with non-pooled SD
##
## data: Hostility$HLT and Hostility$Method
##
## M1 M2
## M2 0.0015 -
## M3 6.7e-05 0.0525
##
## P value adjustment method: bonferroni

Using the Bonferroni adjusted p-values, we continue to detect a statistically
significant difference between Method 1 and both Methods 2 & 3, but do not
detect a difference between Method 2 and Method 3.

9.5 Different Model Representations

9.5.1 Theory

We started with what I will call the “cell means model”

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎2)

so that the 𝐸 (𝑌𝑖𝑗) = 𝜇𝑖 where I interpret 𝜇𝑖 as the mean of each population.
Given some data, we the following graph where the red lines and numbers denote
the observed mean of the data in each group :
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But I am often interested in the difference between one group and another. For
example, suppose this data comes from an experiment and group 1 is the control
group. Then perhaps what I’m really interested is not that group 2 has a mean
of 9, but rather that it is 5 units larger than the control. In this case perhaps
what we care about is the differences. I could re-write the group means in terms
of these differences from group 1. So looking at the model this way, the values
that define the group means are the mean of group 1 (here it is 4), and the
offsets from group 1 to group 2 (which is 5), and the offset from group 1 to
group 3 (which is 10).
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I could write this interpretation of the model as the “offset” model which is

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜖𝑖𝑗
where 𝜇 is the mean of group 1 and 𝜏𝑖 is each population’s offset from group 1.
Because group 1 can’t be offset from itself, this forces 𝜏1 = 0.
Notice that this representation of the complex model has 4 parameters (aside
from 𝜎), but it has an additional constraint so we still only have 3 parameters
that can vary (just as the cell means model has 3 means).

The cell means model and the offset model really are the same model, just looked
at slightly differently. They have the same number of parameters, and produce
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the same predicted values for ̂𝑦𝑖𝑗 and therefore have the same sum of squares,
etc. The only difference is that one is might be more convenient depending on
the question the investigator is asking. Actually in all the previous work in this
chapter, we’ve been using the offset representation but emmeans::emmeans() is
smart enough to recognize when we want the cell means model.
Another way to write the cell means model is as 𝑌𝑖𝑗 = 𝜇+ 𝜏𝑖 + 𝜖𝑖𝑗 but with the
constraint that 𝜇 = 0. It doesn’t matter which constraint you use so long as
you know which is being used because the interpretation of the values changes
(group mean versus an offset from the reference group).

9.5.2 Model Representations in R

To obtain the different representations within R, we will vary the formula to
include or exclude the intercept term 𝜇. By default, R assumes you want the in-
tercept term (offset representation) and you must use the -1 term in the formula
for the cell means representation.

fake.data <- data.frame( y = c( 3,4,5, 8,9,10, 13,14,15),
grp = factor(c( 1,1,1, 2,2,2, 3,3,3 )) )

# Offset representation
# Unless you have a -1, R implicitly
# adds a "+1" to the formula, so
# so the following statements are equivalent
c.model.1 <- lm(y ~ grp, data=fake.data)
c.model.1 <- lm(y ~ 1 + grp, data=fake.data)
coef(c.model.1)

## (Intercept) grp2 grp3
## 4 5 10

In the above case, we see R is giving the mean of group 1 and then the two
offsets.
To force R to use the cell means model, we force R to use the constraint that
𝜇 = 0 by including a -1 in the model formula.

c.model.1 <- lm(y ~ -1 + grp, data=fake.data)
coef(c.model.1)

## grp1 grp2 grp3
## 4 9 14

Returning the hostility example, recall we used the cell means model and we
can extract parameter coefficient estimates using the coef function and ask for
the appropriate confidence intervals using confint().
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model <- lm(HLT ~ -1 + Method, data=Hostility)
coef(model)

## MethodM1 MethodM2 MethodM3
## 86.75000 75.57143 71.00000

confint(model)

## 2.5 % 97.5 %
## MethodM1 83.59279 89.90721
## MethodM2 72.19623 78.94663
## MethodM3 68.02335 73.97665

We can use the offset model by removing -1 term from the formula.

model <- lm(HLT ~ Method, data=Hostility)
coef(model)

## (Intercept) MethodM2 MethodM3
## 86.75000 -11.17857 -15.75000

confint(model)

## 2.5 % 97.5 %
## (Intercept) 83.59279 89.907212
## MethodM2 -15.80026 -6.556886
## MethodM3 -20.08917 -11.410827

The intercept term in the offset representation corresponds to Method1 and the
coefficients and confidence intervals are the same as in the cell means model.
However in the offset model, Method2 is the difference between Method1 and
Method2. Notice the coefficient is negative, thus telling us that Method2 has
a smaller mean value than the reference group Method1. Likewise Method3
has a negative coefficient indicating that the Method3 group is lower than the
reference group.

Similarly the confidence intervals for Method2 and Method3 are now confi-
dence intervals for the difference between these methods and the reference group
Method1.

Why would we ever want the offset model vs the cell means model? Often we
are interested in testing multiple treatments against a control group and we only
care about the change from the control. In that case, setting the control group
to be the reference makes sense.
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Neither representation is more powerful because on a very deep mathematical
level, they are exactly the same model. Superficially though, one representation
might be more convenient than the other in a given situation.

9.5.3 Implications on the ANOVA table

We have been talking about the complex and simple models for our data but
there is one more possible model, albeit not a very good one. I will refer to this
as the bad model because it is almost always a poor fitting model.

𝑌𝑖𝑗 = 𝜖𝑖𝑗 where 𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎2) .

Complex Model

Group

1 2 3

0
1

2
3

4
5

6
7

Simple Model

Group

1 2 3

0
1

2
3

4
5

6
7

Bad Model

Group

1 2 3

0
1

2
3

4
5

6
7

Notice that the complex model has three parameters that define “signal” part
of the model (i.e. the three group means). The simple has one parameter that
defines the “signal” (the overall mean). The bad model has no parameters that
define the model (i.e. the red line is always at zero).

These three models can be denoted in R by:

• Complex: – offset representation: Y ~ group which R will recognize as Y
~ group + 1 – cell means representation: Y ~ group - 1

• Simple: Y ~ 1
• Bad: Y ~ -1

In the analysis of variance table calculated by anova(), R has to decide which
simple model to compare the complex model to. If you used the offset represen-
tation, then when group is removed from the model, we are left with the model
Y ~ 1, which is the simple model. If we wrote the complex model using the cell
means representation, then when group is removed, we are left with the model
Y ~ -1 which is the bad model.
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When we produce the ANOVA table compare the complex to the bad model,
the difference in number of parameters between the models will be 3 (because
I have to add three parameters to go from a signal line of 0, to three estimated
group means). The ANOVA table comparing simple model to the complex will
have a difference in number of parameters of 2 (because the simple mean has 1
estimated value compared to 3 estimated values).
Example. Hostility Scores We return to the hostility scores example and we
will create the two different model representations in R and see how the ANOVA
table produced by R differs between the two.

offset.representation <- lm(HLT ~ Method, data=Hostility)
cell.representation <- lm(HLT ~ Method -1, data= Hostility)

# This is the ANOVA table we want, comparing Complex to Simple
# Notice the df of the difference between the models is 3-1 = 2
anova(offset.representation)

## Analysis of Variance Table
##
## Response: HLT
## Df Sum Sq Mean Sq F value Pr(>F)
## Method 2 1090.62 545.31 29.574 7.806e-07 ***
## Residuals 21 387.21 18.44
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# This is the ANOVA table comparing the Complex to the BAD model
# Noice the df of the difference between the models is 3-0 = 3
anova(cell.representation)

## Analysis of Variance Table
##
## Response: HLT
## Df Sum Sq Mean Sq F value Pr(>F)
## Method 3 145551 48517 2631.2 < 2.2e-16 ***
## Residuals 21 387 18
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Because the bad model is extremely bad in this case, the F-statistic for compar-
ing the complex to the bad model is extremely large (𝐹 = 2631). The complex
model is also superior to the simple model, but not by as emphatically (𝐹 = 29).
One way to be certain which models you are comparing is to explicitly choose
the two models.
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simple <- lm(HLT ~ 1, data=Hostility)

# create the ANOVA table comparing the complex model (using the
# cell means representation) to the simple model.
# The output shown in the following contains all the
# necessary information, but is arranged slightly differently.
anova(simple, cell.representation)

## Analysis of Variance Table
##
## Model 1: HLT ~ 1
## Model 2: HLT ~ Method - 1
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 23 1477.83
## 2 21 387.21 2 1090.6 29.574 7.806e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

My recommendation is to always fit the offset model and, if you are interested
in all of the mean values, just access the group means and difference between
groups using the emmeans::emmeans() function. If you are interested in the
just the offsets, then you can access them through the base functions coef()
and conf() or pick them out of your emmeans output.

9.6 Exercises

In previous chapters, the exercises have been quite blunt about asking you to in-
terpret your results when appropriate. In this chapter (and subsequent chapters)
the questions don’t explicitly ask your interpretation, but rather it is implied that
and the end of a calculation or whenever you produce a graph or table, there
should always be some sort of comment about the result (e.g. this result shows
that the residuals are not normally distributed). Your job is to interpret the
results, not just produce them.
Eventually, your job will be to figure out what analysis to conduct, what assump-
tions should be checked, and how to interpret all of your results in the context
of the problem. But for now, it will be up to you to know when to interpret your
results.

1. For this exercise, we will compare the Sums of Squared Error for the
simple 𝑦𝑖𝑗 = 𝜇 + 𝜖𝑖𝑗 and complex 𝑦𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 model and clearly,
in the data presented below, the complex model fits the data better.
The group means ̄𝑦𝑖⋅ are 3, 13, 5, and 9, while the overall mean is ̄𝑦⋅⋅ = 7.5.
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Complex Model Simple Model

A B C D A B C D
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a) For the simple model graph, draw a horizontal line at the height of
the overall mean, representing predicted value of a new observation.
Next, draw the the corresponding residuals 𝑦𝑖𝑗 − ̄𝑦⋅⋅ as vertical lines
from the data points to the overall mean. Similarly draw horizontal
lines for the group means in the complex model and represent the
residuals for the complex model 𝑦𝑖𝑗 − ̄𝑦𝑖⋅ as vertical lines from the
data points to the group means. In this case, does it appear that the
average residual is significantly larger in the simple model than the
complex? Hint: Don’t try to do this in R, but rather do this using a
pencil and paper.

b) To show that the complex is a significantly better model, fill in the
empty boxes in the ANOVA table.

Source df SS MS F p-value
Difference
Complex 20
Simple 256

Interpret the p-value you have produced.

2. We will essentially repeat the previous exercise, except this time, the sim-
ple model will be preferred. Again for each group, we have 𝑛𝑖 = 3 obser-
vations.
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Complex Model Simple Model

A B C A B C
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For this data, the following group means can be calculated as ̄𝑦𝑖⋅ =
(4.42, 5.21, 4.58) and the overall mean is ̄𝑦⋅⋅ = 4.73.

a) For the simple model graph, draw the corresponding residuals 𝑦𝑖𝑗− ̄𝑦⋅⋅
as vertical lines from the data point to the overall mean. Similarly
draw the residuals for the complex model 𝑦𝑖𝑗 − ̄𝑦𝑖⋅ as vertical lines
from the data points to the group means. In this case, does it appear
that the average residual is significantly larger in the simple model
than the complex? Again, just draw predicted values and residuals
by hand.

b) To show that the complex not a significantly better model, fill in the
empty boxes in the ANOVA table.

Source df SS MS F p-value
Difference 1.035
Complex 8.7498
Simple

Interpret the p-value you have produced.

3. The following data were collected and we wish to perform an analysis of
variance to determine if the group means are statistically different.

Group 1 Group 2 Group 3
4,6,6,8 8,8,6,6 12,13,15,16

a) The complex model assumes different means for each group. That is
𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗. Calculate 𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 via the following:
i. Find the estimate of 𝜇𝑖. That is, calculate ̂𝜇𝑖 = ̄𝑦𝑖⋅ which is the

mean of each group. Therefore the predicted value for a new
observation in group 𝑖 would be ̂𝑦𝑖𝑗 = ̂𝜇𝑖 = ̄𝑦𝑖⋅ and you can now
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calculate 𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥.
ii. Calculate

𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
3

∑
𝑖=1

4
∑
𝑗=1

𝑒2𝑖𝑗 =
3

∑
𝑖=1

4
∑
𝑗=1

(𝑦𝑖𝑗 − ̂𝑦𝑖𝑗)
2 =

3
∑
𝑖=1

4
∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦𝑖⋅)
2

b) The simple model assumes the same mean for each group. That is
𝑌𝑖𝑗 = 𝜇 + 𝜖𝑖𝑗 Calculate 𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 via the following:
i. Find the estimate of 𝜇. That is, calculate ̂𝜇 = ̄𝑦⋅⋅ which is the

overall mean of all the data. Therefore the predicted value for a
new observation in any group would be ̂𝑦𝑖𝑗 = ̂𝜇 = ̄𝑦⋅⋅ and we can
calculate 𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒

ii. Calculate

𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 =
3

∑
𝑖=1

4
∑
𝑗=1

𝑒2𝑖𝑗 =
3

∑
𝑖=1

4
∑
𝑗=1

(𝑦𝑖𝑗 − ̂𝑦𝑖𝑗)
2 =

3
∑
𝑖=1

4
∑
𝑗=1

(𝑦𝑖𝑗 − ̄𝑦⋅⋅)
2

c) Create the ANOVA table using your results in part (b).
d) Create the ANOVA table using R by typing in the data set and fitting

the appropriate model using the lm() and anova() commands.

4. Suppose that for a project I did four separate t-tests and the resulting
p-values were

𝑝1 𝑝2 𝑝3 𝑝4
0.03 0.14 0.01 0.001

If I wanted to control my overall type I error rate at an 𝛼 = 0.05 and used the
Bonferroni multiple comparisons procedure, which tests would be statistically
significant? Notice that this problem does not mention any pairwise contrasts as
the Bonferroni correction can be done in a variety of situations. So just use the
fact that we are making four different tests and we want to control the overall
Type I Error rate.

5. We will examine the amount of waste produced at five different plants that
manufacture Levi Jeans. The Waste amount is the amount of cloth wasted
in cutting out designs compared to a computer program, so negative values
for Waste indicate that the human engineer did a better job planning the
cuts than the computer algorithm. There are two columns, Plant and
Waste.

a) Read the data into R using the following:
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Levi <- read.csv('https://raw.github.com/dereksonderegger/570/master/data-raw/Levi.csv')

i. Examine the data frame using the str(Levi) command. Is the
Plant column already a factor, or do you need to convert it to a
factor?

b) Make a boxplot of the data. Do any assumptions necessary for
ANOVA appear to be violated?

c) Test the equal variance assumption using Levene’s test.
d) Fit an ANOVA model to these data and test if the residuals have a

normal distribution using the Shapiro-Wilks test.
6. The dataset iris is available on R and can be loaded by the entering the

command data('iris') at your R prompt. This famous data set contains
the measurements in centimeters of the variables sepal length and width
and petal length and width, respectively, for 𝑛𝑖 = 50 flowers from each of
3 species of iris. The species of iris are setosa, versicolor, and virginica.
We will be examining the relationship between sepal width and the species
of these irises. Denote the mean value of all setosa flowers as 𝜇𝑠𝑒𝑡𝑜𝑠𝑎 and
similar notation for the other species.
a) Make a boxplot of the data. Do any assumptions necessary for

ANOVA appear to be violated?
b) Test the equal variance assumption of ANOVA using Levene’s test.
c) Do the ANOVA test and test the normality of the residual terms by

making a QQplot and doing the Shapiro-Wilk’s test.
d) Examine the ANOVA table. What is the p-value for testing the

hypotheses
𝐻0 ∶ 𝜇𝑠𝑒𝑡𝑜𝑠𝑎 = 𝜇𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎 = 𝜇𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟
𝐻𝑎 ∶ at least on mean is different

e) Now that we know there is a statistically significant difference among
the means (and with setosa having a mean Sepal.Width about 30%
larger than the other two, I think aesthetically that is a big differ-
ence), we can go searching for it. Use Tukey’s “Honestly Significant
Differences” method to test all the pairwise comparisons between
means. In particular, what is the p-value for testing

𝐻0 ∶ 𝜇𝑠𝑒𝑡𝑜𝑠𝑎 = 𝜇𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎
𝐻𝑎 ∶ 𝜇𝑠𝑒𝑡𝑜𝑠𝑎 ≠ 𝜇𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎

f) What is the estimated value of 𝜇𝑠𝑒𝑡𝑜𝑠𝑎? What is the estimated value
of 𝜇𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎?

g) What is the estimated value of 𝜎2?
h) By hand, calculate the appropriate 95% confidence interval for

𝜇𝑠𝑒𝑡𝑜𝑠𝑎.
i) Using R, confirm your calculation in part (h).
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Regression

library(ggplot2)
library(dplyr)
library(ggfortify) # for diagnostic plots in ggplot2 via autoplot()

We continue to want to examine the relationship between a predictor variable
and a response but now we consider the case that the predictor is continuous
and the response is also continuous. In general we are going to be interested in
finding the line that best fits the observed data and determining if we should
include the predictor variable in the model.

2.0
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2.8

0.00 0.25 0.50 0.75 1.00
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y

10.1 Pearson’s Correlation Coefficient

We first consider Pearson’s correlation coefficient, which is a statistics that mea-
sures the strength of the linear relationship between the predictor and response.

199
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Consider the following Pearson’s correlation statistic

𝑟 =
∑𝑛

𝑖=1 (
𝑥𝑖−�̄�
𝑠𝑥 )(𝑦𝑖− ̄𝑦

𝑠𝑦 )
𝑛 − 1

where 𝑥𝑖 and 𝑦𝑖 are the x and y coordinate of the 𝑖th observation. Notice that
each parenthesis value is the standardized value of each observation. If the
x-value is big (greater than ̄𝑥) and the y-value is large (greater than ̄𝑦), then
after multiplication, the result is positive. Likewise if the x-value is small and
the y-value is small, both standardized values are negative and therefore after
multiplication the result is positive. If a large x-value is paired with a small
y-value, then the first value is positive, but the second is negative and so the
multiplication result is negative.

y

x

sign

Negative

Positive

The following are true about Pearson’s correlation coefficient:

1. 𝑟 is unit-less because we have standardized the 𝑥 and 𝑦 values.
2. −1 ≤ 𝑟 ≤ 1 because of the scaling by 𝑛 − 1
3. A negative 𝑟 denotes a negative relationship between 𝑥 and 𝑦, while a

positive value of 𝑟 represents a positive relationship.
4. 𝑟 measures the strength of the linear relationship between the predictor

and response.
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r =  0.781

r =  −0.71

r =  0.988

r =  −0.993

r =  −0.043

r =  0.007

10.2 Model Theory

To scatterplot data that looks linear we often want to fit the model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 where 𝜖𝑖
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎2)

where

Parameter Name Interpretation
𝛽0 y-intercept Height of regression line at 𝑥 = 0
𝛽1 slope How much the line rises for a 1 unit

increase in 𝑥.
𝜎 Standard

Deviation
The “typical” distance from a point to
the regression line

The assumptions of this model are:

1. The relationship between the predictor and response is actually linear.
2. The error terms come from a normal distribution.
3. The variance of the errors is the same for every value of x (homoscedas-

ticity).
4. The error terms are independent.

Under this model, the expected value of an observation with covariate 𝑋 = 𝑥 is
𝐸 (𝑌 |𝑋 = 𝑥) = 𝛽0 + 𝛽1𝑥 and a new observation has a standard deviation of 𝜎
about the line.
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E(Y) = β0 + β1x

E(Y) = β0 + β1x

Given this model, how do we find estimates of 𝛽0 and 𝛽1? In the past we have
always relied on using some sort of sample mean, but it is not obvious what
we can use here. Instead of a mean, we will use the values of ̂𝛽0 and ̂𝛽1 that
minimize the sum of squared error (SSE) where

̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖
𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

𝑒2𝑖

Simple Complex
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Fortunately there are simple closed form solutions for ̂𝛽0 and ̂𝛽1

̂𝛽1 = 𝑟 (𝑠𝑦
𝑠𝑥

)

̂𝛽0 = ̄𝑦 − ̂𝛽1 ̄𝑥

and using these estimates several properties can be shown

1. ̂𝛽0 and ̂𝛽1 are the intercept and slope values that minimize SSE.
2. The regression line goes through the center of mass of the data ( ̄𝑥, ̄𝑦).
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3. The sum of the residuals is 0. That is: ∑𝑒𝑖 = 0.
4. ̂𝛽0 and ̂𝛽1 are unbiased estimators of 𝛽0 and 𝛽1.

We are also interested in an estimate of 𝜎2 and we will use our usual estimation
scheme of

�̂�2 = 1
𝑛 − 2

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2 = ∑𝑛

𝑖=1 𝑒2𝑖
𝑛 − 2 = 𝑆𝑆𝐸

𝑛 − 2 = 𝑀𝑆𝐸

where the −2 comes from having to estimate 𝛽0 and 𝛽1 before we can estimate
𝜎2. As in the ANOVA case, we can interpret 𝜎 as the typical distance an
observation is from its predicted value.

As always we are also interested in knowing the estimated standard deviation
(which we will call Standard Error) of the model parameters 𝛽0 and 𝛽1 and it
can be shown that

𝑆𝑡𝑑𝐸𝑟𝑟 ( ̂𝛽0) = �̂�√1
𝑛 + ̄𝑥2

𝑆𝑥𝑥

and

𝑆𝑡𝑑𝐸𝑟𝑟 ( ̂𝛽1) = �̂�√ 1
𝑆𝑥𝑥

where 𝑆𝑥𝑥 = ∑(𝑥𝑖 − ̄𝑥)2. These intervals can be used to calculate confidence
intervals for 𝛽0 and 𝛽1 using the formulas:

̂𝛽𝑖 ± 𝑡1−𝛼/2
𝑛−2 𝑆𝑡𝑑𝐸𝑟𝑟 ( ̂𝛽𝑖)

Again we consider the iris dataset that is available in R. I wish to examine the
relationship between sepal length and sepal width in the species setosa.

setosa <- iris %>% filter( Species == 'setosa' ) # Just setosa!
ggplot(setosa, aes(x=Sepal.Length, y=Sepal.Width)) +
geom_point() +
labs(x="Sepal Length", y="Sepal Width", title='Setosa Irises')
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# Do all the crazy calculations "By Hand!"
x <- setosa$Sepal.Length
y <- setosa$Sepal.Width
n <- length(x)
r <- sum( (x-mean(x))/sd(x) * (y-mean(y))/sd(y) ) / (n-1)
b1 <- r*sd(y)/sd(x)
b0 <- mean(y) - b1*mean(x)
cbind(r, b0, b1)

## r b0 b1
## [1,] 0.7425467 -0.5694327 0.7985283

yhat <- b0 + b1*x
resid <- y - yhat
SSE <- sum( resid^2 )
s2 <- SSE/(n-2)
s2

## [1] 0.06580573

Sxx <- sum( (x-mean(x))^2 )
stderr.b0 <- sqrt(s2) * sqrt( 1/n + mean(x)^2 / Sxx)
stderr.b1 <- sqrt(s2) * sqrt(1 / Sxx )
cbind(stderr.b0, stderr.b1)

## stderr.b0 stderr.b1
## [1,] 0.5217119 0.1039651
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t.star <- qt(.975, df=n-2)
c(b0-t.star*stderr.b0, b0+t.star*stderr.b0)

## [1] -1.6184048 0.4795395

c(b1-t.star*stderr.b1, b1+t.star*stderr.b1)

## [1] 0.5894925 1.0075641

Of course, we don’t want to have to do these calculations by hand. Fortunately
statistics packages will do all of the above calculations. In R, we will use lm()
to fit a linear regression model and then call various accessor functions to give
me the regression output I want.

cor( setosa$Sepal.Width, setosa$Sepal.Length )

## [1] 0.7425467

model <- lm(Sepal.Width ~ Sepal.Length, data=setosa)
coef(model)

## (Intercept) Sepal.Length
## -0.5694327 0.7985283

confint(model)

## 2.5 % 97.5 %
## (Intercept) -1.6184048 0.4795395
## Sepal.Length 0.5894925 1.0075641

In general, most statistics programs will give a table of output summarizing a
regression and the table is usually set up as follows:

CoefficientEstimate Std. Error t-stat p-value

Intercept ̂𝛽0 StdErr( ̂𝛽0) 𝑡0 = ̂𝛽0
𝑆𝑡𝑑𝐸𝑟𝑟( ̂𝛽0)

2 ∗ 𝑃(𝑇𝑛−2 >
|𝑡0|)

Slope ̂𝛽1 StdErr( ̂𝛽1) 𝑡1 = ̂𝛽1
𝑆𝑡𝑑𝐸𝑟𝑟( ̂𝛽1)

2 ∗ 𝑃(𝑇𝑛−2 >
|𝑡1|)
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This table is printed by R by using the summary() function:

model <- lm(Sepal.Width ~ Sepal.Length, data=setosa)
summary(model)

##
## Call:
## lm(formula = Sepal.Width ~ Sepal.Length, data = setosa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.72394 -0.18273 -0.00306 0.15738 0.51709
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5694 0.5217 -1.091 0.281
## Sepal.Length 0.7985 0.1040 7.681 6.71e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2565 on 48 degrees of freedom
## Multiple R-squared: 0.5514, Adjusted R-squared: 0.542
## F-statistic: 58.99 on 1 and 48 DF, p-value: 6.71e-10

The first row is giving information about the y-intercept. In this case the
estimate is −0.5694 and the standard error of the estimate is 0.5217. The
t-statistic and associated p-value is testing the hypotheses: 𝐻0 ∶ 𝛽0 = 0 vs
𝐻𝑎 ∶ 𝛽0 ≠ 0. This test is not usually of much interest. However because the
equivalent test in the slope row testing 𝛽1 = 0 vs 𝛽1 ≠ 0, the p-value of the
slope row is very interesting because it tells me if I should include the slope
variable in the model. If 𝛽1 could be zero, then we should drop the predictor
from our model and use the simple model 𝑦𝑖 = 𝛽0 + 𝜖𝑖 instead.
There are a bunch of other statistics that are returned by summary(). The
Residual standard error is just �̂� =

√
𝑀𝑆𝐸 and the degrees of freedom for that

error is also given. The rest are involved with the ANOVA interpretation of a
linear model.

10.2.1 Anova Interpretation

Just as in the ANOVA analysis, we really have a competition between two
models. The full model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥 + 𝜖𝑖
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vs the simple model where x does not help predict 𝑦
𝑦𝑖 = 𝛽0 + 𝜖𝑖

Notice this is effectively forcing the regression line to be flay and I could have
written the model using 𝛽0 = 𝜇 to try to keep our notation straight. If I were
to look at the simple model I would use ̄𝑦 = ̂𝛽0 as the predicted value of 𝑦 for
any value of 𝑥 and my Sum of Squared Error in the simple model will be

𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2 =

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝛽0)
2

and the appropriate Mean Squared Error is

𝑀𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 = 1
𝑛 − 1 ∑(𝑦𝑖 − ̂𝛽0)

2

We can go through the same sort of calculations for the full complex model and
get

𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2 =

𝑛
∑
𝑖=1

(𝑦𝑖 − ( ̂𝛽0 + ̂𝛽1𝑥𝑖))
2

Notice that ̂𝛽0 term is in both models, but will not be numerically the same.
Next we have

𝑀𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 1
𝑛 − 2

𝑛
∑
𝑖=1

(𝑦𝑖 − ( ̂𝛽0 + ̂𝛽1𝑥𝑖))
2

Just as in the AVOVA analysis, if we often like to look at the difference between

𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 − 𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑠 = 𝑆𝑆𝐸𝑑𝑖𝑓𝑓

and think of this quantity as the amount of variability that is explained by
adding the slope parameter to the model. Just as in the AVOVA case we’ll
calculate

𝑀𝑆𝐸𝑑𝑖𝑓𝑓 = 𝑆𝑆𝐸𝑑𝑖𝑓𝑓/𝑑𝑓𝑑𝑖𝑓𝑓
where 𝑑𝑓𝑑𝑖𝑓𝑓 is the number of parameters that we added to the simple model
to create the complex one. In the simple linear regression case, 𝑑𝑓𝑑𝑖𝑓𝑓 = 1.
Just as in the ANOVA case, we will calculate an f-statistic to test the null
hypothesis that the simple model suffices vs the alternative that the complex
model is necessary. The calculation is

𝑓 = 𝑀𝑆𝐸𝑑𝑖𝑓𝑓
𝑀𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥

and the associated p-value is 𝑃 (𝐹1,𝑛−2 > 𝑓). Notice that this test is exactly
testing if 𝛽1 = 0 and therefore the p-value for the F-test and the t-test for 𝛽1
are the same. It can easily be shown that 𝑡21 = 𝑓 .
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The Analysis of Variance table looks the same as what we have seen, but now
we recognize that the rows actually represent the complex and simple models
and the difference between them.

Source df Sum Sq MS F p-value

Difference1 𝑆𝑆𝐸𝑑𝑖𝑓𝑓 𝑀𝑆𝐸𝑑𝑖𝑓𝑓 =
𝑆𝑆𝐸𝑑𝑖𝑓𝑓/1

𝑓 = 𝑀𝑆𝐸𝑑𝑖𝑓𝑓
𝑀𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑃(𝐹1,𝑛−2 >
𝑓)

Complex𝑛 −
2

𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑀𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥 =
𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥/(𝑛−2

Simple 𝑛 −
1

𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒

As usual, the ANOVA table for the regression is available in R using the anova()
command.

model <- lm(Sepal.Width ~ Sepal.Length, data=setosa)
anova(model)

## Analysis of Variance Table
##
## Response: Sepal.Width
## Df Sum Sq Mean Sq F value Pr(>F)
## Sepal.Length 1 3.8821 3.8821 58.994 6.71e-10 ***
## Residuals 48 3.1587 0.0658
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

But we notice that R chooses not to display the row corresponding to the simple
model.

I could consider 𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 as a baseline measure of the amount of variability
in the data. It is interesting to look at how much of that baseline variability
has been explained by adding the additional parameter to the model. Therefore
we’ll define the ratio 𝑅2 as:

𝑅2 = 𝑆𝑆𝐸𝑑𝑖𝑓𝑓
𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒

= 𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒 − 𝑆𝑆𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑆𝑆𝐸𝑠𝑖𝑚𝑝𝑙𝑒

= 𝑟2

where 𝑟 is Pearson’s Correlation Coefficient. 𝑅2 has the wonderful interpretation
of the percent of variability in the response variable that can be explained by
the predictor variable 𝑥.



10.2. MODEL THEORY 209

10.2.2 Confidence Intervals vs Prediction Intervals

There are two different types of questions that we might ask about predicting
the value for some x-value 𝑥𝑛𝑒𝑤.

We might be interested in a confidence interval for regression line. For this
question we want to know how much would we expect the sample regression
line move if we were to collect a new set of data. In particular, for some value
of 𝑥, say 𝑥𝑛𝑒𝑤, how variable would the regression line be? To answer that we
have to ask what is the estimated variance of ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤? The variance of
the regression line will be a function of the variances of ̂𝛽0 and ̂𝛽1 and thus the
standard error looks somewhat reminiscent of the standard errors of ̂𝛽0 and ̂𝛽1.
Recalling that we defined 𝑆𝑥𝑥 = ∑(𝑥𝑖 − ̄𝑥)2, we have:

̂𝑉 𝑎𝑟 ( ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤) = �̂�2 (1
𝑛 + (𝑥𝑛𝑒𝑤 − ̄𝑥)2

𝑆𝑥𝑥
)

and therefore its 𝑆𝑡𝑑𝐸𝑟𝑟( ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤) is

𝑆𝑡𝑑𝐸𝑟𝑟 ( ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤) = �̂�√1
𝑛 + (𝑥𝑛𝑒𝑤 − ̄𝑥)2

𝑆𝑥𝑥

We can use this value to produce a confidence interval for the regression line for
any value of 𝑥𝑛𝑒𝑤.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 𝑡 𝑆𝑡𝑑𝐸𝑟𝑟 (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

( ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤) ± 𝑡1−𝛼/2
𝑛−2 �̂�√1

𝑛 + (𝑥𝑛𝑒𝑤 − ̄𝑥)2
𝑆𝑥𝑥

the expected value of new observation ̂𝐸 (𝑌 |𝑋 = 𝑥𝑛𝑒𝑤). This expectation is
regression line but because the estimated regression line is a function of the
data, then the line isn’t the exactly the same as the true regression line. To
reflect that, I want to calculate a confidence interval for where the true regression
line should be.

I might instead be interested calculating a confidence interval for 𝑦𝑛𝑒𝑤, which
I will call a prediction interval in an attempt to keep from being confused with
the confidence interval of the regression line. Because we have

𝑦𝑛𝑒𝑤 = 𝛽0 + 𝛽1𝑥𝑛𝑒𝑤 + 𝜖𝑛𝑒𝑤

then my prediction interval will still be centered at ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤 but the the
uncertainty should be the sum of the uncertainty associated with the estimates
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of 𝛽0 and 𝛽1 and the additional variability associated with 𝜖𝑛𝑒𝑤. In short,

̂𝑉 𝑎𝑟 ( ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤 + 𝜖) = ̂𝑉 𝑎𝑟 ( ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤) + ̂𝑉 𝑎𝑟 (𝜖)

= �̂�2 (1
𝑛 + (𝑥𝑛𝑒𝑤 − ̄𝑥)2

𝑆𝑥𝑥
)+ �̂�2

and the 𝑆𝑡𝑑𝐸𝑟𝑟 () of a new observation will be

𝑆𝑡𝑑𝐸𝑟𝑟 ( ̂𝑦𝑛𝑒𝑤) = �̂�√1 + 1
𝑛 + (𝑥𝑛𝑒𝑤 − ̄𝑥)2

𝑆𝑥𝑥

So the prediction interval for a new observation will be:

( ̂𝛽0 + ̂𝛽1𝑥𝑛𝑒𝑤) ± 𝑡1−𝛼/2
𝑛−2 �̂�√1 + 1

𝑛 + (𝑥𝑛𝑒𝑤 − ̄𝑥)2
𝑆𝑥𝑥

To emphasize the difference between confidence regions (capturing where we
believe the regression line to lay) versus prediction regions (where new data
observations will lay) we note that as the sample size increases, the uncertainty
as to where the regression line lays decreases, but the prediction intervals will
always contain a minimum width due to the error associated with an individual
observation. Below are confidence (red) and prediction (blue) regions for two
different sample sizes.

n = 10 n = 100

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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10
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14
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In general, you will not want to calculate the confidence intervals and prediction
intervals by hand. Fortunately R makes it easy to calculate the intervals. The
function predict() will calculate the point estimates along with confidence
and prediction intervals. The function requires the lm() output along with an
optional data frame (if you want to predict values not in the original data).
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ggplot(setosa, aes(x=Sepal.Length, y=Sepal.Width)) +
geom_point() +
ggtitle('Sepal Length vs Sepal Width')
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#fit the regression
model <- lm(Sepal.Width ~ Sepal.Length, data=setosa)

# display the first few predictions
head( predict(model, interval="confidence") )

## fit lwr upr
## 1 3.503062 3.427519 3.578604
## 2 3.343356 3.267122 3.419590
## 3 3.183650 3.086634 3.280666
## 4 3.103798 2.991890 3.215705
## 5 3.423209 3.350256 3.496162
## 6 3.742620 3.632603 3.852637

# predict at x = 5.0
predict(model,

interval="prediction", # prediction Interval
newdata=data.frame(Sepal.Length = 5.0)) # at x=5

## fit lwr upr
## 1 3.423209 2.902294 3.944123

We can create a nice graph of the regression line and associated confidence and
prediction regions using the following code in R:
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# ask for the confidence and prediction intervals
conf.region <- predict(model, interval='confidence')
pred.region <- predict(model, interval='prediction')

# add them to my original data frame
setosa <- setosa %>%
mutate( fit = fitted(model),

conf.lwr = conf.region[,2],
conf.upr = conf.region[,3],
pred.lwr = pred.region[,2],
pred.upr = pred.region[,3])

# make a nice plot
ggplot(setosa) +
geom_point( aes(x=Sepal.Length, y=Sepal.Width) ) +
geom_line( aes(x=Sepal.Length, y=fit), col='red' ) +
geom_ribbon( aes(x=Sepal.Length, ymin=conf.lwr, ymax=conf.upr), fill='red', alpha=.4) +
geom_ribbon( aes(x=Sepal.Length, ymin=pred.lwr, ymax=pred.upr), fill='blue', alpha=.4)
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It is worth noting that these confidence intervals are all point-wise confidence
intervals. If I want to calculate confidence or prediction intervals for a large
number of 𝑥𝑛𝑒𝑤 values, then I have to deal with the multiple comparisons is-
sue. Fortunately this is easy to do in the simple linear regression case. In-
stead of using the 𝑡1−𝛼/2

𝑛−2 quantile in the interval formulas, we should use 𝑊 =
√2 ∗ 𝐹1−𝛼, 2,𝑛−2. Many books ignore this issue as does the predict() function
in R.
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10.3 Extrapolation

The data observed will inform a researcher about the relationship between the
x and y variables, but only in the range for which you have data! Below are the
winning times of the men’s 1500 meter Olympic race.

data(men1500m, package='HSAUR2')
small <- men1500m %>% filter( year != 1896 ) # Remove the 1896 Olympics

# fit the model and get the prediction interval
model <- lm( time ~ year, data=small )
small <- cbind(small, predict(model, interval='prediction') )

ggplot(small, aes(x=year, y=time, ymin=lwr, ymax=upr)) +
geom_point() +
geom_line( aes(y=fit), col='red' ) +
geom_ribbon( fill='light blue', alpha=.4) +
labs( x='Year', y='Time (s)', title='Winning times of Mens 1500 m' ) +
theme_bw()
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If we are interested in predicting the results of the 2008 and 2012 Olympic race,
what would we predict?

predict(model,
newdata=data.frame(year=c(2008, 2012)),
interval="prediction")

## fit lwr upr
## 1 208.1293 199.3971 216.8614
## 2 206.8451 198.0450 215.6453
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We can compare the predicted intervals with the time actually recorded by the
winner of the men’s 1500m. In Beijing 2008, Rashid Ramzi from Brunei won the
event in 212.94 seconds and in London 2012 Taoufik Makhloufi from Algeria won
in 214.08 seconds. Both times are within the corresponding prediction intervals,
but clearly the linear relationship must eventually change and therefore our
regression could not possibly predict the winning time of the 3112 race.

predict(model, newdata=data.frame(year=c(3112)), interval="prediction")

## fit lwr upr
## 1 -146.2973 -206.7705 -85.82402

10.4 Checking Model Assumptions

As in the ANOVA analysis, we want to be able to check the model assumptions.
To do this, we will examine the residuals 𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖 for normality using a
QQ-plot as we did in ANOVA. To address the constant variance and linearity
assumptions we will look at scatterplots of the residuals vs the fitted values ̂𝑦𝑖.
For the regression to be valid, we want the scatterplot to show no discernible
trend. There are two patterns that commonly show up that indicate a violation
of the regression assumptions.

No Trend Non−Linear Non−Constant Variance

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

−0.5

0.0

0.5

1.0

Fitted

R
es

id
ua

l

To illustrate this, we’ll consider the cherry tree dataset that comes with R. The
goal will be predicting the volume of lumber produced by a cherry tree of a
given diameter. The data are given in a dataset pre-loaded in R called trees.

Step one: Graph the data. The first step in a regression analysis is to graph the
data and think about if a linear relationship makes sense.
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head(trees) # 3 columns Girth, Height, Volume

## Girth Height Volume
## 1 8.3 70 10.3
## 2 8.6 65 10.3
## 3 8.8 63 10.2
## 4 10.5 72 16.4
## 5 10.7 81 18.8
## 6 10.8 83 19.7

ggplot(trees, aes(x=Girth, y=Volume)) +
geom_point() +
ggtitle('Volume vs Girth')
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Initially, it looks like a line is a pretty good description of this relationship.

Step two: Fit a regression and examine the diagnostic plots.

model <- lm( Volume ~ Girth, data=trees )
autoplot(model, which=c(1,2))

## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
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The normality assumption isn’t too bad, but there is a strong trend in the
residual plot. The curvature we see in the residual group is present in the
original scatterplot, but it is more obvious. At this point I would think about
a slightly more complicated model, e.g. should we include height in the model
or perhaps Girth^2? The implications of both of these possibilities will be
explored in STA 571 but for now we’ll just continue using the model we have.

Step three: Plot the data and the regression model.

trees <- cbind( trees, predict(model, interval='confidence') )
head(trees) # now we have the fit, lwr, upr columns

## Girth Height Volume fit lwr upr
## 1 8.3 70 10.3 5.103149 2.152294 8.054004
## 2 8.6 65 10.3 6.622906 3.799685 9.446127
## 3 8.8 63 10.2 7.636077 4.896577 10.375578
## 4 10.5 72 16.4 16.248033 14.156839 18.339228
## 5 10.7 81 18.8 17.261205 15.235884 19.286525
## 6 10.8 83 19.7 17.767790 15.774297 19.761284

ggplot(trees, aes(x=Girth)) +
geom_ribbon( aes( ymin=lwr, ymax=upr), alpha=.4, fill='pink' ) +
geom_line( aes(y=fit), color='red') +
geom_point(aes(y=Volume))
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In this graph we see that we underestimate the volume for small girths, over-
estimate for medium values, and underestimate for large girths. So we see the
same pattern of the residuals in this graph as we saw in the residual graph.
While the model we’ve selected isn’t as good as it could be, this isn’t horribly
bad and might suffice for a first pass

“All models are wrong, but some are useful.” George Box.

Step four: Evaluate the model coefficients.

summary(model)

##
## Call:
## lm(formula = Volume ~ Girth, data = trees)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.065 -3.107 0.152 3.495 9.587
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
## Girth 5.0659 0.2474 20.48 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.252 on 29 degrees of freedom
## Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
## F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16
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confint(model)

## 2.5 % 97.5 %
## (Intercept) -43.825953 -30.060965
## Girth 4.559914 5.571799

From the summary output, we can see several things:

1. The intercept term ̂𝛽0 is significantly different than zero. While we should
expect that a tree with zero girth should have zero volume, our model
predicts a volume of -36.9, which is obviously ridiculous. I’m not too
worried about this because we have no data from trees that small and
the intercept is quite the extrapolation from the range of Girth values
we actually have. This is primarily being driven by the real relationship
having curvature and our model has no curvature in it. So long as we
don’t use this model to predict values too far away from our data points,
I’m happy.

2. The slope is statistically significantly positive. We see an estimate an
increase of 5 units of Volume for every 1 unit increase in Girth.

3. The estimate �̂� is given by the residual standard error and is 4.252 and
that is interpreted as the typical distance away from the regression line.

4. The R-sq value gives the amount of variability in the data that is explained
by the regression line as 93.5%. So the variable Girth explains a huge
amount of the variability in volume of lumber a tree produces.

5. Finally, the F-test is comparing the complex vs the simple model, which
in this case, reduces to just testing if the slope term, 𝛽1, could be zero. In
simple regression, the F-statistic is the square of the t-statistic for testing
the slope. That is, F-statistic = 419.4 = 20.482. The p-values are the same
for the two tests because they are testing exactly the same hypothesis.

10.5 Common Problems

10.5.1 Influential Points

Sometimes a dataset will contain one observation that has a large effect on the
outcome of the model. Consider the following datasets where the red denotes
a highly influential point and the red line is the regression line including the
point.
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The question of what to do with influential points is not easy to answer. Some-
times these are data points that are a result of lab technician error and should
be removed. Sometimes they are the result of an important process that is not
well understood by the researcher. It is up to the scientist to figure out which
is the case and take appropriate action.

One solution is to run the analysis both with and without the influential point
and see how much it affects your inferences.

10.5.2 Transformations

When the normality or constant variance assumption is violated, sometimes it
is possible to transform the data to make it satisfy the assumption. Often times
count data is analyzed as log(count) and weights are analyzed after taking a
square root or cube root transform.
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We have the option of either transforming the x-variable or transforming the
y-variable or possibly both. One thing to keep in mind, however, is that trans-
forming the x-variable only effects the linearity of the relationship. Transforming
the y-variable effects both the linearity and the variance.

set.seed(-838)
par(mfrow=c(1,3))
n <- 40
x <- seq(1,30, length=n);
y <- 2 + 30*exp((30-x)/10) + rnorm(n, sd=20)
y <- abs(y)
plot(x,y); abline(coef(lm(y~x)));
plot(x, log(y)); abline(coef(lm(I(log(y))~x)));
plot(x^(1/3), y); abline(coef(lm(y~I(x^(1/3)))));
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mydata <- data.frame(x=x, y=y)

Unfortunately it is not always obvious what transformation is most appropriate.
The Box-Cox family of transformations for the y-variable is

𝑓(𝑦 | 𝜆) = {𝑦𝜆 if 𝜆 ≠ 0
log 𝑦 if 𝜆 = 0

which includes squaring (𝜆 = 2), square root (𝜆 = 1/2) and as 𝜆 → 0 the trans-
formation converges to log 𝑦. (To do this correctly we should define the trans-
formation in a more complicated fashion, but that level of detail is unnecessary
here.) The transformation is selected by looking at the profile log-likelihood
value of different values of 𝜆 and we want to use the 𝜆 that maximizes the
log-likelihood.
Of course, we also want to use a transformation that isn’t completely obscure
and is commonly used in the scientific field, so square roots, reciprocals, and
logs are preferred.
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str(mydata)

## 'data.frame': 40 obs. of 2 variables:
## $ x: num 0 0.769 1.538 2.308 3.077 ...
## $ y: num 2 3.08 2.92 4.17 5.44 ...
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MASS::boxcox(y~x, data=mydata, plotit=TRUE)
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Here we see the resulting confidence interval for 𝜆 contains 0, so a log transfor-
mation would be most appropriate.

Unfortunately there isn’t a matching procedure for deciding how to transform
the 𝑥 covariate. Usually we spend a great deal of time trying different transfor-
mations and see how they affect the scatterplot and using transformations that
are common in whatever field the researcher is working in.

In general, deciding on a transformation to use is often a trade-off between
statistical pragmatism and interpretability. In cases that a transformation is
not possible, or the interpretation is difficult, it is necessary to build more
complicated models that are hopefully interpretable. We will explore these
issues in great length in STA 571.

10.6 Exercises

1. Use the following data below to answer the questions below

x 3 8 10 18 23 28
y 14 28 43 62 79 86

a) Plot the data in a scatter plot. The following code might be useful:

# read in the data
p1.data <- data.frame(
x = c( 3, 8, 10, 18, 23, 28),
y = c(14, 28, 43, 62, 79, 86) )

# make a nice graph
library(ggplot2)
ggplot(p1.data, aes(x=x, y=y)) +
geom_point()
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b) We will first calculate the regression coefficients and their estimated
standard deviations by hand (mostly).
i. Use R to confirm that that the following summary statistics are

correct:

̄𝑥 = 15 𝑠𝑥 = 9.59 𝑆𝑥𝑥 = 460
̄𝑦 = 52 𝑠𝑦 = 28.59 𝑟 = 0.9898

ii. Using the above statistics, by hand calculate the estimates ̂𝛽0
and ̂𝛽1.

iii. For each data point, by hand calculate the predicted value ̂𝑦𝑖 =
̂𝛽0 + ̂𝛽1𝑥𝑖.

iv. For each data point, by hand calculate the estimated error term
̂𝜖𝑖 = 𝑦𝑖 − ̂𝑦𝑖.

v. Calculate the MSE for the complex model. Using the MSE, what
is �̂�?

vi. By hand, calculate the estimated standard deviation (which is
often called the standard error) of ̂𝛽0 and ̂𝛽1.

c) Use the R function lm() to fit a regression to these data.

i. Using the predict() function, confirm your hand calculation of
the ̂𝑦𝑖 values.

ii. Using the resid() function, confirm your hand calculation of
the ̂𝜖𝑖 terms.

iii. Using the summary() function, confirm your hand calculations
of ̂𝛽0 and ̂𝛽1 and their standard errors.

d) Again using R’s built in functions, give a 95% confidence interval for
𝛽1.

e) Using the appropriate R output, test the hypothesis 𝐻0 ∶ 𝛽1 = 0
versus the alternative 𝐻𝑎 ∶ 𝛽1 ≠ 0.

f) Give the R^{2} value for this regression.
g) What is the typical distance to the regression line?
h) Create a nice graph of the regression line and the confidence interval

for the true relationship using the following code:

# make a nice graph
ggplot(p1.data, aes(x=x, y=y)) +
geom_point() +
geom_smooth(method='lm')
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Often I want to create the confidence region myself (perhaps to use
a prediction interval instead of a confidence interval), and we could
use the following code:

library(dplyr)
model <- lm( y ~ x, data=p1.data )

p1.data <- p1.data %>%
mutate( yhat = predict(model),

lwr = predict(model, interval='confidence')[,2],
upr = predict(model, interval='confidence')[,3] )

# make a nice graph
ggplot(p1.data, aes(x=x)) +
geom_ribbon( aes(ymin=lwr, ymax=upr), fill='pink', alpha=.2 ) +
geom_line( aes( y=yhat), color='green' ) +
geom_point( aes( y=y ), color='black' )

2. Olympic track and field records are broken practically every Olympics.
The following is output comparing the gold medal winning performance
in the men’s long jump (in inches) versus the years 00 to 84. (In this data
set, the year 00 represents 1900, and 84 represents 1984. This is a pre
Y2K dataset.) There were 𝑛 = 19 Olympic games in that period.

a) Fill in the blanks in the following summary and anova tables:
Summary:

Coefficients Estimate Std Error t-value 𝑃𝑟(> |𝑡|)
(Intercept) 283.45 4.28 < 2e-16

Year 0.613 0.0841 7.289 1.27e-06

Residual Standard Error = R-sq =

Analysis of Variance:

Source df Sum Sq Mean Sq F-value Pr(>F)
Year

Residuals 95.19
Total 18 6673.2

3. Ott & Longnecker 11.45&47 - In the preliminary studies of a new drug,



10.6. EXERCISES 225

a pharmaceutical firm needs to obtain information on the relationship
between the dose level and potency of the drug. In order to obtain this
information, a total of 18 test tubes are inoculated with a virus culture
and incubated for an appropriate period of time. Three test tubes are
randomly assigned to each of 6 different dose levels. The 18 test tubes
are then injected with the randomly assigned dose level of the drug. the
measured response is the protective strength of the drug against the virus
culture. Due to a problem with a few of the test tubes, only 2 responses
were obtained for dose levels 4,8, and 16. The data are:

Dose 2 2 2 4 4 8 8 16 16 16 32 32 64 64 64
Response 5 7 3 10 14 15 17 20 21 19 23 29 28 31 30

a) We will first fit a regression model to the raw data.
i. Plot the data and comment on the relationship between the co-

variate and response.
ii. Fit a linear regression model to these data using the lm() func-

tion.
iii. Examine the plot of the residuals vs fitted values. Does there

appear to be a problem? Explain.
b) Often in drug evaluations, a logarithmic transformation of the dose

level will yield a linear relationship between the response variable
and the independent variable. Let 𝑥𝑖 = log (𝑑𝑜𝑠𝑒𝑖) (where log is the
natural log). Notice that because the constant variance assumption
seems to be met, I don’t wish to transform 𝑦.
i. Plot the response of the drug vs the natural log of the dose levels.

Does it appear that a linear model is appropriate?
ii. Fit the linear regression model to these data.
iii. From a plot of the residuals vs the fitted values, does the linear

model seem appropriate?
iv. Examine the QQplot of the residuals vs the theoretical normal

quantiles. Does the normality assumption appear to be violated?
Also perform a Shapiro-Wilks test on the residuals to test of a
statistically significant difference from normality. Comment on
these results.

v. What is change in the response variable for every one unit change
in log(dose)?

vi. Give a 95% confidence interval for the y-intercept and slope pa-
rameters. Is the log(dose) level a statistically significant predic-
tor of the response?
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Chapter 11

Contingency Tables

library(ggplot2)
library(dplyr)
library(tidyr)

We are often interested in experiments and studies where the response variable
is categorical and so is the explanatory.

• Treat plots with either Type A or Type B insecticides and after 2 weeks
observe if the plots are infested or not infested with some insect.

• Using survey data, we would like to investigate if there is a relationship
between Gender and Political Party affiliation. (Are women more likely
to be Democrats?)

• Are children that are born second or third (or more!) more likely to be
gay than the firstborn child?

We will be interested in testing the null hypothesis of “No association” between
the explanatory and response variable.

We will have two questions:

1. What statistic could be calculated from the observed data to measure how
far the observed data is from the null hypothesis?

2. Given the statistic in part 1, how should it vary from sample to sample
assuming the null hypothesis (no difference in treatments) is true?

227
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11.1 Expected Counts

We will develop our ideas using a sub-sample of data from surveys of undergrad-
uate students in an Introductory statistics course. We will utilize 40 males and
40 females and consider the historical assumption that women should perform
better on the verbal part of the SAT rather than the MATH part compared to
their male counterparts.

data(StudentSurvey, package='Lock5Data')
StudentSurvey <- StudentSurvey %>%
filter( HigherSAT != '') %>% # remove a student that did not report SAT scores
mutate(HigherSAT = factor(HigherSAT)) %>% # remove the MISSING level from the above student
group_by(Gender) %>% # Only consider the first 40 males
slice(1:40) %>% # and Females... as a first example
select(Gender, HigherSAT)

In this example, exactly 60% of the students had a higher score on the math
portion of the SAT than on the verbal. If the null hypothesis is true, then 60%
of the 40 males should have a higher Math SAT score than verbal. So under
the null, we expect to see 40 ∗ 0.60 = 24 males and 40 ∗ 0.60 = 24 females to
have a higher Math SAT than verbal. Similarly we would expect 40 ∗ 0.40 = 16
males and 16 females to score higher on the verbal section. Below is a table
that summarizes both our observed data and the expected values under the null
hypotheses of no association between superior SAT category with gender.

tab <- mosaic::tally( HigherSAT ~ Gender, data=StudentSurvey, format='count')

## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2

descr::CrossTable( tab, expected = TRUE,
prop.r = FALSE, prop.c=FALSE, prop.t=FALSE, prop.chisq = FALSE )

## Cell Contents
## |-------------------------|
## | N |
## | Expected N |
## |-------------------------|
##
## ============================
## Gender
## HigherSAT F M Total
## ----------------------------
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## Math 23 25 48
## 24 24
## ----------------------------
## Verbal 17 15 32
## 16 16
## ----------------------------
## Total 40 40 80
## ============================

Notice that the expected cell counts can be written as

𝐸𝑖𝑗 =
𝑛𝑖,⋅
𝑛 ∗ 𝑛⋅,𝑗 =

𝑛𝑖,⋅𝑛⋅,𝑗
𝑛

where 𝑛𝑖,⋅ is row total for the 𝑖th row, 𝑛⋅,𝑗 is the column total for the 𝑗th row,
and 𝑛 is the total number of observations in the table.
This is the first case where our test statistic will not be just plugging in the
sample statistic into the null hypothesis. Instead we will consider a test statistic
that is more flexible and will handle more general cases (say 3 or more response
or treatment groups) Our statistic for assessing how far our observed data is
from what we expect under the null hypothesis involves the difference between
the observed and the expected for each of the cells, but again we don’t want to
just sum the differences, instead will make the differences positive by squaring
the differences. Second, a difference of 10 between the observed and expected
cell count is very different if the number expected is 1000 than if it is 10, so we
will scale the observed difference by dividing by the expected cell count.
We define

𝑋2 = ∑
all ij cells

(𝑂𝑖𝑗 −𝐸𝑖𝑗)
2

𝐸𝑖𝑗

= (23 − 24)2
24 + (25 − 24)2

24 + (17 − 16)2
16 + (15 − 16)2

16
= 0.04167 + 0.04167 + 0.0625 + 0.0625
= 0.20834

In the next section we will address if this test statistic is large enough to reject
the null hypothesis.
Example
Researchers suspected that attack of a plant by one organism induce resistance
to subsequent attack by a different organism. The 47 individually potted cotton
plants were randomly allocated to two groups: infestation by spider mites or no
infestation. After two weeks the mites were dutifully removed by a conscientious
research assistant, and both groups were inoculated with Verticillium, a fungus
that causes Wilt disease.



230 CHAPTER 11. CONTINGENCY TABLES

data(Mites, package="mosaicData")
str(Mites)

## 'data.frame': 47 obs. of 2 variables:
## $ treatment: Factor w/ 2 levels "mites","no mites": 1 1 1 1 1 1 1 1 1 1 ...
## $ outcome : Factor w/ 2 levels "no wilt","wilt": 2 2 2 2 2 2 2 2 2 2 ...

We will summarize the data into a contingency table that counts the number of
plants in each treatment/wilt category.

# Using mosaic's tally function
tab <- mosaic::tally(outcome ~ treatment, data=Mites, # table of outcome by treatment

format='count') # give the raw counts, not percentages
tab

## treatment
## outcome mites no mites
## no wilt 15 4
## wilt 11 17

From this table we can see that 28 out of the 47 plants wilted, so the proportion
that wilted was 28

47 = 0.596. Therefore under the null hypothesis we would
expect that 59.6% of the 26 mite treated plants would have wilted, or

(28
47) 26 = 15.49

Similar calculations reveal the rest of the expected cell counts.

descr::CrossTable( tab, expected = TRUE,
prop.r = FALSE, prop.c=FALSE, prop.t=FALSE, prop.chisq = FALSE )

## Cell Contents
## |-------------------------|
## | N |
## | Expected N |
## |-------------------------|
##
## ===================================
## treatment
## outcome mites no mites Total
## -----------------------------------
## no wilt 15 4 19
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## 10.5 8.5
## -----------------------------------
## wilt 11 17 28
## 15.5 12.5
## -----------------------------------
## Total 26 21 47
## ===================================

Is this data indicative of mites inferring a disease resistance? More formally we
are interested in testing

𝐻0 ∶ 𝜋𝑤 = 𝜋𝑤|𝑚

𝐻0 ∶ 𝜋𝑤 ≠ 𝜋𝑤|𝑚

where the relevant parameters are 𝜋𝑤, the probability that a plant will wilt, and
𝜋𝑤|𝑚, the probability that a plant will wilt given that it has been treated with
mites.
We calculate our test statistic as

𝑋2 = ∑
all ij cells

(𝑂𝑖𝑗 −𝐸𝑖𝑗)
2

𝐸𝑖𝑗

= (15 − 10.51)2
10.51 + (4 − 8.49)2

8.49 + (11 − 15.49)2
15.49 + (17 − 12.51)2

12.51
= 1.92 + 2.37 + 1.30 + 1.61
= 7.20

If the null hypothesis is true, then this statistic should be small, and a large
value of the statistic is indicative of the null hypothesis being incorrect. But
how large must the statistic be before we reject the null hypothesis?

11.2 Hypothesis Testing

Similarly to the two-sample t-test, we randomly shuffle the treatment assign-
ments and recalculate the statistic many times and examine the sampling dis-
tribution of our test statistic, 𝑋2.
To do this efficiently, we’ll need a way of easily calculating this test statistic.
In a traditional course I would introduce this test by the name of “Pearson’s
Chi-squared test” and we can obtain the test statistic using the following code:

# function is chisq.test() and we need to tell it not to do the Yates continuity
# correction and just calculate the test statistic as we've described
chisq.test( table(Mites), correct=FALSE ) # do a Chi-sq test
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##
## Pearson's Chi-squared test
##
## data: table(Mites)
## X-squared = 7.2037, df = 1, p-value = 0.007275

R is performing the traditional Pearson’s Chi-Squared test which assumes our
sample sizes are large enough for several approximations to be good. Fortu-
nately, we don’t care about this approximation to the p-value and will use sim-
ulation methods which will be more accurate. In order to use the chisq.test()
function to do our calculations, we need to extract the test-statistic from the
output of the function. «warning=FALSE»=

# extract the X^2 test statistic from the output
X.sq <- chisq.test( table(Mites), correct=FALSE )$statistic # grab only the test statistic
X.sq

## X-squared
## 7.203748

Next we wish to repeat our shuffling trick of the treatment labels to calculate
the sampling distribution of 𝑋2∗, which is the distribution of 𝑋2 when the null
hypothesis of no difference between treatments is true.

Mites.star <- Mites %>% mutate(treatment = mosaic::shuffle(treatment))
table(Mites.star)

## outcome
## treatment no wilt wilt
## mites 8 18
## no mites 11 10

chisq.test( table(Mites.star), correct=FALSE )$statistic # grab only the test statistic

## X-squared
## 2.252981

We see that this code is creating a data frame with a single column called
X.squared and next we simulate a large number of times and display the sam-
pling distribution of 𝑋2∗.
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SamplingDist <- mosaic::do(10000)*{
Mites.star <- Mites %>% mutate(treatment = mosaic::shuffle(treatment))
chisq.test( table(Mites.star), correct=FALSE )$statistic

}

ggplot( SamplingDist, aes(x=X.squared)) + geom_histogram()
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At first glance this seems wrong because it is not a nice looking distribution.
However there are only a small number of ways to allocate the treatments labels
to the two possible outcomes. Second, for the test statistic we have chosen only
the right hand side of the distribution (large values of 𝑋∗) would be evidence
against the null hypothesis, so we only look at 𝑋2∗ > 7.20.

p.value <- SamplingDist %>% summarize( p.value = mean( X.squared >= X.sq ) )
p.value

## p.value
## 1 0.0149

We see that the p-value is 0.0149 and conclude that there is strong evidence to
reject the null hypothesis that the mite treatment does not affect the probability
of wilting. That is to say, the probability of observing data as extreme as ours
is unlikely to occur by random chance when the null hypothesis is true.

As usual, it is pretty annoying to have to program the permutation test our-
selves. Fortunately the chisq.test() function allows us to option to tell it
to do a permutation based test. There is an option simulate.p.value which
reproduces the simulation test we just performed.
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chisq.test( table(Mites), simulate.p.value=TRUE, B=10000 )

##
## Pearson's Chi-squared test with simulated p-value (based on 10000
## replicates)
##
## data: table(Mites)
## X-squared = 7.2037, df = NA, p-value = 0.0159

Before we had our excellent computers, we would have to compare the observed
𝑋2 test statistic to some distribution to determine if it is large enough to be evi-
dence against the null. It can be shown that if the null hypothesis is correct then
𝑋2 ⋅∼ 𝜒2

1 where this is the Chi-squared distribution with 1 degree of freedom.
This is the distribution that the chisq.test() compares against if we don’t
tell it to do a permutation based test. Furthermore, even if the null hypothesis
is true the test statistic is only approximately normal but that approximation
gets better and better as the total sample size increases.

The reason that we compare against a Chi-squared distribution with 1 degree
of freedom is because when we shuffle the group labels, we still have the same
number of wilted/non-wilted plants as well as the same number of mite/no-mite
treated plants. So the row and column totals are identical in all the permuted
tables. So once the number of observations in the (1, 1) cell is decided, the other
three cells are also indirectly determined as well due to the row/column totals
being constant regardless of permutation. In the general case with 𝑅 rows and
𝐶 columns, the number of cells that are not set due to the row/column totals,
is (𝑅 − 1)(𝐶 − 1).
The asymptotic approximation is usually acceptable if the observed count in
each cell is greater than 5. Even then, a slightly better approximation can be
obtained by using the Yates’ continuity correction. Typically I will perform the
analysis both ways and confirm we get the same inference. If the two methods
disagree, I’d trust the permutation method.

Example:

In a study to investigate possible treatments for human infertility, researchers
(Harrison, R. F., Blades, M., De Louvois, J., & Hurley, R. (1975). Doxycycline
treatment and human infertility. The Lancet, 305(7907), 605-607.) performed
a double-blind study and randomly divided 58 patients into two groups. The
treatment group (𝑛𝑡 = 30) received 100 mg per day of Doxycycline and the
placebo group (𝑛𝑝 = 28) received a placebo but were unaware that it was a
placebo. Within 5 months, the treatment group had 5 pregnancies, while the
placebo group had 4. Just looking at the observed vs expected there doesn’t
seem to be much difference between the treatments. In fact, due to the discrete
nature of the data (i.e. integer values) we can’t imagine data that any closer to
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the expected value that what we observed. The p-value here ought to be 1! To
confirm this we do a similar test as before.

Conceived <- data.frame(
Treatment=c(rep('Doxycyline',30), rep('Placebo',28)),
Outcome=c(rep('Conceived',5), rep('Not Conceived',25),

rep('Conceived',4), rep('Not Conceived',24)))

# Use the CrossTable function to generate the Expected Cell values
descr::CrossTable(table(Conceived), expected=TRUE,

prop.r=FALSE, prop.c=FALSE, prop.t=FALSE, prop.chisq=FALSE)

## Cell Contents
## |-------------------------|
## | N |
## | Expected N |
## |-------------------------|
##
## ===============================================
## Outcome
## Treatment Conceived Not Conceived Total
## -----------------------------------------------
## Doxycyline 5 25 30
## 4.7 25.3
## -----------------------------------------------
## Placebo 4 24 28
## 4.3 23.7
## -----------------------------------------------
## Total 9 49 58
## ===============================================

chisq.test( table(Conceived), simulate.p.value=TRUE, B=10000 )

##
## Pearson's Chi-squared test with simulated p-value (based on 10000
## replicates)
##
## data: table(Conceived)
## X-squared = 0.062628, df = NA, p-value = 1

11.3 RxC tables

We next expand this same analysis to consider cases where we have explanatory
variable with 𝐶 levels and the response variable has 𝑅 levels, and so the table
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of observations has 𝑅 rows and 𝐶 columns.
There was nothing special about the analysis that required only 2x2 tables.
Expanding this the expected value for the 𝑖, 𝑗 cell in the table is still

𝐸𝑖𝑗 =
𝑛𝑖⋅𝑛⋅𝑗
𝑛

As before we define the test statistic as

𝑋2 = ∑
all ij cells

(𝑂𝑖𝑗 −𝐸𝑖𝑗)
2

𝐸𝑖𝑗

If we have sufficient samples sizes in each cell (general rule-of-thumb is greater
than 5 per cell), then we could compare this test statistic to a Chi-Squared
distribution with (𝑅 − 1)(𝐶 − 1) degrees of freedom.

𝑝.𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟(𝜒(𝑟−1)(𝑐−1) > 𝑋2)

We consider some data from the American Community Survey, which is a survey
administered by the US Census Bureau and given to approximately 3% of all
US households. The package Lock5Data has a dataset, ACS, which is a sub-
sample of 𝑛 = 1000 respondents of that 2010 survey. In particular, we want
to examine the relationship between race and marriage status. In particular if
white respondents are more likely to be married than Asian or black (or other)
races.

data(ACS, package='Lock5Data')
ACS <- ACS %>%
mutate(Married = ifelse(Married==1, 'Married','Single'))

tab <- mosaic::tally(Married ~ Race, data=ACS)
tab

## Race
## Married asian black other white
## Married 37 25 20 355
## Single 33 81 43 406

Often I find it is difficult to really understand a table and find a good graph
more insightful.

temp <- ACS %>%
group_by(Race, Married) %>%
dplyr::count() %>%
group_by(Race) %>%
mutate(proportion = n/sum(n))

ggplot(temp, aes(x=Race, y=proportion, fill=Married)) +
geom_bar(stat='identity')
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# Use the CrossTable function to generate the Expected Cell values
descr::CrossTable(tab, expected=TRUE,

prop.r=FALSE, prop.c=FALSE, prop.t=FALSE, prop.chisq=FALSE)

## Cell Contents
## |-------------------------|
## | N |
## | Expected N |
## |-------------------------|
##
## ================================================
## Race
## Married asian black other white Total
## ------------------------------------------------
## Married 37 25 20 355 437
## 30.6 46.3 27.5 332.6
## ------------------------------------------------
## Single 33 81 43 406 563
## 39.4 59.7 35.5 428.4
## ------------------------------------------------
## Total 70 106 63 761 1000
## ================================================

Because the cell counts are quite large, the asymptotic approximations should
be fine. We will compare the test statistic against a Chi-squared distribution
with (2 − 1)(4 − 1) = 1 ∗ 3 = 3 degrees of freedom.

1 - pchisq(26.168, df=3)

## [1] 8.795319e-06
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therefore
𝑝.𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟(𝜒2

3 > 26.168) = 8.795e-06

chisq.test( tab )

##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 26.168, df = 3, p-value = 8.797e-06

If we are worried about the sample size begin large enough, we could perform a
permutation based test by repeatedly shuffling the Race labels calculating the
test statistic and then comparing the observed test statistic 𝑋2 = 26.168 to the
permutation

chisq.test( tab, simulate.p.value=TRUE, B=100000 )

##
## Pearson's Chi-squared test with simulated p-value (based on 1e+05
## replicates)
##
## data: tab
## X-squared = 26.168, df = NA, p-value = 2e-05

With such a small p-value, we know that we are unlikely to have observed such
a large difference in marriage rates among our different races. It appears that
white respondents are much more likely to be married than the other races listed,
but is there a difference in rates between blacks and Asians? What about Asian
and other?

Just as we wanted to perform an analysis on all pairwise comparisons among
levels in an ANOVA analysis and control the overall Type I error rate, we will
do the same thing but now using the Chi-squared test.

Conceptually we will just perform all possible pairwise tests and then adjust
the resulting p-values to control for the number of comparisons.

There are a number of other questions that I might consider, such as confidence
intervals for the proportions married in each race. However, those questions
require a few more assumptions about the structure of the data and will be
addressed when we study logistic regression.
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11.4 Exercises

1. Is gender independent of education level? A random sample of 𝑛 = 501
people were surveyed and each person was asked to report the highest
education level they obtained. The data that resulted from the survey is
summarized in the following table:

<= High
School

Some
College Bachelors

Adv.
Degree Total

Male 96 72 59 34 261
Female 56 78 67 39 240
Total 152 150 126 73 501

a) Calculate the expected cell counts for each Gender and Degree com-
bination.

b) Calculate the 𝑋2 test statistic.
c) Calculate the appropriate p-value using the asymptotic approxima-

tion and interprete the results in terms of the problem.
d) Double check your hand-calculations using the chisq.test() func-

tion in R.

2. We consider some data from the American Community Survey, which is a
survey administered by the US Census Bureau and given to approximately
3% of all US households. The package Lock5Data has a dataset, ACS,
which is a sub-sample of 𝑛 = 1000 respondents of that 2010 survey. In
particular, we want to examine the relationship between race and having
health insurance.

data(ACS, package='Lock5Data')
temp <- ACS %>%
mutate(HealthInsurance = factor(ifelse(HealthInsurance == 1, "Have","None")),

Race = factor(Race, levels=c('white','asian','black','other') ) ) %>%
group_by(Race, HealthInsurance) %>%
dplyr::count() %>%
group_by(Race) %>%
mutate(proportion = n/sum(n))

ggplot(temp, aes(x=Race, y=proportion, fill=HealthInsurance)) +
geom_bar(stat='identity')
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a) Generate a table summarizing how many respondents of each race
has health insurance.

b) Test the hypothesis that there is no association between race and
having health insurance using both the asymptotic method and the
permutation method. Is your inference the same in both cases?

c) Establish which racial groups are different in the proportion of re-
spondents that have health insurance.



Appendix A : Resampling
Linear Models

library(dplyr)
library(ggplot2)
library(ggfortify)
library(car) # for the Boot function
library(boot) # for the boot function

The last several chapters have introduced a number of parametric models where
we assume that the error terms are normally distributed.

One-sample t-test: 𝑌𝑖 = 𝜇 + 𝜖𝑖 where 𝜖𝑖
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎)

Two-sample t-test: 𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎) 𝑖 ∈ {1, 2}

ANOVA: 𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where 𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎) 𝑖 ∈ {1, 2,… , 𝑘}

Regression: 𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 where 𝜖𝑖
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎)

We developed hypothesis tests and confidence intervals for the model parameters
assuming that the error terms were normally distributed and, in the event that
they are normally distributed, those tests and confidence intervals are the best
we can do. However, if the errors are not normally distributed, what should we
do?
Previously we used bootstrapping to estimate the sampling distribution of the
sampling statistic when we didn’t know the distribution. We will use the same
bootstrapping method, but we’ll simplify all of the above cases to the the same
simple linear model

𝑌𝑖 = 𝐸 (𝑌𝑖) + 𝜖𝑖 where 𝜖𝑖
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎)

and 𝐸 (𝑌𝑖) takes on some form of the parameters depending on the model spec-
ified. It turns out that R can do all of these analyses using the same lm()
function we used in for regression.

241
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11.5 Using lm() for many analyses

11.5.1 One-sample t-tests

In this model we are concerned with testing

𝐻0 ∶ 𝜇 = 𝜇0
𝐻𝑎 ∶ 𝜇 ≠ 𝜇0

for some 𝜇0. For example, suppose we have the following data and we want to
test 𝐻0 ∶ 𝜇 = 5𝑣𝑠𝐻𝑎 ∶ 𝜇 ≠ 5. The R code we used previously was

# How we previously did a t.test
test.data <- data.frame( y=c(3,5,4,5,7,13) )
t.test( test.data$y, mu=5 )

##
## One Sample t-test
##
## data: test.data$y
## t = 0.79361, df = 5, p-value = 0.4634
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
## 2.387727 9.945607
## sample estimates:
## mean of x
## 6.166667

but we can just as easily consider this a linear model with only an intercept
term.

m1 <- lm(y ~ 1, data=test.data)
summary(m1)

##
## Call:
## lm(formula = y ~ 1, data = test.data)
##
## Residuals:
## 1 2 3 4 5 6
## -3.1667 -1.1667 -2.1667 -1.1667 0.8333 6.8333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)



11.5. USING LM() FOR MANY ANALYSES 243

## (Intercept) 6.167 1.470 4.195 0.00853 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.601 on 5 degrees of freedom

confint(m1)

## 2.5 % 97.5 %
## (Intercept) 2.387727 9.945607

Notice that we get the same point estimate and confidence interval for 𝜇, but
the p-value is different because the t.test() p-value is testing 𝐻0 ∶ 𝜇 = 5 vs
𝐻𝑎 ∶ 𝜇 ≠ 5 while the lm() function is testing 𝐻0 ∶ 𝜇 = 0 vs 𝐻𝑎 ∶ 𝜇 ≠ 0.
If we really want the correct p-value, we should test if the difference between
the 𝑦 variable and 5 is zero.

m1 <- lm(y-5 ~ 1, data=test.data)
summary(m1)

##
## Call:
## lm(formula = y - 5 ~ 1, data = test.data)
##
## Residuals:
## 1 2 3 4 5 6
## -3.1667 -1.1667 -2.1667 -1.1667 0.8333 6.8333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.167 1.470 0.794 0.463
##
## Residual standard error: 3.601 on 5 degrees of freedom

11.5.2 Two-sample t-tests

This model is concerned with testing

𝐻0 ∶ 𝜇1 = 𝜇2
𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2
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# How we previously did a t.test
test.data <- data.frame( y=c(3, 5, 4, 5, 7, 13,

8, 9, 4, 16, 12, 13 ),
group=rep(c('A','B'), each=6) )

t.test( y ~ group, data=test.data, var.equal=TRUE )

##
## Two Sample t-test
##
## data: y by group
## t = -1.838, df = 10, p-value = 0.09591
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.2176608 0.8843275
## sample estimates:
## mean in group A mean in group B
## 6.166667 10.333333

This analysis gave use the mean of each group and the confidence interval for
the difference 𝜇2 − 𝜇1. We could get the same analysis an ANOVA with 𝑘 = 2
groups.

m2 <- lm(y ~ group, data=test.data)
summary(m2)

##
## Call:
## lm(formula = y ~ group, data = test.data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.333 -2.208 -1.167 1.917 6.833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.167 1.603 3.847 0.00323 **
## groupB 4.167 2.267 1.838 0.09591 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.926 on 10 degrees of freedom
## Multiple R-squared: 0.2525, Adjusted R-squared: 0.1778
## F-statistic: 3.378 on 1 and 10 DF, p-value: 0.09591
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coef(m2)

## (Intercept) groupB
## 6.166667 4.166667

confint(m2)

## 2.5 % 97.5 %
## (Intercept) 2.5950745 9.738259
## groupB -0.8843275 9.217661

Aside from t.test() reporting 𝜇2 −𝜇1 while the lm() function calculates 𝜇1 −
𝜇2, the estimates are identical.

11.6 Creating Simulated Data

The basic goal of statistics is that we are interested in some population (which
is described by some parameter 𝜇, 𝛿, 𝜏 , 𝛽, or generally, 𝜃) and we take a random
sample of size 𝑛 from the population of interest and we truly believe that the
sample is representative of the population of interest. Then we use some statistic
of the data ̂𝜃 as an estimate 𝜃. However we know that this estimates, ̂𝜃, vary
from sample to sample. Previously we’ve used that the Central Limit Theorem
gives

̂𝜃 ⋅∼ 𝑁 (𝜃, 𝜎 ̂𝜃)

to construct confidence intervals and perform hypothesis tests, but we don’t
necessarily like this approximation. If we could somehow take repeated samples
(call these repeated samples 𝕐𝑗 for 𝑗 ∈ 1, 2,… ,𝑀) from the population we
would understand the distribution of ̂𝜃 by just examining the distribution of
many observed values of ̂𝜃𝑗 where ̂𝜃𝑗 is the statistic calculated from the ith
sample data 𝕐𝑗.

However, for practical reasons, we can’t just take 1000s of samples of size n from
the population. However, because we truly believe that 𝕐 is representative of
the entire population, then our best guess of what the population is just many
repeated copies of our data.

Suppose we were to sample from a population of shapes, and we observed 4/9 of
the sample were squares, 3/9 were circles, and a triangle and a diamond. Then
our best guess of what the population that we sampled from was a population
with 4/9 squares, 3/9 circles, and 1/9 of triangles and diamonds.
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Sample Approximate Population

Using this approximated population (which is just many many copies of our
sample data), we can take many samples of size 𝑛. We denote these bootstrap
samples as 𝕐∗

𝑗, where the star denotes that the sample was taken from the ap-
proximate population, not the actual population. From each bootstrap sample
𝕐∗
𝑗 a statistic of interest can be taken ̂𝜃∗𝑗.

Because our approximate population is just an infinite number of copies of our
sample data, then sampling from the approximate population is equivalent to
sampling with replacement from our sample data. If I take 𝑛 samples from 𝑛
distinct objects with replacement, then the process can be thought of as mixing
the 𝑛 objects in a bowl and taking an object at random, noting which it is,
replace it into the bowl, and then draw the next sample. Practically, this means
some objects will be selected more than once and some will not be chosen at
all. To sample our observed data with replacement, we’ll use the resample()
function in the mosaic package. We see that some rows will be selected multiple
times, and some will not be selected at all.

11.6.1 Observational Studies vs Designed Experiments

The process of collecting data is a time consuming and laborious process but
is critical to our understanding of the world. The fundamental goal is to col-
lect a sample of data that is representative of the population of interest and
can provide insight into the scientific question at hand. There are two pri-
mary classes about how this data could be gathered, observational studies and
designed experiments.

In an observational study, a population is identified and a random sample of
individuals are selected to be in the sample. Then each subject in the sample
has explanatory and response variables measured (fish are weighed and length
recorded, people asked their age, gender, occupation etc). The critical part of
this data collection method is that the random selection from the population
is done in a fashion so that each individual in the population could potentially
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be in the sample and there is no systematic exclusion of certain parts of the
population.

Simple Random Samples - Suppose that we could generate a list of every in-
dividual in the population and then we were to randomly select n of those to
be our sample. Then each individual would have an equal chance to be in the
sample and this selection scheme should result in sample data that is represen-
tative of the population of interest. Often though, it is difficult to generate a
list of every individual, but other proxies might work. For example if we wanted
to understand cougar behavior in the Grand Canyon, we might divide the park
up into 100 regions and then random select 20 of those regions to sample and
observe whatever cougar(s) are in that region.

Stratified Random Samples - In a stratified random sample, the population can
be broken up into different strata and we perform a simple random sample
within each strata. For example when sampling lake fish, we might think about
the lake having deep and shallow/shore water strata and perhaps our sampling
technique is different for those two strata (electro-fishing on shore and trawling
in the deep sections). For human populations, we might stratify on age and
geographic location (older retired people will answer the phone more readily
than younger people). For each of the strata, we often have population level
information about the different strata (proportion of the lake that is deep water
versus shallow, or proportion of the population 20-29, 30-39, etc. and sample
each strata accordingly (e.g. if shallow water is 40% of the fish habitat, then
40% of our sampling effort is spent in the shallows).

Regardless of sample type, the key idea behind an observational study is that
we don’t apply a treatment to the subject and then observe a response. While
we might annoy animal or person, we don’t do any long-term manipulations.
Instead the individuals are randomly selected and then observed, and it is the
random selection from the population that results in a sample that is represen-
tative of the population.

Designed Experiments - In an experimental setting, the subjects are taken from
the population (usually not at random but rather by convenience) and then
subjected to some treatments and we observe the individuals response to the
treatment. There will usually be several levels of the treatment and there often
is a control level. For example, we might want to understand how to maxi-
mize the growth of a type of fungus for a pharmaceutical application and we
consider applying different nutrients to the substrate (nothing, +phosphorus,
+nitrogen, +both). Another example is researchers looking at the efficacy of
smoking cessation methods and taking a set of willing subjects and having them
try different methods (no help, nicotine patches, nicotine patches and a support
group). There might be other covariates that we expect might affect the success
rate (individuals age, length of time smoking, gender) and we might make sure
that our study include people in each of these groups (we call these blocks in
the experimental design terminology, but they are equivalent to the strata in
the observational study terminology). Because even within blocks, we expect
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variability in the success rates due to natural variation, we randomize the treat-
ment assignment to the individual and it is this randomization that addresses
any unrecognized lurking variables that also affect the response.

A designed experiment is vastly superior to an observational experiment because
the randomization of the treatment accounts for variables that the researcher
might not even suspect to be important. A nice example of the difference be-
tween observational studies and experiments is a set of studies done relating
breast cancer and hormone replacement therapy (HRT) drugs used by post-
menopausal women. Initial observational studies that looked at the rates of
breast cancer showed that women taking HRT had lower rates of breast cancer.
When these results were first published, physicians happily recommended HRT
to manage menopause symptoms and to decrease risk of breast cancer. Unfor-
tunately subsequent observational studies showed a weaker effect and among
some populations there was an increase in breast cancer. To answer the ques-
tion clearly, a massive designed experiment was undertaken where women would
be randomly assigned either a placebo or the actual HRT drugs. This study
conclusively showed that HRT drugs increased the risk of breast cancer.

Why was there a disconnect between the original observational studies and the
experiment? The explanation given is that there was a lurking variable that
the observational studies did not control for… socio-economic class. There are
many drivers of breast cancer and some of them are strongly correlated with
socio-economic class such as where you live (in a polluted area or not). Fur-
thermore because HRT was initially only to relieve symptoms of menopause,
it wasn’t “medically necessary” and insurance didn’t cover it and so mainly
wealthy women (with already lower risk for breast cancer) took the HRT drugs
and the simple association between lower breast cancer risk and HRT was actu-
ally the effect of socio-economic status. By randomly assigning women to the
placebo and HRT groups, high socio-economic women ended up in both groups.
So even if there was some other lurking variable that the researchers didn’t
consider, the randomization would cause the unknown variable to be evenly
distributed in the placebo and HRT groups.

Because the method of randomization is so different between observational stud-
ies and designed experiments, we should make certain that our method of cre-
ating bootstrap data sets respects that difference in randomization. So if there
was some constraint on the data when it was originally taken, we want the
bootstrap datasets to obey that same constraint. If our study protocol was to
collect a sample of 𝑛1 = 10 men and 𝑛2 = 10 women, then we want our boot-
strap samples to have 10 men and 10 women. If we designed an experiment
with 25 subjects to test the efficacy of a drug and chose to administer doses of
5, 10, 20, 40, and 80 mg with each five subjects for each dose level, then we want
those same dose levels to show up in the bootstrap datasets.

There are two common approaches, case resampling and residual resampling.
In case re-sampling, we consider the data (𝑥𝑖,𝑦𝑖) pairs as one unit and when
creating a bootstrap sample, we re-sample those pairs, but if the 𝑖th data point



11.6. CREATING SIMULATED DATA 249

is included in the bootstrap sample, then it is included as the (𝑥𝑖,𝑦𝑖) pair. In
contrast, residual re-sampling is done by first fitting a model to the data, finding
the residual values, re-sampling those residuals and then adding those bootstrap
residuals to the predicted values ̂𝑦𝑖.

Testing.Data <- data.frame(
x = c(3,5,7,9),
y = c(3,7,7,11))

Testing.Data

## x y
## 1 3 3
## 2 5 7
## 3 7 7
## 4 9 11

# Case resampling
Boot.Data <- mosaic::resample(Testing.Data)

## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2

Boot.Data

## x y orig.id
## 1 3 3 1
## 2 5 7 2
## 4 9 11 4
## 3 7 7 3

Notice that we’ve sampled {𝑥 = 5, 𝑦 = 7} twice and did not get the {7, 7} data
point.
Residual sampling is done by re-sampling the residuals and calling them ̂𝜖∗ and
then the new y-values will be 𝑦∗𝑖 = ̂𝑦𝑖 + ̂𝜖∗𝑖
# Residual resampling
model <- lm( y ~ x, data=Testing.Data)
Boot.Data <- Testing.Data %>%
mutate( fit = fitted(model),

resid = resid(model),
resid.star = mosaic::resample(resid),
y.star = fit + resid.star )

Boot.Data
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## x y fit resid resid.star y.star
## 1 3 3 3.4 -0.4 0.4 3.8
## 2 5 7 5.8 1.2 1.2 7.0
## 3 7 7 8.2 -1.2 0.4 8.6
## 4 9 11 10.6 0.4 -1.2 9.4

Notice that the residuals re-sampling results in a data set where each of the
x-values is retained, but a new y-value (possibly not seen in the original data)
is created from the predicted value ̂𝑦 and a randomly selected residual.
In general when we design an experiment, we choose which x-values we want to
look at and so the bootstrap data should have those same x-values we chose.
So for a designed experiment, we typically will create bootstrap data sets via
residual re-sampling. For observational studies, we’ll create the bootstrap data
sets via case re-sampling. In both cases if there is a blocking or strata variable
to consider, we will want to do the re-sampling within the block/strata.

11.7 Confidence Interval Types

We want to understand the relationship between the sample statistic ̂𝜃 to the
population parameter 𝜃. We create an estimated population using many re-
peated copies of our data. By examining how the simulated ̂𝜃∗ vary relative to
̂𝜃, we will understand how possible ̂𝜃 values vary relative to 𝜃.

θ
0.00

0.02

0.04

0.06

0 20 40 60

de
ns

ity

Sampling Distribution of θ̂

θ̂0.00

0.02

0.04

0.06

0 20 40 60

de
ns

ity

Sampling Distribution of θ̂*

We will outline several methods for producing confidence intervals (in the order
of most assumptions to fewest).

11.7.1 Normal intervals

This confidence interval assumes the sampling distribution of ̂𝜃 is approximately
normal (which is often true due to the central limit theorem). We can use the
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bootstrap replicate samples to get an estimate of the standard error of the
statistic of interest by just calculating the sample standard deviation of the
replicated statistics.

Let 𝜃 be the statistic of interest and ̂𝜃 be the value of that statistic calculated
from the observed data. Define ̂𝑆𝐸

∗
as the sample standard deviation of the ̂𝜃∗

values.

Our first guess as to a confidence interval is

̂𝜃 ± 𝑧1−𝛼/2 ̂𝑆𝐸
∗

which we could write as

[ ̂𝜃 − 𝑧1−𝛼/2 ̂𝑆𝐸
∗
, ̂𝜃 + 𝑧1−𝛼/2 ̂𝑆𝐸

∗
]

11.7.2 Percentile intervals

The percentile interval doesn’t assume normality but it does assume that the
bootstrap distribution is symmetric and unbiased for the population value. This
is the method we used to calculate confidences intervals in the first several
chapters. It is perhaps the easiest to calculate and understand. This method
only uses ̂𝜃∗, and is

[ ̂𝜃∗𝛼/2 , ̂𝜃∗1−𝛼/2]

11.7.3 Basic intervals

Unlike the percentile bootstrap interval, the basic interval does not assume
the bootstrap distribution is symmetric but does assume that ̂𝜃 is an unbiased
estimate for 𝜃.

To address this, we will using the observed distribution of our replicates ̂𝜃∗. Let
̂𝜃∗𝛼/2 and ̂𝜃∗1−𝛼/2 be the 𝛼/2 and 1 − 𝛼/2 quantiles of the replicates ̂𝜃∗. Then

another way to form a confidence interval would be

[ ̂𝜃 − ( ̂𝜃∗1−𝛼/2 − ̂𝜃) , ̂𝜃 − ( ̂𝜃∗𝛼/2 − ̂𝜃)]

where the minus sign on the upper limit is because ( ̂𝜃∗𝛼/2 − ̂𝜃) is already nega-
tive. The idea behind this interval is that the sampling variability of ̂𝜃 from 𝜃
is the same as the sampling variability of the replicates ̂𝜃∗ from ̂𝜃, and that the
distribution of ̂𝜃 is possibly skewed, so we can’t add/subtract the same amounts.
Suppose we observe the distribution of ̂𝜃∗ as
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Distribution of θ̂*

θ̂0.025* θ̂ θ̂0.975*

Then any particular value of ̂𝜃∗ could be much larger than ̂𝜃. Therefore ̂𝜃
could be much larger than 𝜃. Therefore our confidence interval should be
[ ̂𝜃 − big, ̂𝜃 + small].
This formula can be simplified to

[ ̂𝜃 − ( ̂𝜃∗1−𝛼/2 − ̂𝜃) , ̂𝜃 + ( ̂𝜃 − ̂𝜃∗𝛼/2)] [2 ̂𝜃 − ̂𝜃∗1−𝛼/2 , 2 ̂𝜃 − ̂𝜃∗𝛼/2]

11.7.4 Towards bias-corrected and accelerated intervals
(BCa)

Different schemes for creating confidence intervals can get quite complicated.
There is a thriving research community investigating different ways of creating
intervals and which are better in what instances. The BCa interval is the most
general of the bootstrap intervals and makes the fewest assumptions. Unfor-
tunately is can sometimes fail to converge. The details of this method are too
complicated to be presented here but can be found in texts such as chapter 12
in Efron and Tibshirani’s book An Introduction to the Bootstrap (1998).

11.8 Bootstrap Confidence Intervals in R

11.8.1 Using car::Boot() function

For every model we’ve examined we can create simulated data sets using either
case or residual re-sampling and produce confidence intervals for any of the
parameters of interest. We won’t bother to do this by hand, but rather let R do
the work for us. The package that contains most of the primary programs for
bootstrapping is the package boot. The functions within this package are quite
flexible but they are a little complex. While we will use this package directly
later, for now we will use the package car which has a very convenient function
car::Boot().
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We return to our ANOVA example of hostility scores after three different treat-
ment methods. The first thing we will do (as we should do in all data analyses)
is to graph our data.

# define the data
Hostility <- data.frame(
HLT = c(96,79,91,85,83,91,82,87,

77,76,74,73,78,71,80,
66,73,69,66,77,73,71,70,74),

Method = c( rep('M1',8), rep('M2',7), rep('M3',9) ) )

ggplot(Hostility, aes(x=Method, y=HLT)) +
geom_boxplot()
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We can fit the cell-means model and examine the summary statistics using the
following code.

model <- lm( HLT ~ -1 + Method, data=Hostility )
summary(model)

##
## Call:
## lm(formula = HLT ~ -1 + Method, data = Hostility)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.750 -2.866 0.125 2.571 9.250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## MethodM1 86.750 1.518 57.14 <2e-16 ***
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## MethodM2 75.571 1.623 46.56 <2e-16 ***
## MethodM3 71.000 1.431 49.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.294 on 21 degrees of freedom
## Multiple R-squared: 0.9973, Adjusted R-squared: 0.997
## F-statistic: 2631 on 3 and 21 DF, p-value: < 2.2e-16

Confidence intervals using the

𝜖𝑖𝑗
𝑖𝑖𝑑∼ 𝑁 (0, 𝜎)

assumption are given by

confint(model)

## 2.5 % 97.5 %
## MethodM1 83.59279 89.90721
## MethodM2 72.19623 78.94663
## MethodM3 68.02335 73.97665

To utilize the bootstrap confidence intervals, we will use the function
car::Boot from the package car. It defaults to using case re-sampling, but
method='residual' will cause it to use residual re-sampling. We can control
the number of bootstrap replicates it using with the R parameter.

boot.model <- Boot(model, method='case', R=999) # default case resampling
boot.model <- Boot(model, method='residual', R=999) # residual resampling

The car::Boot() function has done all work of doing the re-sampling and
storing values of ̂𝜇1, ̂𝜇2, and ̂𝜇3 for each bootstrap replicate data set created
using case re-sampling. To look at the bootstrap estimate of the sampling
distribution of these statistics, we use the hist() function. The hist() function
is actually overloaded and will act differently depending on the type of object.
We will send it an object of class boot and the hist() function looks for a
function name hist.boot() and when it finds it, just calls it with the function
arguments we passed.

hist(boot.model, layout=c(1,3)) # 1 row, 3 columns of plots
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While this plot is aesthetically displeasing (we could do so much better using
ggplot2!) this shows the observed bootstrap histogram of ̂𝜇∗

𝑖 , along with the
normal distribution centered at ̂𝜇𝑖 with spread equal to the 𝑆𝑡𝑑𝐷𝑒𝑣 ( ̂𝜇∗

𝑖 ). In
this case, the sampling distribution looks very normal and the bootstrap confi-
dence intervals should line up well with the asymptotic intervals. The function
confint() will report the BCa intervals by default, but you can ask for “bca”,
“norm”, “basic”, “perc”.

confint(boot.model)

## Bootstrap bca confidence intervals
##
## 2.5 % 97.5 %
## MethodM1 84.00357 89.84693
## MethodM2 72.58326 78.63819
## MethodM3 68.40299 73.94005

confint(boot.model, type='perc')

## Bootstrap percent confidence intervals
##
## 2.5 % 97.5 %
## MethodM1 84.02335 89.91096
## MethodM2 72.61986 78.66085
## MethodM3 68.40702 73.94374

confint(model)

## 2.5 % 97.5 %
## MethodM1 83.59279 89.90721
## MethodM2 72.19623 78.94663
## MethodM3 68.02335 73.97665
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In this case we see that the confidence intervals match up very well with asymp-
totic intervals.

The car::Boot() function will work for a regression model as well. In the
following example, the data was generated from

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

but the 𝜖𝑖 terms have a strong positive skew and are not normally distributed.

my.data <- data.frame(
x = seq(0,10, length=20),
y = c( 15.49, 17.42, 15.17, 14.99, 13.96,

14.46, 13.69, 14.30, 13.61, 15.35,
12.94, 13.26, 12.65, 12.33, 12.04,
11.19, 13.76, 10.95, 10.36, 10.63))

ggplot(my.data, aes(x=x, y=y)) + geom_point()
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Fitting a linear model, we see a problem that the residuals don’t appear to be
balanced. The large residuals are all positive. The Shapiro-Wilks test firmly
rejects normality of the residuals.

model <- lm( y ~ x, data=my.data)
plot(model, which=1)
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shapiro.test( resid(model) )

##
## Shapiro-Wilk normality test
##
## data: resid(model)
## W = 0.77319, p-value = 0.0003534

As a result, we don’t might not feel comfortable using the asymptotic distribu-
tion of ̂𝛽0 and ̂𝛽1 for the creation of our confidence intervals. The bootstrap
procedure can give reasonable good intervals, however.

boot.model <- Boot( model ) # by default method='case'
hist( boot.model )
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confint( boot.model )

## Bootstrap bca confidence intervals
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##
## 2.5 % 97.5 %
## (Intercept) 15.4833809 17.0328022
## x -0.6548257 -0.3752072

Notice that both of the bootstrap distribution for both ̂𝛽∗
0 and ̂𝛽∗

1 are skewed,
and the BCa intervals are likely to be the most appropriate intervals to use.

11.8.2 Using the boot package

The car::Boot() function is very handy, but it lacks flexibility; it assumes
that you just want to create bootstrap confidence intervals for the model coeffi-
cients. The car::Boot() function is actually a nice simple user interface to the
boot package which is more flexible, but requires the user to be more precise
about what statistic should be stored and how the bootstrap samples should be
created. We will next examine how to use this package.

11.8.2.1 Case resampling

Suppose that we have n observations in our sample data. Given some vector of
numbers re-sampled from 1:n, we need to either re-sample those cases or those
residuals and then using the new dataset calculate some statistic. The function
boot() will require the user to write a function that does this.

model <- lm( y ~ x, data=my.data )
coef(model)

## (Intercept) x
## 16.0355714 -0.5216143

# Do case resampling with the regression example
# sample.data is the original data frame
# indices - This is a vector of numbers from 1:n which tells
# us which cases to use. It might be 1,3,3,6,7,7,...
my.stat <- function(sample.data, indices){
data.star <- sample.data[indices, ]
model.star <- lm(y ~ x, data=data.star)
output <- coef(model.star)
return(output)

}

# original model coefficients
my.stat(my.data, 1:20)
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## (Intercept) x
## 16.0355714 -0.5216143

# one bootstrap replicate
my.stat(my.data, mosaic::resample(1:20))

## (Intercept) x
## 16.0890777 -0.5011942

Notice that the function we write doesn’t need to determine the random sample
of the indices to use. Our function will be told what indices to use (possibly
to calculate the statistic of interest ̂𝜃, or perhaps a bootstrap replicate ̂𝜃∗. For
example, the BCa method needs to know the original sample estimates ̂𝜃 to
calculate how far the mean of the ̂𝜃∗ values is from ̂𝜃. To avoid the user having
to see all of that, we just need to take the set of indices given and calculate the
statistic of interest.

boot.model <- boot(my.data, my.stat, R=10000)
#boot.ci(boot.model, type='bca', index=1) # CI for Intercept
#boot.ci(boot.model, type='bca', index=2) # CI for the Slope
confint(boot.model)

## Bootstrap bca confidence intervals
##
## 2.5 % 97.5 %
## 1 15.4498026 17.0517343
## 2 -0.6496641 -0.3774948

11.8.2.2 Residual Resampling

We will now consider the ANOVA problem and in this case we will re-sample
the residuals.

# Fit the ANOVA model to the Hostility Data
model <- lm( HLT ~ Method, data=Hostility )

# now include the predicted values and residuals to the data frame
Hostility <- Hostility %>% mutate(
fit = fitted(model),
resid = resid(model))

# Do residual resampling with the regression example
my.stat <- function(sample.data, indices){
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data.star <- sample.data %>% mutate(HLT = fit + resid[indices])
model.star <- lm(HLT ~ Method, data=data.star)
output <- coef(model.star)
return(output)

}

boot.model <- boot(Hostility, my.stat, R=10000)

confint(boot.model)

## Bootstrap bca confidence intervals
##
## 2.5 % 97.5 %
## 1 84.11607 89.796895
## 2 -15.37805 -7.164519
## 3 -19.93233 -12.164187

Fortunately the hist() command can print the nice histogram from the output
of the boot() command.

hist( boot.model, layout=c(1,3)) # 1 row, 3 columns)
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Notice that we don’t need to have the model coefficients ̂𝜇𝑖 be our statistic of
interest, we could just as easily produce a confidence interval for the residual
standard error �̂�.

# Do residual resampling with the regression example
model <- lm( y ~ x, data=my.data )
my.data <- my.data %>% mutate(
fitted = fitted(model),
resid = resid(model))
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# Define the statisitc I care about
my.stat <- function(sample.data, indices){
data.star <- sample.data %>% mutate(y = fitted + resid[indices])
model.star <- lm(y ~ x, data=data.star)
output <- summary(model.star)$sigma
return(output)

}

boot.model <- boot(my.data, my.stat, R=10000)

hist(boot.model, layout=c(1,3))
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confint(boot.model)

## Bootstrap bca confidence intervals
##
## 2.5 % 97.5 %
## 1 0.5713527 1.210697

11.8.2.3 Including Blocking/Stratifying Variables

When we introduced the ANOVA model we assumed that the groups had equal
variance but we don’t have to. If we consider the model with unequal variances
among groups

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where 𝐸 (𝜖𝑖𝑗) = 0 𝑉 𝑎𝑟 (𝜖𝑖𝑗) = 𝜎2
𝑖

then our usual analysis is inappropriate but we could easily bootstrap our con-
fidence intervals for 𝜇𝑖. If we do case re-sampling, this isn’t an issue because
each included observation is an (𝑔𝑟𝑜𝑢𝑝, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) pair and our groups will have
large or small variances similar to the observed data. However if we do residual
re-sampling, then we must continue to have this. We do this by only re-sampling
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residuals within the same group. One way to think of this is if your model has a
subscript on the variance term, then your bootstrap samples must respect that.

If you want to perform the bootstrap by hand using dplyr commands, it can be
done by using the group_by() with whatever the blocking/Stratifying variable
is prior to the mosaic::resample() command. You could also use the optional
group argument to the mosaic::resample() command.

data <- data.frame(y =c(9.8,9.9,10.1,10.2, 18,19,21,22),
grp=c('A','A','A','A', 'B','B','B','B'),
fit=c( 10,10,10,10, 20,20,20,20 ),
resid=c(-.2,-.1,.1,.2, -2,-1,1,2 ))

data.star <- data %>%
group_by(grp) %>% # do the grouping using dplyr
mutate(resid.star = mosaic::resample(resid),

y.star = fit + resid.star)
data.star

## # A tibble: 8 x 6
## # Groups: grp [2]
## y grp fit resid resid.star y.star
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 9.8 A 10 -0.2 0.2 10.2
## 2 9.9 A 10 -0.1 0.1 10.1
## 3 10.1 A 10 0.1 0.1 10.1
## 4 10.2 A 10 0.2 0.2 10.2
## 5 18 B 20 -2 1 21
## 6 19 B 20 -1 -1 19
## 7 21 B 20 1 -2 18
## 8 22 B 20 2 -1 19

data.star <- data %>%
mutate(resid.star = mosaic::resample(resid, group=grp), # do the grouping within resample

y.star = fit + resid.star)
data.star

## y grp fit resid resid.star y.star
## 1 9.8 A 10 -0.2 0.1 10.1
## 2 9.9 A 10 -0.1 -0.2 9.8
## 3 10.1 A 10 0.1 -0.1 9.9
## 4 10.2 A 10 0.2 -0.2 9.8
## 5 18.0 B 20 -2.0 -2.0 18.0
## 6 19.0 B 20 -1.0 -1.0 19.0
## 7 21.0 B 20 1.0 -1.0 19.0
## 8 22.0 B 20 2.0 2.0 22.0
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Unfortunately the car::Boot() command doesn’t take a strata option, but the
the boot::boot() command.

# Fit the ANOVA model to the Hostility Data
model <- lm( HLT ~ Method, data=Hostility )

# now include the predicted values and residuals to the data frame
Hostility <- Hostility %>% mutate(
fitted = fitted(model),
resid = resid(model))

# Do residual resampling
my.stat <- function(sample.data, indices){
data.star <- sample.data %>% mutate(HLT = fitted + resid[indices])
model.star <- lm(HLT ~ Method, data=data.star)
output <- coef(model.star)
return(output)

}

# strata is a vector of the categorical variable we block/stratify on
boot.model <- boot( Hostility, my.stat, R=1000, strata=factor(Hostility$Method) )

hist(boot.model, layout=c(1,3))
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confint(boot.model)

## Bootstrap bca confidence intervals
##
## 2.5 % 97.5 %
## 1 83.25000 90.392943
## 2 -15.49439 -7.263027
## 3 -20.37642 -11.694444
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11.9 Exercises

1. We will perform a regression analysis on the following data and use differ-
ent bootstrap re-sampling methods to create a confidence interval for the
slope parameter. In this case the residuals are symmetric, though perhaps
we don’t want to assume normality.

𝑥𝑖 3 4 5 6 7 8
𝑦𝑖 5 9 10 12 15 15
̂𝑦𝑖 6 8 10 12 14 16
̂𝜖𝑖 -1 1 0 0 1 -1

a) We will first use case resampling.
i. Suppose that the bootstrap indices are selected to be cases

1,3,3,4,6,6. Create a new dataset with those cases and calculate
the regression coefficients ̂𝛽∗

0 and ̂𝛽∗
1 using R’s lm() function.

Notice that the residual ̂𝜖𝑖 is always paired with its value of 𝑥𝑖
and that in case resampling we don’t get the same x-values as
our data.

ii. Using the mosaic::resample() command, calculate several val-
ues of ̂𝛽∗

1 using case resampling.
iii. Use the car::Boot() function to calculate the BCa confidence

interval for ̂𝛽1 with case resampling
b) Next we will use Residual Resampling

i. Suppose that the bootstrap indices are selected to be cases
1,3,3,4,6,6. Create a new dataset with those cases and calculate
the regression coefficients ̂𝛽∗

0 and ̂𝛽∗
1 using R’s lm() function.

Notice that the residual ̂𝜖𝑖 is not necessarily paired with its
value of 𝑥𝑖 and that the new data set has the same x-values as
the original sampled data.

ii. Using the mosaic::resample command, calculate several values
of ̂𝛽∗

𝑖 . Hint: We can’t do this in one simple command, instead
we have to make the new dataset and then fit the regression.

iii. Use the car::Boot() function to calculate the BCa confidence
interval for ̂𝛽1 using residual resampling.

2. The ratio of DDE (related to DDT) to PCB concentrations in bird eggs
has been shown to have had a number of biological implications. The
ratio is used as an indication of the movement of contamination through
the food chain. The paper “The ratio of DDE to PCB concentrations
in Great Lakes herring gull eggs and its us in interpreting contaminants
data” reports the following ratios for eggs collected at sites from the five
Great Lakes. The eggs were collected from both terrestrial and aquatic
feeding birds. Suppose that we are interested in estimating 𝜌 = 𝜇𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑖𝑎𝑙

𝜇𝑎𝑞𝑢𝑎𝑡𝑖𝑐
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Pollution <- data.frame(
value = c(76.50, 6.03, 3.51, 9.96, 4.24, 7.74, 9.54, 41.70, 1.84, 2.50, 1.54,

0.27, 0.61, 0.54, 0.14, 0.63, 0.23, 0.56, 0.48, 0.16, 0.18 ),
type = c( rep('Terrestrial',11), rep('Aquatic',10) ) )

model <- lm( value ~ -1 + type, data=Pollution)
coef(model)

## typeAquatic typeTerrestrial
## 0.38000 15.00909

a) Recall that the ANOVA with the cell mean representation will calcu-
late the group means. Use the lm() function to calculate the means
of the two groups. Notice that the p-values and any confidence inter-
vals from this model are useless because we are egregiously violating
the equal variance and normality assumptions on the residuals.

b) Using R, calculate the ratio ̂𝜌 = ̄𝑦𝑇 / ̄𝑦𝐴. Hint: what is returned by
coef(model)[1]?

c) Use the mosaic::resample() function to generate several bootstrap
datasets using case resampling. Do you get 11 Terrestrial observa-
tions in each dataset? Do this ten or twenty times (don’t show these
computations) and note the most unbalanced data set.

d) Use the mosaic::resample() function to generate several bootstrap
datasets using residual resampling? Do you get data sets where a
simulated aquatic observation has been paired with a huge residual
term from the terrestrial. Does this seem appropriate?

e) The mosaic::resample() function includes an optional groups= ar-
gument that does the resampling within a specified group (thus we
will always get 11 Terrestrial observations and 10 Aquatic). Use this
to generate several bootstrap datasets.

f) The car::Boot() function cannot handle the grouping, but
boot::boot() can.
i. The following function will calculate ̂𝜌, the statistic of interest,

given the original data and a set of indices to use. Notice that
we’ve chosen to do case resampling here.
calc_rhohat <- function(data, indices){
data.star <- data[indices, ]
model.star <- lm( value ~ -1 + type, data=data.star )
return( coef(model.star)[2] / coef(model.star)[1] )

}

ii. Call this function using the Pollution data set and indices 1:21.
Notice that this calculates the sample statistic ̂𝜌 that we calcu-
lated previously.

iii. Call this function using indices = resample(1:21, groups=Pollution$type).
Notice that this calculates the sample statistic ̂𝜌∗ where we are
doing case resampling within each group.
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iv. Use the boot::boot() to perform the full bootstrap analysis.
Use the option strata=Pollution$type option, which is causes
R to do the resampling within each group.

v. What is the 95% BCa CI for 𝜌? Show the histogram of the
bootstrap estimate of the distribution of ̂𝜌.



Appendix B : Alternative
Bootstrap Code

Mosaic Package

library(ggplot2) # graphing functions
library(dplyr) # data summary tools
library(mosaic) # using Mosaic for iterations

# Set default behavior of ggplot2 graphs to be black/white theme
theme_set(theme_bw())

This method uses the mosaic package and can work very well when everything
is in data frames.

# read the Lakes data set
Lakes <- read.csv('http://www.lock5stat.com/datasets/FloridaLakes.csv')

# create the Estimated Sampling Distribution of xbar
BootDist <- mosaic::do(10000) *
mosaic::resample(Lakes) %>%
summarise(xbar = mean(AvgMercury))

# what columns does the data frame "BootDist" have?
head(BootDist)

## xbar
## 1 0.4883019
## 2 0.5301887
## 3 0.6113208
## 4 0.4886792
## 5 0.5771698
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## 6 0.5100000

# show a histogram of the estimated sampling distribution of xbar
ggplot(BootDist, aes(x=xbar)) +
geom_histogram() +
ggtitle('Estimated Sampling distribution of xbar' )
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# calculate a quantile-based confidence interval
quantile(BootDist$xbar, c(0.025, 0.975))

## 2.5% 97.5%
## 0.4381132 0.6207594

Base R Code

Here, no packages are used and the steps of the bootstrap are more explicit.

AvgMerc <- Lakes$AvgMercury
Boot.Its<-10000 ### Numer of iterations, like `R` in `boot`
Sample.Size<-length(AvgMerc)
BS.means<-numeric() ### where each estimate is saved
for(j in 1:Boot.Its) BS.means[j]<-mean(sample(AvgMerc, Sample.Size, replace=T))
hist(BS.means)
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Histogram of BS.means

BS.means
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Then the 95% confidence interval can be found in a similar manner to above.

quantile(BS.means, c(0.025, 0.975))

## 2.5% 97.5%
## 0.4394340 0.6186792
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