_Statistik
TH Deggendorf
16.05.2024
Das meint GPT:
id dose happiness
1 25hto3 Control 3
2 121118 Control 2
3 t54p42 Control 1
4 s6u853 Control 1
5 tcs14p Control 4
6 oum4t7 15 mins 5
7 kfl7lq 15 mins 2
8 2gi51b 15 mins 4
9 d3j771 15 mins 2
10 eu23ns 15 mins 3
11 b343ey 30 mins 7
12 5nvg7h 30 mins 4
13 5ta11l 30 mins 5
14 82e7va 30 mins 3
15 667x5j 30 mins 6
Output der ANOVA:
Analysis of Variance Table
Response: happiness
Df Sum Sq Mean Sq F value Pr(>F)
dose 2 20.133 10.0667 5.1186 0.02469 *
Residuals 12 23.600 1.9667
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Erläuterungen:
Ausgangspunkt: Kein Effekt; d.h. die Mittelwerte
in den k Bedingungen unterscheiden sich nicht
H\(_0\): \(\mu_1 = \mu_2 = \dots = \mu_k\)
H\(_1\): \(\mu_i \neq \mu_j\) (für mindestens ein i, j; i \(\neq\) j)
Achtung - NICHT
H\(_1\): \(\mu_1 \neq \mu_2 \neq \dots \neq \mu_k\)
\(QS_{tot} = QS_{mod} + QS_{res}\)
Formeln:
Vorgehen: Analog zur Regressionsanalyse
Mittlere Quadratsummen & Freiheitsgrade:
Teststatistik:
F-Verteilung
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 40 | 50 | 100 | Inf | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 161.45 | 199.50 | 215.71 | 224.58 | 230.16 | 233.99 | 236.77 | 238.88 | 240.54 | 241.88 | 242.98 | 243.91 | 244.69 | 245.36 | 245.95 | 246.46 | 246.92 | 247.32 | 247.69 | 248.01 | 248.31 | 248.58 | 248.83 | 249.05 | 249.26 | 249.45 | 249.63 | 249.80 | 249.95 | 250.10 | 251.14 | 251.77 | 253.04 | 254.31 |
2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.40 | 19.41 | 19.42 | 19.42 | 19.43 | 19.43 | 19.44 | 19.44 | 19.44 | 19.45 | 19.45 | 19.45 | 19.45 | 19.45 | 19.46 | 19.46 | 19.46 | 19.46 | 19.46 | 19.46 | 19.47 | 19.48 | 19.49 | 19.50 |
3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.76 | 8.74 | 8.73 | 8.71 | 8.70 | 8.69 | 8.68 | 8.67 | 8.67 | 8.66 | 8.65 | 8.65 | 8.64 | 8.64 | 8.63 | 8.63 | 8.63 | 8.62 | 8.62 | 8.62 | 8.59 | 8.58 | 8.55 | 8.53 |
4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.94 | 5.91 | 5.89 | 5.87 | 5.86 | 5.84 | 5.83 | 5.82 | 5.81 | 5.80 | 5.79 | 5.79 | 5.78 | 5.77 | 5.77 | 5.76 | 5.76 | 5.75 | 5.75 | 5.75 | 5.72 | 5.70 | 5.66 | 5.63 |
5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.70 | 4.68 | 4.66 | 4.64 | 4.62 | 4.60 | 4.59 | 4.58 | 4.57 | 4.56 | 4.55 | 4.54 | 4.53 | 4.53 | 4.52 | 4.52 | 4.51 | 4.50 | 4.50 | 4.50 | 4.46 | 4.44 | 4.41 | 4.36 |
6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.03 | 4.00 | 3.98 | 3.96 | 3.94 | 3.92 | 3.91 | 3.90 | 3.88 | 3.87 | 3.86 | 3.86 | 3.85 | 3.84 | 3.83 | 3.83 | 3.82 | 3.82 | 3.81 | 3.81 | 3.77 | 3.75 | 3.71 | 3.67 |
7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.60 | 3.57 | 3.55 | 3.53 | 3.51 | 3.49 | 3.48 | 3.47 | 3.46 | 3.44 | 3.43 | 3.43 | 3.42 | 3.41 | 3.40 | 3.40 | 3.39 | 3.39 | 3.38 | 3.38 | 3.34 | 3.32 | 3.27 | 3.23 |
8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.31 | 3.28 | 3.26 | 3.24 | 3.22 | 3.20 | 3.19 | 3.17 | 3.16 | 3.15 | 3.14 | 3.13 | 3.12 | 3.12 | 3.11 | 3.10 | 3.10 | 3.09 | 3.08 | 3.08 | 3.04 | 3.02 | 2.97 | 2.93 |
9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.10 | 3.07 | 3.05 | 3.03 | 3.01 | 2.99 | 2.97 | 2.96 | 2.95 | 2.94 | 2.93 | 2.92 | 2.91 | 2.90 | 2.89 | 2.89 | 2.88 | 2.87 | 2.87 | 2.86 | 2.83 | 2.80 | 2.76 | 2.71 |
10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.94 | 2.91 | 2.89 | 2.86 | 2.85 | 2.83 | 2.81 | 2.80 | 2.79 | 2.77 | 2.76 | 2.75 | 2.75 | 2.74 | 2.73 | 2.72 | 2.72 | 2.71 | 2.70 | 2.70 | 2.66 | 2.64 | 2.59 | 2.54 |
11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 | 2.82 | 2.79 | 2.76 | 2.74 | 2.72 | 2.70 | 2.69 | 2.67 | 2.66 | 2.65 | 2.64 | 2.63 | 2.62 | 2.61 | 2.60 | 2.59 | 2.59 | 2.58 | 2.58 | 2.57 | 2.53 | 2.51 | 2.46 | 2.40 |
12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.72 | 2.69 | 2.66 | 2.64 | 2.62 | 2.60 | 2.58 | 2.57 | 2.56 | 2.54 | 2.53 | 2.52 | 2.51 | 2.51 | 2.50 | 2.49 | 2.48 | 2.48 | 2.47 | 2.47 | 2.43 | 2.40 | 2.35 | 2.30 |
13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 | 2.63 | 2.60 | 2.58 | 2.55 | 2.53 | 2.51 | 2.50 | 2.48 | 2.47 | 2.46 | 2.45 | 2.44 | 2.43 | 2.42 | 2.41 | 2.41 | 2.40 | 2.39 | 2.39 | 2.38 | 2.34 | 2.31 | 2.26 | 2.21 |
14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 | 2.57 | 2.53 | 2.51 | 2.48 | 2.46 | 2.44 | 2.43 | 2.41 | 2.40 | 2.39 | 2.38 | 2.37 | 2.36 | 2.35 | 2.34 | 2.33 | 2.33 | 2.32 | 2.31 | 2.31 | 2.27 | 2.24 | 2.19 | 2.13 |
15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.51 | 2.48 | 2.45 | 2.42 | 2.40 | 2.38 | 2.37 | 2.35 | 2.34 | 2.33 | 2.32 | 2.31 | 2.30 | 2.29 | 2.28 | 2.27 | 2.27 | 2.26 | 2.25 | 2.25 | 2.20 | 2.18 | 2.12 | 2.07 |
16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 | 2.46 | 2.42 | 2.40 | 2.37 | 2.35 | 2.33 | 2.32 | 2.30 | 2.29 | 2.28 | 2.26 | 2.25 | 2.24 | 2.24 | 2.23 | 2.22 | 2.21 | 2.21 | 2.20 | 2.19 | 2.15 | 2.12 | 2.07 | 2.01 |
17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 | 2.41 | 2.38 | 2.35 | 2.33 | 2.31 | 2.29 | 2.27 | 2.26 | 2.24 | 2.23 | 2.22 | 2.21 | 2.20 | 2.19 | 2.18 | 2.17 | 2.17 | 2.16 | 2.15 | 2.15 | 2.10 | 2.08 | 2.02 | 1.96 |
18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 | 2.37 | 2.34 | 2.31 | 2.29 | 2.27 | 2.25 | 2.23 | 2.22 | 2.20 | 2.19 | 2.18 | 2.17 | 2.16 | 2.15 | 2.14 | 2.13 | 2.13 | 2.12 | 2.11 | 2.11 | 2.06 | 2.04 | 1.98 | 1.92 |
19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 | 2.34 | 2.31 | 2.28 | 2.26 | 2.23 | 2.21 | 2.20 | 2.18 | 2.17 | 2.16 | 2.14 | 2.13 | 2.12 | 2.11 | 2.11 | 2.10 | 2.09 | 2.08 | 2.08 | 2.07 | 2.03 | 2.00 | 1.94 | 1.88 |
20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.31 | 2.28 | 2.25 | 2.22 | 2.20 | 2.18 | 2.17 | 2.15 | 2.14 | 2.12 | 2.11 | 2.10 | 2.09 | 2.08 | 2.07 | 2.07 | 2.06 | 2.05 | 2.05 | 2.04 | 1.99 | 1.97 | 1.91 | 1.84 |
21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 | 2.28 | 2.25 | 2.22 | 2.20 | 2.18 | 2.16 | 2.14 | 2.12 | 2.11 | 2.10 | 2.08 | 2.07 | 2.06 | 2.05 | 2.05 | 2.04 | 2.03 | 2.02 | 2.02 | 2.01 | 1.96 | 1.94 | 1.88 | 1.81 |
22 | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 | 2.34 | 2.30 | 2.26 | 2.23 | 2.20 | 2.17 | 2.15 | 2.13 | 2.11 | 2.10 | 2.08 | 2.07 | 2.06 | 2.05 | 2.04 | 2.03 | 2.02 | 2.01 | 2.00 | 2.00 | 1.99 | 1.98 | 1.94 | 1.91 | 1.85 | 1.78 |
23 | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 | 2.27 | 2.24 | 2.20 | 2.18 | 2.15 | 2.13 | 2.11 | 2.09 | 2.08 | 2.06 | 2.05 | 2.04 | 2.02 | 2.01 | 2.01 | 2.00 | 1.99 | 1.98 | 1.97 | 1.97 | 1.96 | 1.91 | 1.88 | 1.82 | 1.76 |
24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 | 2.22 | 2.18 | 2.15 | 2.13 | 2.11 | 2.09 | 2.07 | 2.05 | 2.04 | 2.03 | 2.01 | 2.00 | 1.99 | 1.98 | 1.97 | 1.97 | 1.96 | 1.95 | 1.95 | 1.94 | 1.89 | 1.86 | 1.80 | 1.73 |
25 | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 | 2.28 | 2.24 | 2.20 | 2.16 | 2.14 | 2.11 | 2.09 | 2.07 | 2.05 | 2.04 | 2.02 | 2.01 | 2.00 | 1.98 | 1.97 | 1.96 | 1.96 | 1.95 | 1.94 | 1.93 | 1.93 | 1.92 | 1.87 | 1.84 | 1.78 | 1.71 |
26 | 4.23 | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 | 2.27 | 2.22 | 2.18 | 2.15 | 2.12 | 2.09 | 2.07 | 2.05 | 2.03 | 2.02 | 2.00 | 1.99 | 1.98 | 1.97 | 1.96 | 1.95 | 1.94 | 1.93 | 1.92 | 1.91 | 1.91 | 1.90 | 1.85 | 1.82 | 1.76 | 1.69 |
27 | 4.21 | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 | 2.25 | 2.20 | 2.17 | 2.13 | 2.10 | 2.08 | 2.06 | 2.04 | 2.02 | 2.00 | 1.99 | 1.97 | 1.96 | 1.95 | 1.94 | 1.93 | 1.92 | 1.91 | 1.90 | 1.90 | 1.89 | 1.88 | 1.84 | 1.81 | 1.74 | 1.67 |
28 | 4.20 | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 | 2.24 | 2.19 | 2.15 | 2.12 | 2.09 | 2.06 | 2.04 | 2.02 | 2.00 | 1.99 | 1.97 | 1.96 | 1.95 | 1.93 | 1.92 | 1.91 | 1.91 | 1.90 | 1.89 | 1.88 | 1.88 | 1.87 | 1.82 | 1.79 | 1.73 | 1.65 |
29 | 4.18 | 3.33 | 2.93 | 2.70 | 2.55 | 2.43 | 2.35 | 2.28 | 2.22 | 2.18 | 2.14 | 2.10 | 2.08 | 2.05 | 2.03 | 2.01 | 1.99 | 1.97 | 1.96 | 1.94 | 1.93 | 1.92 | 1.91 | 1.90 | 1.89 | 1.88 | 1.88 | 1.87 | 1.86 | 1.85 | 1.81 | 1.77 | 1.71 | 1.64 |
30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 2.13 | 2.09 | 2.06 | 2.04 | 2.01 | 1.99 | 1.98 | 1.96 | 1.95 | 1.93 | 1.92 | 1.91 | 1.90 | 1.89 | 1.88 | 1.87 | 1.86 | 1.85 | 1.85 | 1.84 | 1.79 | 1.76 | 1.70 | 1.62 |
40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 2.04 | 2.00 | 1.97 | 1.95 | 1.92 | 1.90 | 1.89 | 1.87 | 1.85 | 1.84 | 1.83 | 1.81 | 1.80 | 1.79 | 1.78 | 1.77 | 1.77 | 1.76 | 1.75 | 1.74 | 1.69 | 1.66 | 1.59 | 1.51 |
50 | 4.03 | 3.18 | 2.79 | 2.56 | 2.40 | 2.29 | 2.20 | 2.13 | 2.07 | 2.03 | 1.99 | 1.95 | 1.92 | 1.89 | 1.87 | 1.85 | 1.83 | 1.81 | 1.80 | 1.78 | 1.77 | 1.76 | 1.75 | 1.74 | 1.73 | 1.72 | 1.71 | 1.70 | 1.69 | 1.69 | 1.63 | 1.60 | 1.52 | 1.44 |
100 | 3.94 | 3.09 | 2.70 | 2.46 | 2.31 | 2.19 | 2.10 | 2.03 | 1.97 | 1.93 | 1.89 | 1.85 | 1.82 | 1.79 | 1.77 | 1.75 | 1.73 | 1.71 | 1.69 | 1.68 | 1.66 | 1.65 | 1.64 | 1.63 | 1.62 | 1.61 | 1.60 | 1.59 | 1.58 | 1.57 | 1.52 | 1.48 | 1.39 | 1.28 |
Inf | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 2.01 | 1.94 | 1.88 | 1.83 | 1.79 | 1.75 | 1.72 | 1.69 | 1.67 | 1.64 | 1.62 | 1.60 | 1.59 | 1.57 | 1.56 | 1.54 | 1.53 | 1.52 | 1.51 | 1.50 | 1.49 | 1.48 | 1.47 | 1.46 | 1.39 | 1.35 | 1.24 | 1.00 |
(analog zur Regressionsanalyse)
Quelle | QS | df | MQS | F | p |
---|---|---|---|---|---|
Modell | QS\(_{mod}\) | df\(_{mod}\) | MQS\(_{mod}\) | F | p |
Residuen | QS\(_{res}\) | df\(_{res}\) | MQS\(_{res}\) | ||
Gesamt | QS\(_{tot}\) | df\(_{tot}\) | |||
Erläuterungen:
Beispiel 🐕
Analysis of Variance Table
Response: happiness
Df Sum Sq Mean Sq F value Pr(>F)
dose 2 20.133 10.0667 5.1186 0.02469 *
Residuals 12 23.600 1.9667
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Idee: Statt einer ANOVA mehrere t-Tests rechnen
Beispiel mit 4 Gruppen: 6 t-Tests
1. Gruppe 1 vs. 2
2. Gruppe 1 vs. 3
3. Gruppe 1 vs. 4
4. Gruppe 2 vs. 3
5. Gruppe 2 vs. 4
6. Gruppe 3 vs. 4
Allgemein: Für \(k\) Gruppen \(\frac{k(k - 1)}{2}\) einzelne t-Tests
Beispiel 20 Versuchsbedingungen: \(\frac{20(20 - 1)}{2}\) = 190 Einzelvergleiche
Problem: Jeder einzelne Test weist eigenen α-Fehler auf
α-Fehler = Fehler 1. Art: Annahme der H\(_1\), obwohl H\(_0\) gilt
P(α-Fehler für einen Test) = α = 0.05
\(\Rightarrow\) P(keinen α-Fehler für einen Test) = 1 - 0.05 = 0.95
P(keinen α-Fehler für sechs Tests) = 0.95\(^6\)
\(\Rightarrow\) P(mindestens ein α-Fehler für sechs Tests) = 1 - 0.95\(^6\) = 0.265 = 26.5 %
Offensichtlich: 26.5 \(\gg\) 5 % ❌
\(\rightarrow\) α-Fehler-Inflation
Beispiel 20 Versuchsbedingungen:
P(mindestens ein α-Fehler für 190 Tests) = 1 - 0.95\(^{190}\) = 0.99994 = 99.994 %
Alternative ANOVA: α-Fehler = 5 % ✅
(Vergleichbar t-Test, da Erweiterung)
Maße der Effektstärke: \(\eta^2\) (verbreiteter) und \(\omega^2\)
\(\eta^2\): unbereinigtes Effektstärkemaß (überschätzt Effekt tendenziell)
\(\eta^2 = \frac{QS_{mod}}{QS_{tot}} = R^2\)
\(\omega^2\): bereinigtes Effektstärkemaß
\(\omega^2 = \frac{QS_{mod} - df_{mod}MQS_{res}}{QS_{tot}+MQS_{res}}\)
Es gilt (für MQS\(_{res}\) > 0): \(\eta^2 > \omega^2\)
Einordnung (gilt auch für \(\omega^2\))
🐕 Beispiel
eta.sq eta.sq.part
dose 0.4603659 0.4603659
F-Test (Omnibus-Test):
Post-hoc-Tests untersuchen die Unterschiede zwischen einzelnen Gruppen
Aber: Multiples Testen führt zu α-Fehler-Inflation
Post-hoc-Vergleiche sind multiple Tests, die nicht zu α-Fehler-Inflation führen
Vorgehen: Korrektur/Anpassen des α-Fehlers
Verschiedene Verfahren: Bonferroni, Tukey, Dunnett, Scheffe, …
Beispiel: Vier Gruppen (Versuchsbedingungen)
Ausgangspunkt: F-Test ist signifikant
Frage: Zwischen welchen Gruppen besteht ein Unterschied?
Vorgehen:
Carlo Emilio Bonferroni (Quelle: Wikipedia)
Signifikanter Omnibus-Test (p < 0.05)
Welche(r) Unterschied(e) ist/sind signifikant?
Bonferroni-Korrektur:
3 t-Tests
Ergebnis in einem Satz: Post-hoc-Vergleiche nach Bonferroni ergaben signifikante Unterschiede zwischen den Bedingungen Control und 30 Minuten.
Omnibus-Test
Analysis of Variance Table
Response: happiness
Df Sum Sq Mean Sq F value Pr(>F)
dose 2 20.133 10.0667 5.1186 0.02469 *
Residuals 12 23.600 1.9667
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Einzelvergleiche – Bonferroni
Pairwise comparisons using t tests with non-pooled SD
data: data_puppies_orig$happiness and data_puppies_orig$dose
15 mins 30 mins
30 mins 0.259 -
Control 0.780 0.049
P value adjustment method: bonferroni
Einzelvergleiche – mehrfache t-Tests
Pairwise comparisons using t tests with non-pooled SD
data: data_puppies_orig$happiness and data_puppies_orig$dose
15 mins 30 mins
30 mins 0.259 -
Control 0.780 0.049
P value adjustment method: bonferroni
Two Sample t-test
data: happiness by dose
t = 1.2127, df = 8, p-value = 0.2598
alternative hypothesis: true difference in means between group 15 mins and group Control is not equal to 0
95 percent confidence interval:
-0.9015797 2.9015797
sample estimates:
mean in group 15 mins mean in group Control
3.2 2.2
Two Sample t-test
data: happiness by dose
t = 3.0551, df = 8, p-value = 0.0157
alternative hypothesis: true difference in means between group 30 mins and group Control is not equal to 0
95 percent confidence interval:
0.6865123 4.9134877
sample estimates:
mean in group 30 mins mean in group Control
5.0 2.2
Two Sample t-test
data: happiness by dose
t = -1.964, df = 8, p-value = 0.08514
alternative hypothesis: true difference in means between group 15 mins and group 30 mins is not equal to 0
95 percent confidence interval:
-3.9134877 0.3134877
sample estimates:
mean in group 15 mins mean in group 30 mins
3.2 5.0
Skalenniveaus bei der multiplen Regressionsanalyse?
Skalenniveaus bei der ANOVA?
Modell?