
Comparative Methods

Brian O’Meara

2022-02-28

Contents
1 Introduction 2

1.1 Learning objectives . 2
1.2 Prerequisites . 2

2 First steps 3
2.1 Questions . 3

3 Getting data and trees into R 4
3.1 Data and tree object types . 4
3.2 Sequence data . 5
3.3 Other character data . 6
3.4 Phylogenies . 6
3.5 Reconciling datasets . 7

4 Visualizing data before use 8

5 Dull model testing 8

6 Testing models and methods 8

7 Testing methods 9

8 Continuous traits 10
8.1 Objectives . 10

9 Brownian Motion and Correlations 10
9.1 Objectives . 10
9.2 Brownian motion . 10
9.3 Correlation . 19

10 Discrete Traits 19

11 Diversification 23
11.1 Objectives . 23

12 SSE methods 23
12.1 Objectives . 23

13 RAxML 26
13.1 Objectives . 26
13.2 Install RAxML . 26
13.3 Morphology search . 27

1

13.4 DNA . 28

14 Gene Tree Species Tree 29
14.1 Objectives . 29

15 Dating 36
15.1 Objectives . 36
15.2 BEAST . 37
15.3 Applying to your own work . 39

16 Visualizing trees and trees with data 39
16.1 Objectives . 39

1 Introduction
This book was created as part of my PhyloMeth class, which focuses on sensibly using and developing
comparative methods. It will be actively developed over the course of Spring 2017, so if you don’t like this
version (see date above), check back soon! The book is available here but you can fork it, add issues, and
look at raw source code at https://github.com/bomeara/ComparativeMethodsInR. [Note I’ll be changing
the name of the repo eventually; the course is largely in R (not entirely) but of course many key methods
appear in other languages.]

1.1 Learning objectives
Readers of this book will be able to:

• Approach a study of a group of organisms by developing meaningful questions
• Identify the appropriate methods to answer these questions
• Where methods do not yet exist, be able to work on potential new methods
• Understand limtations of methods and how to evaluate these limits
• Draw sensible biological conclusions

1.2 Prerequisites
These are mostly prereqs for doing exercises associated with the class, but will help readers of the book, too.

1.2.1 R

Many methods are now implemented in R [R Core Team, 2021]: the phylogenetics task view has a brief
overview. You can also install the relevant packages that are on CRAN and R-Forge using the task view
itself:

install.packages("ctv")
library(ctv)
install.views("Phylogenetics")

Note that this will not install packages that are on GitHub or authors’ individual websites. The devtools
package can be useful for installing packages directly from GitHub.

1.2.2 Docker

Another option for installing things is to use the phydocker instance for Docker. Docker is (oversimplifying)
like a very lightweight virtual machine. Note that it runs on Macs, Linux, Windows (Pro, Enterprise, and
Education versions; for other versions, use Docker Toolbox), and various cloud service providers (i.e., you
could throw money at Amazon to run this on one of their servers). This instance runs a copy of RStudio

2

http://phylometh.info
https://bookdown.org/bomeara/comparative-methods/
https://github.com/bomeara/ComparativeMethodsInR
http://cran.r-project.org/web/views/Phylogenetics.html
https://hub.docker.com/r/bomeara/phydocker/
https://www.docker.com
https://docs.docker.com/toolbox/toolbox_install_windows/

Server that has most of the relevant phylogenetic packages already installed. Once you have Docker installed,
you can do

docker run -it -p 8787:8787 bomeara/phydocker

to run it as an RStudio Server.

If you want to use a local folder, you can use

docker run -it -v /Path/To/My/Folder:/data -p 8787:8787 bomeara/phydocker

Change /Path/To/My/Folder to the absolute path to the folder you want access to (any subfolders will also
be accessible). You can read and write to this in RStudio as the /data directory. In your web browser, go
to localhost:8787, enter username and password (both are rstudio), to launch a version of RStudio that
will run in your browser and have everything you might need. You might want to do setwd("/data") to
make sure you’re in the right directory. You can save any results or figures to this directory and it will still
exist when you quit this instance.

1.2.3 Other

RevBayes, BEAST, RAxML, and much other key software implement important methods in phylogenetics
but are not in R. Readers will need to install these and many more, but fortunately the authors of much of
this software have excellent tutorials already.

2 First steps
First, understand the question you want to answer. There are a wide variety of methods, and they wax and
wane in popularity, but the key to doing good science is addressing compelling questions, not using the latest
method. Once you have that question, find the appropriate methods (and, depending on how early it is in
the study design, the right taxa and data) to address it. Understand how those methods work, including
the various ways they can fail (as all can).

2.1 Questions
“The currency of science is papers.”

“You need to get grants to get a job and tenure.”

Both true (for those pursuing traditional academic careers), but it can be easy to lose sight of the reason
we do science: to learn about the natural world. Too often, I see students and other colleagues focus on
fast ways to get high profile papers out without caring much about the questions. Some of this takes the
form of what I call dull model testing: seeking to reject a trivial null that no one believed in anyway (Has
diversification rate ever changed through time? Do terrestrial and aquatic species have exactly the same
body size over time?). However, it can also be, “I need to add something interesting to this basic phylogeny
paper to get it published – what can I map on the tree?” There can also be questions asked where it seems,
upon reflection, that results will not be credible (can one really estimate 999 independent diversification
rates from a single tree with 500 species?).

A better approach, and one adopted in this book, is to start from questions that we actually learn something
from answering. For example, we believe that how flowering plants reproduce (selfing versus outcrossing)
can affect diversification rate. The first step is to ask if that is really true and show it statistically, but that is
largely going to be a question of power: no one would really think that these two life history strategies would
lead to exactly the same speciation rates and exactly the same extinction rates: selfers might more readily
speciate since they can settle new areas and not lack for mates, for example. One could publish a paper on
just this using one of variety of methods (see Diversification) and be done. However, that is a largely sterile
question: are two different things unequal? A more important question, once a difference is shown, is what
this explains about the world. For example, Igic and Goldberg wondered why selfing persisted despite having
a lower overall diversification rate than outcrossing. In answering that more interesting question, they found

3

that it stemmed from subsidizing: outcrossers diversified more quickly, but transitions from outcrossing to
selfing occurred much more frequently than the reverse: species moved into selfing from outcrossing, but had
an overall negative diversification rate. This suggests an interesting conflict between microevolution (factors
leading to selfing, in this case), and macroevolution (the differential diversification of species). In another
paper, we looked at floral morphological traits to see which combinations led to higher rates of diversification
(O’Meara, Smith, et al); we found one combination had a major impact, but also discovered that it was still
fairly infrequent in flowering plants due to the estimated tens of millions of years required to assemble this
combination from the angiosperm ancestral state. We thus learned about how slow trait evolution can hold
back diversification over a very long time period.

Many interesting questions hinge on parameter estimation. How much worse is it long term to be a selfer?
How long will it take to evolve multiple floral traits? How do species typically move from one habitat to
another?

2.1.1 Other resources

There are many books and articles written about phylogenetic analysis. Some of the key books for readers
of this one:

• Tree Thinking [?]
• Inferring Phylogenies [Felsenstein, b]
• Computational Molecular Evolution [?]
• Phylogenetics [?]
• Analysis of Phylogenetics and Evolution with R [?]

As well as a recent book by Luke Harmon.

3 Getting data and trees into R
3.1 Data and tree object types
In R, there are many kinds of objects. These kinds are called “classes”. For example, take the text string
“Darwin”.
class("Darwin")

[1] "character"

It is a character class. pi is a defined constant in R:
print(pi)

[1] 3.141593
class(pi)

[1] "numeric"

Its class is numeric [and note that its value is stored with more precision than is printed on screen].

Objects can sometimes be converted from one class to another, often using an as.* function:
example.1 <- "6"
print(example.1)

[1] "6"
class(example.1)

[1] "character"

4

https://lukejharmon.github.io/pcm/chapters/

example.2 <- as.numeric(example.1)
print(example.2)

[1] 6
class(example.2)

[1] "numeric"
example.2 * 7

[1] 42

Trying to multiply example.1 by seven results in an error: you are trying to multiply a character string by
a number, and R does not automatically convert classes. Classes have many uses in R; for example, one
can write a different plot() function for each class, so that a tree is plotted one way, while a result from a
regression model is plotted a different way, but users just have to call plot() on each and R knows what to
do.

In phylogenetics, we mostly care about classes for trees, for data, and for things to hold trees and data.

3.1.1 Tree classes

The main tree class in R is phylo and is defined in the ape package. Let’s look at one in the wild:
library(ape)
phy <- ape::rcoal(5) #to make a random five taxon tree
print(phy)

##
Phylogenetic tree with 5 tips and 4 internal nodes.
##
Tip labels:
t2, t3, t5, t1, t4
##
Rooted; includes branch lengths.
str(phy)

List of 4
$ edge : int [1:8, 1:2] 6 8 9 9 8 6 7 7 8 9 ...
$ edge.length: num [1:8] 1.6235 0.1432 0.0806 0.0806 0.2238 ...
$ tip.label : chr [1:5] "t2" "t3" "t5" "t1" ...
$ Nnode : int 4
- attr(*, "class")= chr "phylo"
- attr(*, "order")= chr "cladewise"

This is the one used in most packages. However, it has some technical disadvantages (sensitivity to internal
structure, no checking of objects) that has led to the phylo4 format for trees and phylo4d for trees plus
data in the phylobase package. Other packages add on to the phylobase format (i.e., phytool’s simmap
format) but these are typically not shared across packages.

3.2 Sequence data
The BioConductor community has put a lot of effort into making R work with high throughput data, though
python is still likely more popular (just remember that python 3.x is the only currently supported version –
python 2.x should not be used any longer). The seqinr package has some useful functionality for handling
sequences. ape and phangorn have functions for handling data, including reading FASTA and NEXUS files
in ape.

5

https://www.bioconductor.org/
http://seqinr.r-forge.r-project.org/
https://www.rdocumentation.org/packages/ape/
https://github.com/KlausVigo/phangorn

3.3 Other character data
This can include data such as discrete traits (has wings / wingless), continuous traits (body mass), geographic
traits (latitudes and longitudes, which continents they occur on), and many more. These are typically loaded
either as csv files from some other source or directly from an R package. This is a rapidly developing field,
but many of the most useful packages are supported by rOpenSci – there are packages for getting information
from GBIF, eBIRD, iNaturalist, NCBI, and many more sources.

3.4 Phylogenies
The most common way to load trees is to use ape’s functions:

phy <- ape::read.tree(file='treefile.phy')

To get a tree in Newick format (sometimes called Phylip format): essentially a series of parenthetical state-
ments. An example (from ape’s documentation) is ((Strix_aluco:4.2,Asio_otus:4.2):3.1,Athene_noctua:7.3);.
The format name comes from the name of the lobster house where several major phylogenetic software
developers met to agree on a tree format.

You can use the same function to enter tree strings directly, changing the argument from the file containing
the tree to text containing the tree string:
phy <- ape::read.tree(text = '((Strix_aluco:4.2,Asio_otus:4.2):3.1,Athene_noctua:7.3);')

Note the trailing semicolon.

One thing that can trip users up with read.tree() (and the read.nexus() function, below) is that the
output class depends on the input. If you read from a file with one tree, the returned output is a single tree
object with class phylo. You can then use plot() on this object to draw the tree, pass this object into a
comparative methods package to estimate rates, and so forth. If the file has more than one tree, the returned
class is multiphylo: plot() will automatically cycle through plots as you type return, most comparative
method implementations will fail (they are written to expect one tree of class phylo, not a vector of trees
in a different class). read.tree() has an optional keep.multi function: if set to TRUE, the class is always
multiphylo, and you can always get the first tree by getting the first element in the returned object:

phy.multi <- ape::read.tree(file='treefile.phy', keep.multi = TRUE)
phy <- phy.multi[[1]]

For NEXUS formatted files (Maddison et al., 2007), ape’s read.nexus() function can pull in the trees (and
its read.nexus.data() function can pull in data from a NEXUS file). NEXUS is a very flexible format,
and there are valid NEXUS files that still cause errors with ape’s function. A more robust function to read
in NEXUS trees is the package phylobase’s readNexus() function (note the lack of a period and different
capitalization of Nexus from ape’s similar function). phylobase uses a different structure to store trees than
ape does.

tidytree is still fairly new, but it is a popular way for dealing with trees for those who have been converted
to the tidyverse.

3.4.1 Great scientists steal

Scientists have been creating trait-based phylogenetic trees for decades. These scientists are often experts in
their group, in potential problems in their data, in how to use relevant software. In other words, their trees
are likely to be better than any you make. Traditionally, these trees are published as a figure in a paper,
largely unavailable for reuse. This hurts reproducibility, makes it less likely for the work to be cited, and
stymies scientific progress in general. However, the field is increasingly moving to more frequent deposition
of trees in reusable form: sometimes based on author initiative, sometimes based on journal requirements.
The main repository for this is TreeBase: if you are reading a paper, and want to use its tree, that’s the first
place to look. You can also use their website to search for taxa. The trees can be downloaded and loaded
into R using phylobase (the NEXUS format used by TreeBase is hard for ape to load).

6

https://ropensci.org/packages/
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://newicks.com
https://github.com/YuLab-SMU/tidytree
https://www.tidyverse.org/
http://treebase.org

Another approach that is growing in importance is Open Tree of Life. It seeks to synthesize thousands of
trees to create a single tree of life. The rotl package can download this synthetic tree or components of
it (the tree for a particular genus, for example). For most groups, however, the synthetic tree is largely
based on taxonomy, so it is not very resolved. This is improving as the database of trees available for
Open Tree’s synthesis grows (to add to it, go to ___________________), but for most scientific
studies, I wouldn’t currently suggest using the synthetic tree (but for getting a sense for a group, making a
tree for a class, it can be useful; also see the Phylotastic project for ways to use trees in teaching or other
purposes). However, the Open Tree project also has a cache of thousands of trees that have been hand
curated (taxonomic names resolved, ingroups specified, tree type recorded, etc.). The rotl package lets you
download these, too. For most analyses, you want trees with branch lengths, and so you can download just
chronograms. For example,
#rotl::_________________

Two important notes about reusing trees:

• Give credit: If your entire paper is based on the tree from one other paper, you must cite that
paper (and also the ways you got the tree, including the packages and/or repositories). If it’s based
on trees from around a dozen papers, you should cite them, too. If you’re getting into the hundreds,
many editors will object to properly citing them all, but one compromise approach until a better way
of giving credit appears is to have supplemental info or an appendix with citations for all the relevant
papers (including DOIs to make these easier to parse later)

• Tree quality matters: As you will see in later sections, many comparative methods are based on
using branch lengths: look at different rates of character evolution, looking at diversification rates
over time, etc. If your starting tree is wrong, even if the topology is perfect but the branch lengths
are wrong, later downstream analyses are also likely to be wrong. Some methods (like independent
contrasts) are fairly robust to this (__________________), but the field has not tested many
others yet, and most should be far more sensitive than contrasts. This matters less if you are testing
dull hypotheses (see Chapter __________) but for folks working on biology where understanding
processes, especially using parameter estimates, is the point, just taking a tree and making up branch
lengths is often a bad idea.

3.5 Reconciling datasets
We use scientific names to communicate clearly. In the picture below ________________________,
“Look at the robin!” will have an American glance at the bird on the left, and a Brit look at the bird on
the right, but both, if trained sufficiently will know which to look at if told to look at _____Scientific
name_______. We thus use scientific names in writing. However, the correct scientific name for a
specimen can change for various reasons:

• A species is split into two species: some individual specimens remain in the original species, others are
given a new species names (rules of taxonomy allow this, and give constraints on how the new species
can be named and described)

• Two species are lumped into one species: some individual specimens thus have their names changed
(and which name persists after the merge is specified by the rules of taxonomy)

• A higher level group is changed. For example, _________ proposed to split the Anolis genus into
eight genera. Thus the genus name for some species changes, and sometimes the species name itself
changes to match the genus names: ______ becomes ____________. This can be a merge or
a split. This is often motivaed by a new discovery (the group known as acacias are not a clade (an
ancestor and all its descendants) and since we only want to name clades, one of the groups needs a
new name).

• An error is fixed. For example, it could be discovered that there was an earlier name for a species in
the literature, and so the species name must be changed based on the rules of priority.

Importantly, for all but the last point, it is perfectly valid based on the rules of taxonomy for different
scientists to use the names before and after the change.

7

http://otol.org
http://www.phylotastic.org

4 Visualizing data before use
A key step in any analysis is looking at the data. If you have loaded protein coding DNA sequences, are they
aligned correctly? Are the codon positions specified correctly? For trait data, is everything measured in the
same units, or are some oddly a thousand-fold higher than others? Are you dealing with an older dataset
format that uses -1 or 19 for missing data, and have you incorrectly treated those as observations? Is your
tree ultrametric?

It is easy to overlook this step, but you can draw the wrong conclusions based on errors at this stage. Most
peer reviewers will not notice this, either, so your error could slip into the literature and mislead others.
Take the time to get to know your data.

5 Dull model testing
Almost all biologists believe this about the world:

• All species evolve identically
– Rates of trait evolution are the same
– Optimal states are the same
– Speciation rates never change

• Traits are uncorrelated
• Species evolve completely independently
• Extinction never happens
• All evolutionary rates are constant

– Across all time
– Across all space

However, a scrappy group of biologists are using comparative methods to attack the mainstream view. For
example, using diversification analyses, they can show that extinction can sometimes be greater than zero.
Using analyses of trait evolution, they have found that different species actually have different rates of
evolution: whale body mass does not evolve in the same way bat body mass does. These ideas are rocking
the scientific establishment.

Of course, the above is all fiction. We know that different things are… different, because they’re not the
same. We know about extinction, about rates changing over time, about how traits must interact with each
other. But the way we do science does not reflect this. Instead, when doing empirical analyses, we focus on
rejecting trivial null models, or more simply, dull models. It is useful to show that using a more complex,
biologically more credible model is warranted, but too many studies just stop there: a pure birth model is
rejected for a logistic growth model for number of species, a single Brownian motion rate model is rejected
for an Ornstein-Uhlenbeck model, etc. However, rejecting dull models we did not believe in does not advance
science: it tells us more about the power of our study than about actual biological mechanisms. Of course
different groups have different rates of evolution: what is the magnitude of the difference? Getting rates
with uncertainty is a better way of getting at the biological meaning of differences.

Dull model testing comes up in discussion of a method’s fitness, too. The first question asked of a new
method, or a published model under attack, is its type I error rate. This is relevant: a method that too
often picks an alternate model when the null is true is worrisome. However, it is also not especially relevant
biologically. The null model is never true. It may be that due to small sample size, the null is the best-fitting
model, but in any empirical scenario the true model is never the null.

6 Testing models and methods
6.0.1 Objectives

• Understand distinction between model fit and model adequacy
• Identify and avoid pitfalls in evaluating methods

8

Table 1: Table of results from simulating a 2000 taxon tree under a pure birth model plus one mass extinction,
then sampling tips perfectly randomly down to a 500 taxon tree.

deltaAIC birth.rate carrying.capacity
Yule 60.385 0.044 NA
Logistic 0.000 0.064 1000

• Be able to identify methods that have been tested well.

6.0.2 Model fit and accuracy

When we use models to understand biology, it helps if they are appropriate for the data. Most importantly,
this gives meaningful parameter estimates. If the true model is one of constant diversification rates except
for a single pulse of extinction at the KT boundary, and the data include sampling only 25% of current
diversity, we could fit a logistic diversification model, and it could give us an estimate of carrying capacity,
perhaps even complete with uncertainty, but the reality is there is no carrying capacity. If the question were
simply about comparing models, a test of whether a logistic or Yule model fits the data best, we will get an
answer, but it does not help us understand reality: neither model is correct in our case.

In the above example, the result shows that the best model is one of logistic growth, with a carrying capacity
of 1000. However, remember that the tree used had 2000 tips to start (they were subsampled to get a 500
taxon observed tree). Neither the model nor the parameter estimate is right, so this exercise would tell us
little about biology. It is likely publishable.

There are thus three questions to answer when thinking about models:

1) Are the approximations in my models biologically reasonable?
2) Which model(s) fit best?
3) Are my models adequate?

7 Testing methods
7.0.1 Objectives

• Identify and avoid pitfalls in evaluating methods
• Be able to identify methods that have been tested well.

7.0.2 Kinds of testing

There are two kinds of testing. One can test the software to make sure it works properly. If you are trying
to calculate the average of a set of observations, are you using mean or incorrectly using median? Does it use
all the data or does it drop anything past the fifth observation? For this kind of question, it can be helpful
to do test driven development: write a test, then write code, and automatically check the code to see if it
passes the test. Then, as you change code, you can rerun all the old tests to verify they still work. This is
often known as unit testing.

But even if software has correctly implemented a method, a more compelling question is whether the method
itself is any good. This comes down to a few questions:

7.0.3 Type I error

This is when a model incorrectly rejects a true null hypothesis. For example, do clade A and clade B have
exactly the same rate of evolution? If the truth is that they do, rejecting that to say they are unequal
is a type I error. To test this property, data are ofen simulated under the null, analyzed under the null
and alternate hypotheses, and the proportion of times the null is incorrectly rejected noted. For a typical
significance theshold of 0.05, this should be 5% of the time.

9

This is a major focus…

7.0.4 Type II error

This is incorrectly accepting a false null.

7.0.5 Getting rid of typological thinking

In biology, typological thinking is bad: one of Darwin’s great insights was that there is substantial variation
in nature. However, our statistical thinking is often limited (see also chapter on dull hypothesis testing).
Appropriate Type I error rates is a nice property, but how often is the null actually true? Never.

8 Continuous traits
8.1 Objectives
By the end of this chapter, you will:

• Understand various continuous trait models
• Be able to run key software

Make sure to read the relevant papers: https://www.mendeley.com/groups/8111971/phylometh/papers
/added/0/tag/week7/

Last week we did some simulation under Brownian motion and talked about using this model for dealing
with correlations (as in independent contrasts [?]). The central limit theorem is great: as you add changes,
you converge back to a normal distribution. But what if the changes aren’t i.i.d.? For example, what if the
rate of body size evolution of birds dramatically increased once other dinosaurs went extinct? We would
have variance accumulating linearly with time before and after the KT extinction, but the rate of increase
would be different between the two time periods.

Do the homework at https://github.com/PhyloMeth/ContinuousTraits

You will: * Use Geiger to estimate rate of evolution under Brownian motion * Figure out what the units are
* Try other ways of scaling rates * Compare different models using OUwie * Do model comparison

9 Brownian Motion and Correlations
In progress

9.1 Objectives
By the end of this chapter, you will:

• Understand the importance of dealing with correlations in an evolutionary manner
• Know methods for looking at correlations of continuous and discrete traits
• Be able to point to reasons to be concerned.

Make sure to read the relevant papers: https://www.mendeley.com/groups/8111971/phylometh/papers
/added/0/tag/week6/

9.2 Brownian motion
First, let’s get a tree:
library(rotl)
library(ape)
phy <- get_study_tree("ot_485", "tree1")

10

https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/week7/
https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/week7/
https://github.com/PhyloMeth/ContinuousTraits
https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/week6/
https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/week6/

plot(phy, cex=0.5)
axisPhylo(backward=TRUE)

11

Asplenium
Adiantum

Marsilea

Schizaea
Lygodium

Matonia
Osmundastrum
Equisetum
Angiopteris

Psilotum
Ophioglossum

Juniperus
Cupressus

Cryptomeria
Sequoia

Taxus
Torreya

Podocarpus
Phyllocladus

Araucaria

Picea
Pinus

Abies
Cedrus

Gnetum
Welwitschia

Ephedra

Ginkgo

Zamia
Encephalartos

Cycas

Amborella

Nuphar
Nymphaea

Brasenia
Trithuria

Illicium
Schisandra

Trimenia
Austrobaileya

Saururus
Piper

Asarum

Drimys
Canella

Hedycarya
Persea

Atherosperma
Calycanthus

Magnolia
Liriodendron

Eupomatia

Chloranthus
Ascarina

Hedyosmum

Typha
Sparganium

Oryza

Musa
Eichhornia
Serenoa
Calamus

Apostasia
Lilium

Pandanus
Dioscorea

Japonolirion

Spathiphyllum
Orontium

Acorus

Coptis
Cocculus

Papaver
Euptelea

Fagus
Carya

Cucumis
Morus
Pisum

Parnassia
Oxalis

Populus

Bulnesia

Gossypium
Cleome

Tapiscia
Acer
Picramnia
Crossosoma

Terminalia
Eucalyptus

Pelargonium

Itea
Pterostemon

Liquidambar
Vitis

Dillenia

Paracryphia
Lonicera

Daucus
Brunia
Escallonia
Helianthus

Ilex
Helwingia

Antirrhinum
Nicotiana

Nerium
Aucuba

Enkianthus

Cornus
Grubbia

Spinacia
Berberidopsis
Ximenia

Gunnera
Pachysandra
Trochodendron

Platanus
Nelumbo

Meliosma

Ceratophyllum

Huperzia
Marchantia

500 400 300 200 100 0

12

Note that this tree is a chronogram.

Let’s simulate data on this tree. But what model to use? For now, let’s assume we are looking at continuous
traits, things like body size. Over evolutionary time, these probably undergo a series of changes that then
get added up. A species has an average mass of 15 kg, then it goes to 15.1 kg, then 14.8 kg, and so forth.
But how could those changes be distributed?

Start with a uniform distribution. Take a starting value of 0, then pick a number from -1 to 1 to add to it
(in other words, runif(n=1, min=-1, max=1)). There are efficient ways to do this for many generations,
but let’s do the obvious way: a simple for loop. Do it for 100 generations.
ngen <- 100
positions <- c(0, rep(NA,ngen))
for (i in sequence(ngen)) {

positions[i+1] <- positions[i] + runif(1,-1,1)
}
plot(x=positions, y=sequence(length(positions)), xlab="trait value", ylab="generation", bty="n", type="l")

−6 −4 −2 0 2

0
20

40
60

80
10

0

trait value

ge
ne

ra
tio

n

We can repeat this simulation many times and see what the pattern looks like:
ngen <- 100
nsims <- 500
final.positions <- rep(NA, nsims)
make a plot to hold our lines
plot(x=c(-1,1)*ngen, y=c(1, 1+ngen), xlab="trait value", ylab="generation", bty="n", type="n")
for (sim.index in sequence(nsims)) {

positions <- c(0, rep(NA,ngen))
for (i in sequence(ngen)) {

13

positions[i+1] <- positions[i] + runif(1,-1,1)
}
lines(positions, sequence(length(positions)), col=rgb(0,0,0,0.1))
final.positions[sim.index] <- positions[length(positions)]

}

−100 −50 0 50 100

0
20

40
60

80
10

0

trait value

ge
ne

ra
tio

n

Well, that may seem odd: we’re adding a bunch of uniform random values between -1 and 1 (so, a flat
distribution) and we get something that definitely has more lines ending up in the middle than further out.
Look just at the distribution of final points:
plot(density(final.positions), col="black", bty="n")

14

−20 −10 0 10 20

0.
00

0.
02

0.
04

0.
06

density.default(x = final.positions)

N = 500 Bandwidth = 1.464

D
en

si
ty

Which looks almost normal. Ok, let’s try a weird distribution:
rweird <- function() {

displacement <- 0
if(runif(1,-2,2) < .1) {

displacement <- rnorm(1, 7, 3) + runif(1,0,7)
} else {

displacement <- 0.5 * rexp(1, 0.3) - 1
}
displacement <- displacement + round(runif(1,1,100) %% 7)
return(displacement)

}

plot(density(replicate(100000, rweird())), bty="n")

15

0 10 20 30

0.
00

0.
02

0.
04

0.
06

density.default(x = replicate(1e+05, rweird()))

N = 100000 Bandwidth = 0.5443

D
en

si
ty

When we ask rweird() for a number it sometimes gives us a normally distributed number multiplied by a
unifor distribution, other times it gives us an exponentially distributed number, and then adds the remainder
that comes when you divide a random number by 7. So, not exactly a simple distribution like uniform, normal,
or Poisson. So, repeating the simulation above but using this funky distribution:
ngen <- 100
nsims <- 500
final.positions <- rep(NA, nsims)
make a plot to hold our lines
plot(x=c(-100,1200), y=c(1, 1+ngen), xlab="trait value", ylab="generation", bty="n", type="n")
for (sim.index in sequence(nsims)) {

positions <- c(0, rep(NA,ngen))
for (i in sequence(ngen)) {

positions[i+1] <- positions[i] + rweird()
}
lines(positions, sequence(length(positions)), col=rgb(0,0,0,0.1))
final.positions[sim.index] <- positions[length(positions)]

}

16

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0

trait value

ge
ne

ra
tio

n

And now let’s look at final positions again:
plot(density(final.positions), col="black", bty="n")

17

800 900 1000 1100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

density.default(x = final.positions)

N = 500 Bandwidth = 14.26

D
en

si
ty

Again, it looks pretty much like a normal distribution. You can try with your own wacky distribution, and
this will almost always happen (as long as the distribution has finite variance).

Why?

Well, think back to stats: why do we use the normal distribution for so much?

Answer: the central limit theorem. The sum (or, equivalently, average) of a set of numbers pulled from
distributions that each have a finite mean and finite variance will approximate a normal distribution. The
numbers could all be independent and come from the same probability distribution (i.e., could take numbers
from the same Poisson distribution), but this isn’t required.

Biologically, the technical term for this is awesome. We know something like a species mean changes for
many reasons: chasing an adaptive peak here, drifting there, mutation driving a it this way or that, etc.
If there are enough shifts, where a species goes after many generations is normally distributed. For two
species, there’s one normal distribution for their evolution from the origin of life (or the start of the tree
we’re looking at) to their branching point (so they have identical history up to then) then each evolves from
that point independently (though of course in reality they may interact; the method that’s part of the grant
supporting this course allows for this). So they have covariance due to the shared history, then accumulate
variance independently after the split. We thus use a multivariate normal for multiple species on the tree (for
continuous traits), but it again is due to Brownian motion. This mixture of independent and shared
evolution is quite important: it explains why species cannot be treated as independent data
points, necessitating the correlation methods that use a phylogeny in this week’s lessons.

However, in biological data there are (at least) two issues. One is that in some ways a normal distribution is
weird: it says that for the trait of interest, there’s a positive probability for any value from negative infinity
to positive infinity. “Endless forms most beautiful and most wonderful have been, and are being, evolved”
[Darwin] but nothing is so wonderful as to have a mass of -15 kg (or, for that matter, 1e7 kg). Under
Brownian motion, we expect a displacement of 5 g to have equal chance no matter what the starting mass,

18

but in reality a shrew species that has an average mass of 6 g is less likely to lose 5 g over one million years
than a whale species that has an average adult mass of 100,000,000 g. Both difficulties go away if we think
of the displacements not coming as an addition or subtraction to a species’ state but rather a multiplying
of a state: the chance of a whale or a shrew increasing in mass by 1% per million years may be the same,
even if their starting mass magnitudes are very different. Conveniently, this also prevents us getting zero or
lower for a mass (or other trait being examined). This works if we use the log of the species trait and
treat that as evolving under Brownian motion, and this is why traits are commonly transformed in
this way in phylogenetics (as well they should be).

The other issue is that the normal approximation might not hold. For example, if species are being pulled
back towards some fixed value, the net displacement is not a simple sum of the displacements: we keep
getting pulled back, in effect eroding the influence of movements the deeper they are in the past: thus the
utility of Ornstein-Uhlenbeck models. There may also be a set of displacements that all come from one
model, then a later set of displacements that all come from some different model: we could better model
evolution, especially correlation between species, by using these two (or more) models rather than assume
the same normal distribution throughout time: thus the utility of approaches that allow different parameters
or even different models on different parts of the tree.

9.3 Correlation
For this week, bring your data and a tree for those taxa. Fork https://github.com/PhyloMeth/Correlation
and then add scripts there. When you’re done, do a pull request. Note if you add data to that directory and
commit it, it’ll be uploaded to public GitHub. Probably not a big deal, unless you want to keep your data
secret and safe (Lord of The Rings reference; c.f. phangorn package).

Do independent contrasts using pic() in ape. Remember to 1) positivize the contrasts (this is not the
same as doing abs()). From the Garland et al. paper, think about ways to see if there are any problems.
How do contrasts affect the correlations?

Do Pagel94 There are at least three ways to do this in R: in the phytools, diversitree, and corHMM
packages. With phytools, it’s pretty simple: use the fitPagel() function. With the others, you have
to specify the constraint matrices (this allows you to do Pagel-style tests but on a wider range of models).
Think about what you should assume at the root state: canonical Pagel94 assumes equal probabilities of
each state at the root, but that might be a bad assumption for your taxa.

Use another correlation method Perhaps phyloGLM? Use the phylolm package, or some other approach
to look at correlations.

10 Discrete Traits
##Objectives

By the end of this chapter, you will:

• Understand how to incorporate rate heterogeneity in discrete trait models
• Be able to explain how to test hypotheses about univariate trait evolution.

Many traits can be thought of as discrete traits: a DNA site comes in ATGC, protein have one of 20 amino
acids, some animals have functional eyes and others do not, some plants are woody and others are herbaceous.
This is nearly always an approximation. Think of something like limbs: they seem distinct enough that we
even name some groups by their count: tetrapods, hexapods. Except that when we look closely enough,
it becomes fuzzy: insect mouthparts are derived from limbs, for example, so should we count these highly
modified limbs as limbs (and if not, where in evolution have they become sufficiently modified to no longer
count? And are nymphalid butterflies tetrapods under that definition yet?). Are modern whales thought
to have four limbs, even though two are extremely vestigial? Often for neontologists problematic organisms
with intermediate counts are conveniently extinct (so long, Basilosaurus), so we can ignore this fuzziness, but
it is often there (and paleontologists are confronted with it more often). Think about the details of a species

19

https://github.com/PhyloMeth/Correlation

changing from one discrete state to another, even for something like a seemingly perfectly discrete character
like a base changing from an A to a T. At first this is present in just a single individual (for a multicellular
diploid, on one DNA strand in one cell in the germ line). Even if under selection, it will take generations to
sweep through to fixation: during that time, what is “the” state of the species? It is even harder to discretize
characters like woodiness (how much wood is required?), eyes (when does a fish population evolving in a cave
finally “lose” its eyes?), biogeography (how finely do you divide the range: by continent? biome? state?),
and so forth.

As for many decisions, this comes back to the biological hypotheses being tested and the size of the study.
For example, one question could be does a complex trait like wings ever re-evolve once lost? ? examined
this in stick insects: some species have wings in both sexes, some in one only, and some lack wings in both
sexes. If the question hinges on whether loss of wing genes in a species prevents re-evolution, then as long
as one sex in a species has wings the species should be coded as having wings. If the question hinges on the
effect of loss of wings on ability to settle new areas, it could be that having either sex lack wings is enough
to prevent effective colonization, and thus a species with only one sex with wings should be coded as being
wingless. If the study system is large enough to have sufficient power, one could code this as a four state
character, instead: A: both males and females have wings; B: males have, females lack wings; C: males lack,
females have wings; and D: both males and females lack wings.

One way to deal with this is to gather discrete data as finely divided as reasonable and then aggregate. For
example, in the stick insect example, code it as a four state character as above and then, depending on the
biological question, group them. If the question is whether wings can reappear after being entirely lost, for
example, one would group A, B, and C as having wings (in at least some members of the species, so the
genes remain under selection for functionality) and D as wingless, but for the dispersal question one could
lump B, C, and D, leaving A as the other state, or even lump B and C only.

males females four_states question_1 question_2a question_2b
wings wings A 1 1 2
wings wingless B 0 1 1
wingless wings C 0 1 1
wingless wingless D 0 0 0

But, let’s assume we can discretize traits and carry on. The simplest discretization is binary: 0 or 1, often
absence or presence (but could be yellow or blue, etc.). Most models are like our commonly used DNA
models: continuous time with discrete changes, using the same rates throughout. It is like a model for when
an autonomous car will have an accident: assuming the car works perfectly (gives a whole new meaning to
“blue screen of death”) there’s still a chance that at some point a human is going to run into it. There’s
a per hour chance of an accident: let’s assume in each hour there’s a 0.03% chance of our autonomous car
having an accident (very roughly based on Google’s experience, assuming a 40 MPH average speed). So the
probability of having no accident in the first hour of driving is 99.97%; the probability of having no accidents
in the first 40 hours of driving is 99.97% ^ 40 = 98.8%. The number of accidents is Poisson-distributed; the
wait time between accidents is exponentially distributed. This is the model commonly used in phylogenetics
for discrete traits, though sometimes with more complexity: one could move (with some rate) between
two different rates, as in a covarion model, for example. A very different model is Felsenstein’s threshold
model, which we will discuss in a few weeks. For now, though, just envision models with a fixed rate of
change between states as long as other characters don’t change; it’s possible, though, that the state of other
characters do affect these rates (which is what correlation tests investigate). For example, the probability
of switching from clawed feet to flippers for forelimbs is probably much higher for species that live in water
than on land.

(btw, note the spelling here: having one, two or eight eyes is a discrete trait: individually separate and
distinct. Forming an enclosed bower for hidden mating is a discreet trait. The former is generally far more
biologically relevant).

Discrete trait models typically assume that change from one state to another happens in one step. Time is
continuous (per instant, rather than change per generation, per year, etc.). Usually the process is memoryless:
there’s no cooling-off period during which a trait can’t change back, for example (there are seeming exceptions,

20

like the threshold model [Felsenstein, a], though these often are memoryless when you look more deeply (like
in the liability in the threshold model)). This memoryless property makes this a Markovian model. So,
overall, these are discrete state continuous time Markov chain models (DSCTMC) [O’Meara]. When in one
state, there’s an exponentially distributed wait time until a change to some other state. An example of this
is radioactive decay: an atom of carbon-14 sitting patiently in a sugar molecule, until at some point it decays
to form a nitrogen atom. It might happen in a second, it may happen in 100 years, it may happen in 10,000
years. The faster the decay rate, the less time on average until it changes. For atomic decay, we often talk
about half life (1/rate): this can be done for phylogenetics, too [note this is distinct from phylogenetic half
life for Ornstein-Uhlenbeck models – see that chapter]. This can give an intuitive sense of time to a change:
is there a 50:50 chance the trait has changed after 10 MY (reasonable) or after 0.0001 years (seems a bit fast
for most traits)?

It’s possible a trait can have more than two states. Take DNA: an A could change to a T, to a G, or to a C.
There could be three rates: rAT, rAG, rAC for changes from A to T, A to G, and A to C respectively. The
rate it changes at all is the sum of these: rA_ = rAT + rAG + rAC. The probability that the change is A to
T when it does change is just rAT / (rAT + rAG + rAC).

It is often convenient to arrange the instantaneous rates into a table. Each row represents a starting state,
and each column represents an ending state. Each cell is the instantaneous rate of going from the row state
to the column state:

A T G C
A - r~AT~ r~AG~ r~AC~
T r~TA~ - r~TG~ r~TC~
G r~GA~ r~GT~ - r~GC~
C r~CA~ r~CT~ r~CG~ -

Though the above example is for DNA, one could do the same with amino acids, ability to fly, having eyes,
growth form, trophic level, etc.

Once we have this matrix, we can do a few cool things with it. One is to calculate the probability of starting
in one state and ending in a particular state over some time t. This is frankly amazing: think of the ways one
could start in A and end in T. One could change from A to T exactly at the middle of the time interval. Or,
this could happen 10% of the way along the branch. Or, one could change from A to G a third of the way up
and then G to T a bit further along. Or could go from A to T to A to T. Etc. There are an infinite number
of paths one could take to get from A to T. However, by simply taking the instantaneous rate matrix, Q,
multiplying each cell by t, and taking the matrix exponential of this, we can integrate over all these paths
to get the probability matrix P, where the entry for row i, column j is the probability of starting in state i
and ending in state j over time t.

With a way to calculate probability, all manner of wondrous things become available. For example, take this
very simple tree:

21

A

G

A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

What is the probability of the data (the likelihood) of this tree? Well, we have two paths: from A at the root
of the tree to A over a time of 0.7, and from A at the root of the tree to G, also over a time of 0.7. If we know
the instantaneous rates, we can take the matrix Q, do P = expm(Q times t), and calculate the probability
of A to A and A to G paths. Multiply those two probabilities together than that is the probability of seeing
A and G at the tips and A at the root given the instantneous rates: that is, we’ve calculated the likelihood
of the tree. We could try changing the branch length from 0.7 to 0.71 or 0.69, repeat, and continue trying
branch lengths until we find a branch length that maximizes this probability: that’s finding the maximum
likelihood optimum branch length. If we do not want to assume an A at the root, we could calculate the
probability of the data assuming a T at the root, assuming an A, assuming a G, and assuming a C, weight
each probability by our expectation of seeing each root state (for example, if we assume we know nothing
a 1/4 chance of each state) and get the weighted sum. This is how likelihoods of trees are calculated in
general. For larger trees, we essentially do the same thing, trying all possible combinations of states at each
node (there’s actually a faster but equivalent algorithm, known as tree pruning or tree peeling, developed by
Felsenstein that’s used in practice). If we want to estimate the state at one particular node (the marginal
ancestral state estimate), we integrate (add) over all possible combinations of states at other nodes but trying
each possible state at our focal node to find the likelihood of the data given each state – this is ancestral state
estimation. If we want to compare two different trees, we calculate the probability of the data on each tree
and compare them. Combined with a way of proposing new trees, this is a likelihood tree search algorithm.

In the same way we can try different branch lengths and get different likelihoods to find the optimal branch
length, we can try different rates and try to get the ones that maximize the probability of the data. Many
questions relate to these rates. Is the rate of gaining eyes lower than the rate of losing eyes? To answer, find
the values that maximize the likelihood, see if the gaining eyes rate is lower. It can be helpful to compare
rates under a model where they are allowed to vary with models where they are forced to be the same: for
example, we can set the gain rate to equal the loss rate and see how much worse that is. This is also one way
we simplify models: either by forcing some paramter values to have the same rates or by forcing some rates
to be a fixed value (usually zero). For example, for DNA models, a common one is to assume that the rate

22

of going from state i to j is the same as going from j to i: this is known as a general time reversible model.
This often fits almost as well as a model with all transition rates allowed to vary, but has half the number
of parameters to fit. An even simpler model, the Jukes-Cantor model, forces all rates from one nucleotide
to another to be equal. One can also ask about direction of transitions: is it always 0 -> 1 -> 2, or are 0 ->
2 changes possible directly? To examine this, compare models with r02 forced to be zero and see how much
worse they are than models with unconstrained rates.

Ancestral state estimation is a common desire for biologists. There are multiple ways to estimate these states.
The first question is where the states are estimated (adopting the jargon of Steel and Penny). The likelihood
calculated by averaging across all states everywhere (except terminals), as we do when finding the best tree,
is known as maximum average likelihood. For ancestral state estimation, it is typical to estimate states at
nodes: this is known as most-parsimonious likelihood. Note that estimating states at the nodes takes two
forms. The less common, but which is the one matching the most-parsimonious likelihood approach, is a
joint reconstruction: find the set of states across all nodes that together maximize the likelihood. It’s like
asking what your favorite meal is: maybe a hot dog, with mustard, on a grilled bun with a side of potato
salad and a side of baked beans. More common is a marginal reconstruction: estimate the best state at
each node, averaging across all other states at other nodes. It’s equivalent to asking about your favorite
food: perhaps cheddar cheese. One can do this at every node, and plot them all on the tree, but there’s no
guarantee that they will all be the best combined meal (cheese at one node, chocolate at another…), only
that each is best at its own node. In practice the two reconstructions are often very similar. A third way,
which is what many of us want but which is hard in practice, is pathway likelihood: get the best state at
every time point (including along branches) along the tree. That’d be great: we could see if a trait in a
mammal lineage evolved before or after nonavian dinodaurs went extinct, for example. However, we don’t
do it in practice (one reason could be that the maximum likelihood estimates are fairly boring: depending on
rates, a change will happen at the very beginning, very end, or equally likely anywhere). Instead, stochastic
character mapping is often used [Huelsenbeck et al.]

11 Diversification
11.1 Objectives
By the end of this chapter, you will:

• Understand diversification models that don’t incorporate traits
• Be able to estimate diversification parameters for your data

Make sure to read the relevant papers: https://www.mendeley.com/groups/8111971/phylometh/papers
/added/0/tag/diversification/

And do the relevant exercise: https://github.com/PhyloMeth/Diversification

12 SSE methods
12.1 Objectives
By the end of this chapter, you will:

• Understand models that look at the effects of traits on diversification
• Understand some of the problems with these
• Be able to categorize Type I and Type II errors and talk about their relevance.

Make sure to read the relevant papers: https://www.mendeley.com/groups/8111971/phylometh/papers
/added/0/tag/sse/

At this point in the course, you should be familiar with working through getting software running. If you
want more practice, you could use the vignette written by Jeremy Beaulieu for hisse; running diversitree is
similar. However, I think a bigger thing to discuss is how we understand a method is working well, and how

23

https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/diversification/
https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/diversification/
https://github.com/PhyloMeth/Diversification
https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/sse/
https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/sse/
https://cran.r-project.org/web/packages/hisse/vignettes/hisse-vignette.html

we assess whether results are believable. This is especially prominent in discussions of diversification. One
great example of this discussion in the literature:

• Nee et al. (1994) “Extinction rates can be estimated from molecular phylogenies”
• Rabosky (2009) “Extinction rates should not be estimated from molecular phylogenies”
• Beaulieu and O’Meara (2015) “Extinction rates can be estimated from moderately sized molecular

phylogenies”
• Rabosky (2015) “Challenges in the estimation of extinction from molecular phylogenies: A response

to Beaulieu and O’Meara”

And that probably isn’t the last word on this (no, I’m not planning something at the moment). However,
despite all the hemming and hawing over what people should do, people still keep using methods: folks using
diversitree, BAMM, geiger, or many other approaches merrily estimate extinction rates as a necessary part
of their analyses, though they usually don’t focus on them in their studies, instead focusing on diversification
(speciation - extinction) or speciation alone. (Note: it is possible to do diversification approaches without
estimating extinction rates: one could fix extinction rate at a known value (perhaps using the average
duration of fossil “species” to get a fixed estimate), though what is usually done is to fix extinction at 0
(this is called a Yule model, if speciation is constant). This is a bit weird when you think about it: one of
the few things we truly know in biology without a doubt is that extinction is far, far from zero in general
(though this wasn’t really discovered in Western science until the 19th century)). But as skeptical scientists,
we should aim higher. It’s often tempting, especially as students or postdocs facing a difficult job market, to
focus on what we can get out: is there an exciting result that can get past peer review and build our fame
(maybe, in our tiny circle) and fortune (ha!). But it’s important to take a step back: are we confident enough,
truly (not just based on the p-value) that our results are actually discoveries about nature? Diversification
is an area (ancestral state estimation is another) where the reality of results is especially worrisome. Take,
for example, Etienne et al. (2016), who as part of a broader simulation study, analyzed a dataset of 25
Dendroica warbler species, which is a classic dataset for these studies, fitting a logistic growth model. They
found that depending on how the model was conditioned1, something most users would ignore, the estimated
carrying capacity (in this model, the number of warbler species at which speciation equals extinction; in other
models, this would be the number of species at which speciation is zero, with extinction always set to zero)
for warblers is 24.59 or 6.09 or 0.656 species. That means, depending on how one conditions, we should
expect the number of Dendroica warblers to stay exactly where it is, crash to around six species, or crash
to half a species [and of course, in the latter two cases, stochastic change in number of species will lead to
them hitting zero species fairly quickly, which is an absorbing state]. Given the sensitivity of the model to
factors like conditioning, any result has to be taken with a great deal of skepticism.

For trait based models, the same history of finding problems and the solutions (or partial solutions) has
arisen (there is a paper coming out in the American Journal of Botany in May 2016 that goes into this in
more detail). The most relevant parts:

Maddison (2006) (and there were similar points made by others earlier) showed that transition rates and
diversification rates can be hard to distinguish. Oversimplifying a bit, but if the rate of going from state 0
to state 1 is higher than the reverse rate, then over time there should be many more taxa in state 1 than 0.
If the diversification rate in state 1 is higher than in state 0, there will tend to be more taxa in state 1 than
0. So if you see a tree with more state 1 than 0, is it higher transition rate to 1, or higher diversification
in 1? Or is it lower transition to 1 but a high enough diversification rate that it overwhelms it? Or just
chance? The paper identified the problem but not the solution: the last line of the abstract is “Studies of
biased diversification and biased character change need to be unified by joint models and estimation methods,

1Conditional probability is the probability of an event given that some other event has occurred. For example, you could use
past information from your department to estimate Prob(getting tenure), but it is different if you use information that another
event has occurred: Prob(getting tenure | made major discovery in evolution) is different from Prob(getting tenure |
four years since last publication). In this domain (diversification alone and diversification plus trait models), we condition
on actually having a tree to look at: if the true model is speciation rate equals extinction rate, there’s a good chance that most
clades starting X million years ago will have gone extinct, so the ones we see diversified unusually quickly, and this has to be taken
into account. The example I usually use for this is the idea that dolphins rescue drowning sailors. It’s known dolphins push inter-
esting objects in the ocean. We could interview previously drowning sailors that dolphins pushed towards shore, and they’ll all say
that dolphins saved them, but it’s very hard to interview sailors the dolphins pushed the other way. As always, Randall Munroe’s

24

http://rstb.royalsocietypublishing.org/content/344/1307/77
http://onlinelibrary.wiley.com/doi/10.1111/j.1558-5646.2009.00926.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/evo.12614/abstract
http://onlinelibrary.wiley.com/doi/10.1111/evo.12820/full
http://www.ucmp.berkeley.edu/mammal/artio/irishelk.html
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12565/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.0014-3820.2006.tb00517.x/abstract

although how successfully the two processes can be teased apart remains to be seen.”

This was followed up by Maddison et al. (2007) who figured out a method to deal with this: BiSSE. And
systematists looked at it, and it was good. There is now a bestiary of similar *SSE models for different kinds
of data: QuaSSE, GeoSSE, MuSSE, ClaSSE, and more.

However, there are concerns. The original paper showed that estimating extinction was hard to do accurately,
and other papers (Davis et al, 2013) showed that you needed a hundreds of species to find significant
results (sorry, Dendroica – you will forever remain a mystery). However, a particular scary paper (and
talk at Evolution, where it was presented) was Maddison & FitzJohn (2014). Their paper mostly discussed
correlated characters, but has relevance to SSE approaches. If you have a single change on a tree, you don’t
know if a higher rate in the clade descended from that branch is due to that trait, some other trait changing
on that branch, or some other trait changing on the tree but in a way that makes it mostly on one part
of the tree. Rabosky & Goldberg (2015) showed that the way many people interpret BiSSE results, as a
testing of a null hypothesis, can be misled if part of the null hypothesis is wrong but not the part you’re
interested in. Beaulieu & O’Meara (2016) address some of the Maddison & FitzJohn issues (a character
changing elsewhere on the tree driving a result) but not all the issues (a single change being sufficient to
give substantial support for an idea that that trait is driving diversification).

12.1.1 Discussion prompts

1. What is Type I and Type II error?

XKCD explains conditional probability best

25

http://sysbio.oxfordjournals.org/content/56/5/701.short
https://sysbio.oxfordjournals.org/content/early/2014/10/23/sysbio.syu070.full
http://sysbio.oxfordjournals.org/content/early/2015/01/18/sysbio.syu131
http://sysbio.oxfordjournals.org/content/early/2016/03/25/sysbio.syw022.abstract

2. Do we care about them? Why or why not?
3. Compare and contrast

• model selection
• null hypothesis rejection
• multimodel inference
• parameter estimation

4. What is a good null model for trait diversification?
5. What is the model we use?
6. How do you know a method is good enough to use?

• in general
• for your data

7. Given the controversies about diversification methods, are you willing to use them? Defend your view!

For a lot of these questions, there isn’t a right answer (at least, not one I know, and certainly not an
agreement in the field). But it’s worth thinking about as you develop your research career.

13 RAxML
13.1 Objectives
By the end of this week, you will:

• Have RAxML installed
• Be able to do an analysis with likelihood with various models
• Understand partitioning
• Be able to use a variety of character types

RAxML (Stamatakis, 2014) is a very popular program for inferring phylogenies using likelihood, though
there are many others. It is notable for being able to infer trees for tens of thousands of species or more.
New versions can use DNA, amino acid, SNP, and/or morphological characters.

13.2 Install RAxML
To begin, install RAxML. Follow the instructions in Step 1 of http://sco.h-its.org/exelixis/web/softwar
e/raxml/hands_on.html. For the fewest issues, just do make -f Makefile.gcc on the command line (not
in R) to compile the basic vanilla version. For actual work, you’ll likely find the versions with SSE3 and/or
PTHREADS will work faster. On a Mac (Linux is similar; RAxML has binaries), the easiest way to get use
this would be:

git clone git@github.com:stamatak/standard-RAxML.git
cd standard-RAxML
make -f Makefile.gcc

If compiling went correctly, you should see a line like

gcc -o raxmlHPC axml.o optimizeModel.o multiple.o searchAlgo.o topologies.o parsePartitions.o treeIO.o models.o bipartitionList.o rapidBootstrap.o evaluatePartialGenericSpecial.o evaluateGenericSpecial.o newviewGenericSpecial.o makenewzGenericSpecial.o classify.o fastDNAparsimony.o fastSearch.o leaveDropping.o rmqs.o rogueEPA.o ancestralStates.o mem_alloc.o eigen.o -lm

Now you need to put the program in a path. This is where your computer looks for programs to run.
If you type a program name, like ls or raxmlHPC, your computer checks the folders indicated in the path for
a program of this name; when it finds one, it runs that. You can see your path by typing echo $PATH. If you
want to run a program, like the newly compiled raxmlHPC, you have two options: you can specify where it is
each time you want to run it, or you can put it in a folder in your existing path. The former becomes a pain,
so I’d recommend the latter. /usr/bin is in your path, but this is reserved for programs your computer
needs to run – don’t mess with it. I’d suggest putting it in /usr/local/bin. To do this, type

sudo cp raxmlHPC /usr/local/bin/raxmlHPC

26

http://sco.h-its.org/exelixis/web/software/raxml/hands_on.html
http://sco.h-its.org/exelixis/web/software/raxml/hands_on.html
https://github.com/stamatak/standard-RAxML/tree/master/WindowsExecutables_v8.2.4

sudo means superuser do. It’s a very powerful command. Generally, typing on the command line you can
delete files that are important to you, but it’s hard to utterly destroy your computer; with superuser abilities,
you could delete key files.

Figure 1: Sudo sandwich from xkcd

Ok, so we now have RAxML installed. To run it, you could use the very handy ips package to call it from
R, but it doesn’t have an interface to all of the relevant commands. Instead, we’re going to just create some
commands to run ourselves.

First, we need sample data sets. We will be using ones, modified somewhat, from this tutorial. The original
files are here but the modified ones are in the repository for this PhyloMeth exercise in the /inst/extdata
folder.

Until now, we’ve seen NEXUS files, which can include data blocks. RAxML uses Phylip-formatted files
instead, which are simpler: a line that has the number of taxa and the number of sites, followed by one line
per taxon with the taxon name, a space, and then the characters (though there could be interleaving).

13.3 Morphology search
First, we are going to examine morphology using likelihood. While morphology is typically analyzed with
parsimony, there are models for morphology (i.e., Lewis 2001) and research suggests (Wright & Hillis, 2014)
that such models outperform parsimony for morphology, in addition to being less prone (in theory) to long
branch attraction (Felsenstein 1978). Therefore, absent strongly held concerns rooted in an epistemological
paradigm, it seems prudent to use a parametric model for morphology (note this can be done in likelihood
or Bayesian contexts).

Get the exercise and complete the InferMorphologyTree_exercise function in exercise.R. Also, look
at the data in a text editor to get a sense of the structure. Which taxa are going to be lumped into clades,
do you think? Some important things to note:

27

http://sco.h-its.org/exelixis/web/software/raxml/hands_on.html
http://sco.h-its.org/exelixis/resource/download/hands-on/Hands-On.tar.bz2
https://github.com/PhyloMeth/LikelihoodTrees
http://onlinelibrary.wiley.com/doi/10.1111/cla.12148/full
http://onlinelibrary.wiley.com/doi/10.1111/cla.12148/full
https://github.com/PhyloMeth/LikelihoodTrees

• Morphology (as well as some other data, such as SNPs) often includes only variable sites. This can
cause a problem if not accounted for (it looks like all sites are evolving really fast, because the slow
ones are ignored). There are corrections for this, three of which are implemented in RAxML.

• RAxML creates a starting tree, then does a parsimony optimization, then likelihood. This is not a full
parsimony search, though.

• Remember that for nearly all tree searches, heuristic methods are used. That means that you are not
guaranteed to get the best tree; given the size of tree space, one could almost say you’re guaranteed
not to find the best tree.

• Computers are great at being logical. The downside is that they are terrible at being random. They
often use the current time as a “seed” to get a pseudorandom number. You could think of it (this is
more of an analogy than a description) as if the computer had a long table of stored “random” numbers,
and that it started using numbers at the row corresponding to the number of seconds elapsed between
the current time and some fixed date in the past. If you start two runs at different times, they’ll have
different numbers, but if you start them at the same time, they’ll have the same ones. For tree search,
there are often random moves: which branch is broken off and moved somewhere else. If you start two
searches at the same time, thinking you’re doing two independent searches, they’ll perform exactly the
same, despite the “randomness”. RAxML asks users to supply a random number seed to it. If you use
the same one across runs, they’ll be exactly the same.

13.4 DNA
Most phylogenetic analyses for extant organisms use sequence data. This is often presented as DNA, though
sometimes the data are translated to amino acids instead. Usually sequences from multiple genes are con-
catenated. There are a wide range of models available for sequence evolution. For DNA, the most popular
remains general time reversible (GTR): a model that allows for a different transition rate between every pair
of nucleotides, subject to the constraint that the rate from nucleotide i to j is the same as the rate from j to
i. Different sites evolve at different rates (think of the sites coding for the active site of an enzyme versus
those in an intron that has little to no functional purpose). One way to model this heterogeneity is with a
gamma distribution: the likelihood is evaluated using several different rates for that site (Yang 1995). One
can also apply partitions: allow different sections of the data to have different rates. This is commonly done
to allow first, second, and third codon positions to have different rates, or to allow different genes to have
different models of evolution. This can offer dramatic improvements in the fit of a model to the data; it is
especially important when dealing with gappy data, such as cases where one gene is present for all taxa but
another gene has ben sampled for only a subset of taxa.

Do InferDNATreeWithBootstrappingAndPartitions_exercise() in the homework. Once this is
done, install this homework library into R. From the folder containing the homework:

R CMD INSTALL LikelihoodTrees

Then, in R:

library(PhyloMethLikelihoodTrees)
results <- InferDNATreeWithBootstrappingAndPartitions_exercise()

Though you may have to include other arguments (especially input.path).

You can plot your final tree:

library(ape)
plot.phylo(results$ml.with.bs.tree, show.node.label=TRUE)

This shows the branch lengths of the best ML tree and the bootstrap proportions. This is from a non-
parametric bootstrap (Felsenstein 1985): the columns of data are sampled with replacement and then a tree
search is redone. The more times a bipartition (an edge) on a tree is recovered, the more confidence we have
in it (but this is not the same as the probability of it being true). Note one common error: the numbers
reported, and in this case shown at nodes, are not properties of a node or a clade: they are bipartitions:

28

taxa A, C, E fall attach (perhaps through other nodes) to one end of an edge, and taxa B, D, E, F, G, H
are attached to the other end.

14 Gene Tree Species Tree
14.1 Objectives
By the end of this chapter, you will:

• Understand why gene trees and species trees may not always agree
• Know about some of the approaches in this area
• Understand about phylogenetic networks

First, we will be looking at distinctions between gene trees and species trees. For this, we’ll be using Liang
Liu’s phybase package. This isn’t on CRAN, but it is available on his website. However, we’ll be using a
version I modified slightly and put on github. Liang’s package uses newick format (yes, named after the
restaurant), but with additional options for including population size (branch width, included as a # sign
followed by a number) as well as the more traditional branch length. Both matter for coalescence: two copies
are much more likely to have coalesced on a long, narrow branch than a short, fat one. Most packages in R
instead use ape’s phylo format, so I wrote a few functions to deal with that. This version of the package is
on github; to install it:

library(devtools)
install_github("bomeara/phybase")

For real science, Liang’s is the canonical one (and definitely cite his) but this will be easier for us to use for
class.

First, get a tree from Open Tree of Life. We’ll get a recent plant tree from Beaulieu et al:
library(rotl)
library(ape)
phy <- get_study_tree("ot_485", "tree1")
plot(phy, cex=0.3)

29

https://faculty.franklin.uga.edu/lliu/content/phybase?
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://newicks.com

AspleniumAdiantum
Marsilea
SchizaeaLygodium

MatoniaOsmundastrumEquisetumAngiopteris

PsilotumOphioglossum
JuniperusCupressus
CryptomeriaSequoia
TaxusTorreya
PodocarpusPhyllocladus
Araucaria

PiceaPinus
AbiesCedrus

GnetumWelwitschia
Ephedra

Ginkgo

ZamiaEncephalartos
Cycas
Amborella
NupharNymphaea
BraseniaTrithuria

IlliciumSchisandra
TrimeniaAustrobaileya

SaururusPiper
Asarum
DrimysCanella
HedycaryaPersea
AtherospermaCalycanthus

MagnoliaLiriodendron
Eupomatia
ChloranthusAscarina
Hedyosmum

TyphaSparganium
Oryza
MusaEichhorniaSerenoaCalamus

ApostasiaLilium

PandanusDioscorea

Japonolirion

SpathiphyllumOrontium

Acorus

CoptisCocculus
PapaverEuptelea

FagusCarya
CucumisMorusPisum

ParnassiaOxalis
Populus

Bulnesia

GossypiumCleome
TapisciaAcerPicramniaCrossosoma

TerminaliaEucalyptus
Pelargonium

IteaPterostemon
LiquidambarVitis

Dillenia

ParacryphiaLonicera
DaucusBruniaEscalloniaHelianthus

IlexHelwingia
AntirrhinumNicotiana
NeriumAucuba

Enkianthus

CornusGrubbia

SpinaciaBerberidopsisXimenia

GunneraPachysandraTrochodendron

PlatanusNelumbo
Meliosma

Ceratophyllum

HuperziaMarchantia

Let’s simplify by dropping some taxa:
library(geiger)
phy <- drop.random(phy, Ntip(phy) - 10)
plot(phy)
axisPhylo()

30

Ophioglossum

Araucaria

Asarum

Acorus

Fagus

Terminalia

Lonicera

Ilex

Helwingia

Marchantia

500 400 300 200 100 0

We can simulate gene trees on this tree:
library(phybase)
gene.tree <- sim.coaltree.phylo(phy, pop.size=1e-12)
plot(gene.tree)

31

Ophioglossum

Asarum

Acorus

Lonicera

Ilex

Helwingia

Terminalia

Fagus

Araucaria

Marchantia

And it probably looks very similar to the initial tree:
library(phytools)
plot(cophylo(phy, gene.tree, cbind(sort(phy$tip.label), sort(gene.tree$tip.label))))

Rotating nodes to optimize matching...
Done.

32

Ophioglossum

Asarum

Acorus

Lonicera

Ilex

Helwingia

Terminalia

Fagus

Araucaria

Marchantia

Ophioglossum

Asarum

Acorus

Lonicera

Ilex

Helwingia

Terminalia

Fagus

Araucaria

Marchantia

[Note I’m being a bit sloppy here: the initial branch lengths of the tree we used are in millions of years (i.e.,
5 = 5 MY) while the coalescent sim is treating these as coalescent time units: there would be even lower
chance of incongruence if we converted the former into the latter. Unfortunately, the simulator fails with
branch lengths that are realistically long for this tree.]

So, does this mean gene tree species tree issues aren’t a problem?

Well, it depends on the details of the tree. One common misconception is that gene tree species tree issues
only relate to trees for recent events. This problem can happen any time there are short, fat branches, where
lack of coalescence of copies can occur.
species.tree <- rcoal(7)
species.tree$edge.length <- species.tree$edge.length / (10*max(branching.times(species.tree)))
gene.tree <- sim.coaltree.phylo(species.tree)
plot(cophylo(species.tree, gene.tree, cbind(sort(species.tree$tip.label), sort(gene.tree$tip.label))))

Rotating nodes to optimize matching...
Done.

33

t5

t4

t2

t3

t1

t7

t6

t5

t2

t4

t3

t7

t1

t6

You should see (in most iterations), the above code giving a mismatch between the gene tree and the species
tree (the species tree has little height). Now, let’s lengthen the tips of the species tree:
tip.rows <- which(species.tree$edge[,2]<=Ntip(species.tree))
species.tree2 <- species.tree
species.tree2$edge.length[tip.rows] <- 100 + species.tree2$edge.length[tip.rows]
gene.tree2 <- sim.coaltree.phylo(species.tree2)
plot(cophylo(species.tree2, gene.tree2, cbind(sort(species.tree2$tip.label), sort(gene.tree2$tip.label))))

Rotating nodes to optimize matching...
Done.

34

t5

t4

t3

t1

t2

t7

t6

t5

t3

t4

t7

t1

t2

t6

It looks like a mismatch, but it’s hard to see, since the tips are so long. So plot the cladogram instead [we
need to manually change branch lengths to do this, though note we do not resimulate the gene tree].
species.tree2.clado <- compute.brlen(species.tree2)
gene.tree2.clado <- compute.brlen(gene.tree2)
plot(cophylo(species.tree2.clado, gene.tree2.clado, cbind(sort(species.tree2.clado$tip.label),
sort(gene.tree2.clado$tip.label))))

Rotating nodes to optimize matching...
Done.

35

t5

t4

t3

t1

t2

t7

t6

t5

t3

t4

t7

t1

t2

t6

So we can see that even though the relevant divergences happened long ago, gene tree species tree issues are
still a problem.

15 Dating
15.1 Objectives
By the end of this chapter, you will:

• Understand dating algorithms
• Be able to use r8s and BEAST
• Be afraid of calibrations

Make sure to read the relevant papers: https://www.mendeley.com/groups/8111971/phylometh/papers
/added/0/tag/week5/

To do this week’s assignments, you will have to:

• Download and install r8s from https://sourceforge.net/projects/r8s/
• Download BEAST2 and Beauti (come together), TreeAnnotator, and Tracer from http://beas

t2.org and http://beast.bio.ed.ac.uk/tracer.
• Install a tweaked version of Geiger

– library(devtools)
– install_github("bomeara/geiger-v2") (eventually I’ll make a pull request)

36

https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/week5/
https://www.mendeley.com/groups/8111971/phylometh/papers/added/0/tag/week5/
https://sourceforge.net/projects/r8s/
http://beast2.org
http://beast2.org
http://beast.bio.ed.ac.uk/tracer

15.2 BEAST
For the BEAST part, we’re not going to do our testing via R package approach: dealing with file paths
and such are too problematic. So we’ll just go through an exercise, but unlike many canned tutorials, you’ll
have to figure out what to do at stages. Note that this is based on the tutorial by Drummond, Rambaut,
and Bouckaert. A tutorial that provides far more background info and other context than anything on the
Beast2 website is Tracy Heath’s tutorial from the Bodega Bay Workshop in Applied Phylogenetics: if you
are going to run BEAST, read that. There is also now a book that you can buy.

BEAST uses XML files for commands, rather than NEXUS files (though it does use NEXUS files for data).
This XML format is different from NeXML and PhyloXML, two other XML formats proposed for phylogenet-
ics (though, as of now, they’re still not used much in the field – most students won’t encounter them). These
files are often made using the program BEAUTi (also from the BEAST developers) and then, sometimes,
hand edited.

1. Import primates-mtDNA.nex into BEAUTi; it’s includided in examples/nexus in the BEAST
folder. Note it’s File -> Import alignment.

2. But wait – what are you loading? Have you looked at the file? Open it in a text editor (or R, or
Mesquite) and look at it. Do you believe the sequences are aligned properly? Is there anything weird
about them? This is an essential step.

3. We will be partitioning, as with RAxML. This file already has some partitions, but some overlap
(coding vs the three codon positions). Delete the coding partition using the - sign button on the
bottom of the window.

4. Partitions can be linked: allow different rates but the same topology, for example. Select all four
partitions and click Link Trees. Then click on the first pull down (for noncoding) for the Tree column
and name it “tree”. Do the same for Clock (rename to “clock”).

5. Temporarily link sites in the same way.
6. BEAST has a variety of models. We’re going to do HKY (so, two different rates) with gamma-

distributed rate differences. To do this:
• Set Gamma Category Count to 4
• Set the Shape to be estimated
• Select the HKY model
• Make sure Kappa is estimated
• Make sure frequences are estimated
• Select estimate for Substitution Rate

7. Go back to partitions and click on Unlink Site Models. This lets each partition have its own
HKY+gamma model (and doing the link -> set -> unlink lets you save on work of setting it for each
one).

8. We need to choose a clock model. A Strict Clock is the classic molecular clock. Most people using
BEAST (and this is based on various sim studies) use relaxed clock log normal, so choose that. Having
the number of discrete rates set to -1 will allow as many rates as branches.

9. Now comes the tricky bit: setting your priors. For example, you need a prior for the tree: assume
a Yule prior (only speciation events, no extinction)? Or a birth-death one? [and think about the
implications of these choices for later analyses – estimating extinction rates, for example]. And even if
you have a belief about whether extinction might have happened or not, what about parameters like
gamma shape for first codon position sites? Exponential, beta, etc.? You probably don’t have a good
idea of what they should be in terms of shape, let alone priors for the actual values. And this might
affect your analyses: the result is due to the prior and the likelihood. Let’s leave all the priors set to
the default for now, except for the tree: do a birth-death model for that.

10. We can also add priors: say, a prior for the age of a node.
• Click on the “+” button
• Call the Taxon set label “human-chimp”
• Click on Homo_sapiens and then the “»” button
• Do the same for Pan
• Click ok

37

https://github.com/CompEvol/beast2/blob/master/doc/tutorials/DivergenceDating/DivergenceDatingTutorialv2.0.3.pdf?raw=true
http://phyloworks.org/workshops/DivTime_BEAST2_tutorial_FBD.pdf
http://beast2.org/book/
http://www.nexml.org
http://www.phyloxml.org

• Force it to be monophyletic
• Choose Log Normal for the age prior
• Select mean in real space (so it’s easier for us to understand the age)
• Enter 6 (for 6 MY) for the M = mean of the distribution
• Select a value for S that leads to a 95% range of about 5-7 MY (use the information

on the right side of the window to help)
11. Go to MCMC to set parameters for the run

• Do 1M generations to start
• You can also set how often the info is saved to disk or printed on the screen. Change the tracelog

to primates_birthdeath_prior.log
12. Save this in the same folder as your original nexus file: maybe store as primates_birthdeath_prior.xml.
13. Yay! We have created a file with commands to run BEAST. Open it in a text editor and look at it

(don’t modify or save it).
14. Now open BEAST. Choose the xml file you just made and run.
15. Time passes.
16. Now open the log file in Tracer. Investigate some of the statistics, including looking at ESS: effective

sample size. Ones that aren’t black indicate ones that did not run long enough.
17. Go back to BEAUTi.

• Change the tree prior to a Yule tree
• Change the tracelog to primates_yule_prior.log and change the tree file name
• Save as the file to primates_yule_prior.xml

18. Use this new xml file to run BEAST again.
19. Now look at this log file with the other one, both in Tracer. Are the estimates the same? Even for

something like tree height? What does this suggest?
20. Use TreeAnnotator on one of your tree files to summarize.

• Decide what the burnin should be: that is the number of trees (not number of generations) to
delete.

• Change Posterior probability limit to 0: if you are going to show an edge, you should show the
support for that. Many people only show support above 50% but still show all branches: this is
problematic (only showing uncertainty on the edges where uncertainty is relatively low).

21. FigTree or R can be used to visualize the final tree with support.

##r8s

r8s implements several functions for converting a phylogram to a chronogram. It does the classic, Langley-
Fitch molecular clock which stretches branches but assumes a constant rate for all. It also implements two
algorithms by Sanderson: nonparametric rate smoothing (NPRS) and penalized likelihood (PL). Both relax
the assumption of constant rate of evolution and instead allow rates to vary along the tree. NPRS tries to
minimize rate changes at nodes. PL has a model for changes (to give likelihood of original branch lengths)
and combines this with a nonparametric penalty for rate changes. It tries to minimize the combination of
these two parameters, but there is a user-set penalty to decide the relative value of these in the combined
sum. This is set by cross-validation: delete some data, estimate parameters, predict the deleted data, and
see how close the deleted data are to the simulated data. In this case, the datum deleted is a single tip, and
the length of this branch is the value to predict. This can now happen within r8s. In general, PL is more
accurate than NPRS, but is slower (but both are much faster than BEAST). treepl is a later program that
implements Sanderson’s algorithms but can work on much larger trees.

Jon Eastman coded an interface to this in Geiger, but it wasn’t exposed to users. I’ve added some additional
features (including an ez.run mode) and documentation to his code. This is now in a fork of Geiger, but
I’ll file a pull request soon to put it into the main code. For now, make sure you have installed the forked
version:

devtools::install_github("bomeara/geiger-v2")
library(geiger)

Then use the help for ?r8s.phylo to figure out how to use this function. Also look at the r8s manual to

38

http://loco.biosci.arizona.edu/r8s/r8s1.7.manual.pdf

understand the options.

Run the examples in Geiger for this. You can also look at the examples that come with r8s.

15.3 Applying to your own work
By this point in the course, you should be thirsting to apply these tools to your own questions. Do so! Get
a dataset (think back to the getting trees method), infer a tree (if needed), and date it using
one of these approaches. I’d advise making your own github repository for this. You could pay to keep
it secret; I’d advise it’s probably not worth it (there is some risk of being scooped, but it’s pretty low) but
it’s your call.

16 Visualizing trees and trees with data
16.1 Objectives
By the end of this chapter, you will:

• Understand ways to visualize trees
• Understand how to visualize trees with data

It’s always important to visualize trees, and data on your trees. For example, most comparative methods
require branch lengths. Are yours reasonable? Do you have any taxa on very long branches (which could
indicate alignment or paralogy issues)? Are there many effectively zero length branches? Does everything
agree with what you know of taxonomy?

To start, let’s take a sample tree: a tree of snakes by Pyron R.A., Burbrink F., Colli G., Montes de oca
A.N., Vitt L.J., Kuczynski C.A., & Wiens J.J. 2010. The phylogeny of advanced snakes (Colubroidea),
with discovery of a new subfamily and comparison of support methods for likelihood trees. Molecular
Phylogenetics and Evolution 58 (2): 329-342. [#TODO: add proper citation]. It is a tree of 767 taxa. But
we’ll start with a 12 tip subtree.

The natural way you’d plot this in R:
ape::plot.phylo(small.phy)

39

Trimeresurus malabaricus
Bothriechis thalassinus

Sistrurus miliarius
Crotalus molossus

Bothrops caribbaeus
Homoroselaps lacteus

Hypsiglena torquata
Arrhyton vittatum

Arrhyton dolichura
Pseudoficimia frontalis

Boiga pulverulenta
Pantherophis obsoletus

Plotting it with tips to the right is most common, but there are other options, too:
ape::plot.phylo(small.phy, direction="upwards")

40

Tr
im

er
es

ur
us

 m
al

ab
ar

ic
us

B
ot

hr
ie

ch
is

 th
al

as
si

nu
s

S
is

tr
ur

us
 m

ili
ar

iu
s

C
ro

ta
lu

s
m

ol
os

su
s

B
ot

hr
op

s
ca

rib
ba

eu
s

H
om

or
os

el
ap

s
la

ct
eu

s

H
yp

si
gl

en
a

to
rq

ua
ta

A
rr

hy
to

n
vi

tta
tu

m

A
rr

hy
to

n
do

lic
hu

ra

P
se

ud
of

ic
im

ia
 fr

on
ta

lis

B
oi

ga
 p

ul
ve

ru
le

nt
a

P
an

th
er

op
hi

s
ob

so
le

tu
s

Especially for big trees, fan (circle trees) can also be popular:
ape::plot.phylo(small.phy, type="fan")

41

Trimeresurus malabaricus

Bothriechis thalassinus

Si
st

ru
ru

s
m

ilia
riu

s

C
ro

ta
lu

s
m

ol
os

su
s

Bothrops caribbaeus

Homoroselaps lacteus

Hypsiglena torquata

Arrh
yton vitta

tum
Ar

rh
yt

on
 d

ol
ic

hu
ra

P
se

ud
of

ic
im

ia
 fr

on
ta

lis

Boiga pulverulenta

Pantherophis obsoletus

Sometimes for just seeing the tree structure itself, once can remove branch lengths:
ape::plot.phylo(small.phy, type="cladogram")

42

Trimeresurus malabaricus
Bothriechis thalassinus

Sistrurus miliarius
Crotalus molossus

Bothrops caribbaeus
Homoroselaps lacteus

Hypsiglena torquata
Arrhyton vittatum

Arrhyton dolichura
Pseudoficimia frontalis

Boiga pulverulenta
Pantherophis obsoletus

References
Joseph Felsenstein. A comparative method for both discrete and continuous characters using the threshold
model. 179(2):145–56, a. ISSN 1537-5323. doi: 10.1086/663681. URL http://www.journals.uchicago.ed
u/doi/abs/10.1086/663681.

Joseph Felsenstein. Inferring Phylogenies, volume 2. Sinauer Associates Sunderland, b.

John P. Huelsenbeck, Rasmus Nielsen, Jonathan P. Bollback, and Ted Schultz. Stochastic Mapping of
Morphological Characters. 52(2):131–158. ISSN 1063-5157. doi: 10.1080/10635150390192780. URL
https://academic.oup.com/sysbio/article/52/2/131/1634311.

B.C. O’Meara. Evolutionary Inferences from Phylogenies: A Review of Methods, volume 43. doi: 10.1146/
annurev-ecolsys-110411-160331.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

Mike Steel and David Penny. Parsimony, Likelihood, and the Role of Models in Molecular Phylogenetics. 17
(6):839–850. ISSN 0737-4038. doi: 10.1093/oxfordjournals.molbev.a026364. URL https://academic.oup.c
om/mbe/article/17/6/839/1037773.

43

http://www.journals.uchicago.edu/doi/abs/10.1086/663681
http://www.journals.uchicago.edu/doi/abs/10.1086/663681
https://academic.oup.com/sysbio/article/52/2/131/1634311
https://www.R-project.org/
https://academic.oup.com/mbe/article/17/6/839/1037773
https://academic.oup.com/mbe/article/17/6/839/1037773

	Introduction
	Learning objectives
	Prerequisites

	First steps
	Questions

	Getting data and trees into R
	Data and tree object types
	Sequence data
	Other character data
	Phylogenies
	Reconciling datasets

	Visualizing data before use
	Dull model testing
	Testing models and methods
	Testing methods
	Continuous traits
	Objectives

	Brownian Motion and Correlations
	Objectives
	Brownian motion
	Correlation

	Discrete Traits
	Diversification
	Objectives

	SSE methods
	Objectives

	RAxML
	Objectives
	Install RAxML
	Morphology search
	DNA

	Gene Tree Species Tree
	Objectives

	Dating
	Objectives
	BEAST
	Applying to your own work

	Visualizing trees and trees with data
	Objectives

