Ausgangspunkt sind die in einer Vorlesung erhobenen Daten: Wie lange konnten die Studierenden die Luft anhalten (in Sekunden) und wie groß sind sie (in cm). Die Daten finden Sie hier .
Untersucht wird die Fragestellung, ob große Menschen die Luft länger anhalten können als kleine Menschen; bzw. ob Größe und Zeitdauer positiv zusammenhängen.
Versuchen Sie, die Analyse anhand der Kommentare im Code nachzuvollziehen.
# Brauchen wir für das mutate  
library (tidyverse) 
 
# Daten einlesen  
 my_data <-  read.csv2 ("data/luft_anhalten_data.csv" ) 
 
# Nicht prüfungsrelevant!  
# Erzeugen einer neuen Spalte, die für Größe den Median-Split umsetzt:  
# Werte < Median(Größe) --> 0  
# Werte > Median(Größe) --> 1  
 my_data <-  my_data |>  
   mutate (Größe_dichotom =  if_else (my_data$ Größe >  median (my_data$ Größe), 1 , 0 )) 
 
# Schauen wir uns das Ergebnis an  
 my_data 
   Größe Dauer Größe_dichotom
1    163    34              0
2    178    40              1
3    178    50              1
4    192    62              1
5    163    30              0
6    158    70              0
7    170    30              0
8    161    35              0
9    172    45              1
10   181    55              1
11   159    41              0
12   172    49              1
13   160    35              0
14   166    35              0
15   163    28              0
16   173    33              1
17   165    49              0
18   181    35              1
19   160    55              0
20   160    70              0
21   181    65              1
22   170    33              0
23   175    90              1
24   177    40              1
25   164    39              0
26   170    48              0
27   170    20              0
28   185    64              1
29   176    70              1
30   166    31              0
31   182    71              1
32   170    41              0
33   162    21              0
34   154    29              0
35   170    95              0
36   170    45              0
37   168    35              0
38   178    30              1
39   180    73              1
40   168    65              0
41   167    50              0
42   164    37              0
43   172    35              1
44   160    19              0
45   186    72              1
46   172    80              1
47   173    80              1
48   175    56              1
49   178    35              1
50   168    95              0 
 
# t-Test: H1: Große Menschen können die Luft länger anhalten  
# zur Erinnerung: alternative = "two.sided", "less" oder "greater"  
t.test (my_data$ Dauer~ my_data$ Größe_dichotom, alternative= "less" , var.equal =  TRUE )  
    Two Sample t-test
data:  my_data$Dauer by my_data$Größe_dichotom
t = -2.3144, df = 48, p-value = 0.01248
alternative hypothesis: true difference in means between group 0 and group 1 is less than 0
95 percent confidence interval:
      -Inf -3.445987
sample estimates:
mean in group 0 mean in group 1 
       43.39286        55.90909  
 
# Korrelationskoeffizient r  
cor (my_data$ Größe,my_data$ Dauer) 
# Signifikanztest für r  
# Wir erwarten einen positiven Zusammenhang, daher "greater"  
cor.test (my_data$ Größe,my_data$ Dauer, alternative= "greater" ) 
    Pearson's product-moment correlation
data:  my_data$Größe and my_data$Dauer
t = 2.5199, df = 48, p-value = 0.00756
alternative hypothesis: true correlation is greater than 0
95 percent confidence interval:
 0.1156916 1.0000000
sample estimates:
      cor 
0.3418082  
 
# Lineares Modell für das Diagramm - noch kein Stoff  
 my_model <-  lm (my_data$ Dauer~ my_data$ Größe) 
#plot(my_model)  
#summary(my_model)  
 
# Scatterplot plus lineares Modell  
plot (my_data$ Größe, my_data$ Dauer) 
abline (my_model, col =  "red" ) 
#################  
# Ab hier wird es ungewöhnlich!  
#################  
 
# Korrelationskoeffizient r für die dichotome Größe!  
# Vergleichen Sie mit dem anderen r  
cor (my_data$ Größe_dichotom,my_data$ Dauer) 
# Lineares Modell für das Diagramm - noch kein Stoff  
 my_model_dichotom <-  lm (my_data$ Dauer~ my_data$ Größe_dichotom) 
 
# "Scatterplot" plus lineares Modell  
plot (my_data$ Größe_dichotom, my_data$ Dauer) 
abline (my_model_dichotom, col =  "blue" ) 
# Signifikanztest für das dichotome r  
# Vergleichen Sie t- und p-Werte mit denen des t-Tests oben  
cor.test (my_data$ Größe_dichotom,my_data$ Dauer, alternative= "greater" ) 
    Pearson's product-moment correlation
data:  my_data$Größe_dichotom and my_data$Dauer
t = 2.3144, df = 48, p-value = 0.01248
alternative hypothesis: true correlation is greater than 0
95 percent confidence interval:
 0.08798521 1.00000000
sample estimates:
      cor 
0.3168484  
 
 
Anhang 
SNV 
Achtung : Die Tabelle hat zwei Hälften – oben negative unten positive z -Werte
 
0 
0.5000 
0.4960 
0.4920 
0.4880 
0.4840 
0.4801 
0.4761 
0.4721 
0.4681 
0.4641 
 
-0.1 
0.4602 
0.4562 
0.4522 
0.4483 
0.4443 
0.4404 
0.4364 
0.4325 
0.4286 
0.4247 
 
-0.2 
0.4207 
0.4168 
0.4129 
0.4090 
0.4052 
0.4013 
0.3974 
0.3936 
0.3897 
0.3859 
 
-0.3 
0.3821 
0.3783 
0.3745 
0.3707 
0.3669 
0.3632 
0.3594 
0.3557 
0.3520 
0.3483 
 
-0.4 
0.3446 
0.3409 
0.3372 
0.3336 
0.3300 
0.3264 
0.3228 
0.3192 
0.3156 
0.3121 
 
-0.5 
0.3085 
0.3050 
0.3015 
0.2981 
0.2946 
0.2912 
0.2877 
0.2843 
0.2810 
0.2776 
 
-0.6 
0.2743 
0.2709 
0.2676 
0.2643 
0.2611 
0.2578 
0.2546 
0.2514 
0.2483 
0.2451 
 
-0.7 
0.2420 
0.2389 
0.2358 
0.2327 
0.2296 
0.2266 
0.2236 
0.2206 
0.2177 
0.2148 
 
-0.8 
0.2119 
0.2090 
0.2061 
0.2033 
0.2005 
0.1977 
0.1949 
0.1922 
0.1894 
0.1867 
 
-0.9 
0.1841 
0.1814 
0.1788 
0.1762 
0.1736 
0.1711 
0.1685 
0.1660 
0.1635 
0.1611 
 
-1 
0.1587 
0.1562 
0.1539 
0.1515 
0.1492 
0.1469 
0.1446 
0.1423 
0.1401 
0.1379 
 
-1.1 
0.1357 
0.1335 
0.1314 
0.1292 
0.1271 
0.1251 
0.1230 
0.1210 
0.1190 
0.1170 
 
-1.2 
0.1151 
0.1131 
0.1112 
0.1093 
0.1075 
0.1056 
0.1038 
0.1020 
0.1003 
0.0985 
 
-1.3 
0.0968 
0.0951 
0.0934 
0.0918 
0.0901 
0.0885 
0.0869 
0.0853 
0.0838 
0.0823 
 
-1.4 
0.0808 
0.0793 
0.0778 
0.0764 
0.0749 
0.0735 
0.0721 
0.0708 
0.0694 
0.0681 
 
-1.5 
0.0668 
0.0655 
0.0643 
0.0630 
0.0618 
0.0606 
0.0594 
0.0582 
0.0571 
0.0559 
 
-1.6 
0.0548 
0.0537 
0.0526 
0.0516 
0.0505 
0.0495 
0.0485 
0.0475 
0.0465 
0.0455 
 
-1.7 
0.0446 
0.0436 
0.0427 
0.0418 
0.0409 
0.0401 
0.0392 
0.0384 
0.0375 
0.0367 
 
-1.8 
0.0359 
0.0351 
0.0344 
0.0336 
0.0329 
0.0322 
0.0314 
0.0307 
0.0301 
0.0294 
 
-1.9 
0.0287 
0.0281 
0.0274 
0.0268 
0.0262 
0.0256 
0.0250 
0.0244 
0.0239 
0.0233 
 
-2 
0.0228 
0.0222 
0.0217 
0.0212 
0.0207 
0.0202 
0.0197 
0.0192 
0.0188 
0.0183 
 
-2.1 
0.0179 
0.0174 
0.0170 
0.0166 
0.0162 
0.0158 
0.0154 
0.0150 
0.0146 
0.0143 
 
-2.2 
0.0139 
0.0136 
0.0132 
0.0129 
0.0125 
0.0122 
0.0119 
0.0116 
0.0113 
0.0110 
 
-2.3 
0.0107 
0.0104 
0.0102 
0.0099 
0.0096 
0.0094 
0.0091 
0.0089 
0.0087 
0.0084 
 
-2.4 
0.0082 
0.0080 
0.0078 
0.0075 
0.0073 
0.0071 
0.0069 
0.0068 
0.0066 
0.0064 
 
-2.5 
0.0062 
0.0060 
0.0059 
0.0057 
0.0055 
0.0054 
0.0052 
0.0051 
0.0049 
0.0048 
 
-2.6 
0.0047 
0.0045 
0.0044 
0.0043 
0.0041 
0.0040 
0.0039 
0.0038 
0.0037 
0.0036 
 
-2.7 
0.0035 
0.0034 
0.0033 
0.0032 
0.0031 
0.0030 
0.0029 
0.0028 
0.0027 
0.0026 
 
-2.8 
0.0026 
0.0025 
0.0024 
0.0023 
0.0023 
0.0022 
0.0021 
0.0021 
0.0020 
0.0019 
 
-2.9 
0.0019 
0.0018 
0.0018 
0.0017 
0.0016 
0.0016 
0.0015 
0.0015 
0.0014 
0.0014 
 
-3 
0.0013 
0.0013 
0.0013 
0.0012 
0.0012 
0.0011 
0.0011 
0.0011 
0.0010 
0.0010 
 
 
 
 
 
0 
0.5000 
0.5040 
0.5080 
0.5120 
0.5160 
0.5199 
0.5239 
0.5279 
0.5319 
0.5359 
 
0.1 
0.5398 
0.5438 
0.5478 
0.5517 
0.5557 
0.5596 
0.5636 
0.5675 
0.5714 
0.5753 
 
0.2 
0.5793 
0.5832 
0.5871 
0.5910 
0.5948 
0.5987 
0.6026 
0.6064 
0.6103 
0.6141 
 
0.3 
0.6179 
0.6217 
0.6255 
0.6293 
0.6331 
0.6368 
0.6406 
0.6443 
0.6480 
0.6517 
 
0.4 
0.6554 
0.6591 
0.6628 
0.6664 
0.6700 
0.6736 
0.6772 
0.6808 
0.6844 
0.6879 
 
0.5 
0.6915 
0.6950 
0.6985 
0.7019 
0.7054 
0.7088 
0.7123 
0.7157 
0.7190 
0.7224 
 
0.6 
0.7257 
0.7291 
0.7324 
0.7357 
0.7389 
0.7422 
0.7454 
0.7486 
0.7517 
0.7549 
 
0.7 
0.7580 
0.7611 
0.7642 
0.7673 
0.7704 
0.7734 
0.7764 
0.7794 
0.7823 
0.7852 
 
0.8 
0.7881 
0.7910 
0.7939 
0.7967 
0.7995 
0.8023 
0.8051 
0.8078 
0.8106 
0.8133 
 
0.9 
0.8159 
0.8186 
0.8212 
0.8238 
0.8264 
0.8289 
0.8315 
0.8340 
0.8365 
0.8389 
 
1 
0.8413 
0.8438 
0.8461 
0.8485 
0.8508 
0.8531 
0.8554 
0.8577 
0.8599 
0.8621 
 
1.1 
0.8643 
0.8665 
0.8686 
0.8708 
0.8729 
0.8749 
0.8770 
0.8790 
0.8810 
0.8830 
 
1.2 
0.8849 
0.8869 
0.8888 
0.8907 
0.8925 
0.8944 
0.8962 
0.8980 
0.8997 
0.9015 
 
1.3 
0.9032 
0.9049 
0.9066 
0.9082 
0.9099 
0.9115 
0.9131 
0.9147 
0.9162 
0.9177 
 
1.4 
0.9192 
0.9207 
0.9222 
0.9236 
0.9251 
0.9265 
0.9279 
0.9292 
0.9306 
0.9319 
 
1.5 
0.9332 
0.9345 
0.9357 
0.9370 
0.9382 
0.9394 
0.9406 
0.9418 
0.9429 
0.9441 
 
1.6 
0.9452 
0.9463 
0.9474 
0.9484 
0.9495 
0.9505 
0.9515 
0.9525 
0.9535 
0.9545 
 
1.7 
0.9554 
0.9564 
0.9573 
0.9582 
0.9591 
0.9599 
0.9608 
0.9616 
0.9625 
0.9633 
 
1.8 
0.9641 
0.9649 
0.9656 
0.9664 
0.9671 
0.9678 
0.9686 
0.9693 
0.9699 
0.9706 
 
1.9 
0.9713 
0.9719 
0.9726 
0.9732 
0.9738 
0.9744 
0.9750 
0.9756 
0.9761 
0.9767 
 
2 
0.9772 
0.9778 
0.9783 
0.9788 
0.9793 
0.9798 
0.9803 
0.9808 
0.9812 
0.9817 
 
2.1 
0.9821 
0.9826 
0.9830 
0.9834 
0.9838 
0.9842 
0.9846 
0.9850 
0.9854 
0.9857 
 
2.2 
0.9861 
0.9864 
0.9868 
0.9871 
0.9875 
0.9878 
0.9881 
0.9884 
0.9887 
0.9890 
 
2.3 
0.9893 
0.9896 
0.9898 
0.9901 
0.9904 
0.9906 
0.9909 
0.9911 
0.9913 
0.9916 
 
2.4 
0.9918 
0.9920 
0.9922 
0.9925 
0.9927 
0.9929 
0.9931 
0.9932 
0.9934 
0.9936 
 
2.5 
0.9938 
0.9940 
0.9941 
0.9943 
0.9945 
0.9946 
0.9948 
0.9949 
0.9951 
0.9952 
 
2.6 
0.9953 
0.9955 
0.9956 
0.9957 
0.9959 
0.9960 
0.9961 
0.9962 
0.9963 
0.9964 
 
2.7 
0.9965 
0.9966 
0.9967 
0.9968 
0.9969 
0.9970 
0.9971 
0.9972 
0.9973 
0.9974 
 
2.8 
0.9974 
0.9975 
0.9976 
0.9977 
0.9977 
0.9978 
0.9979 
0.9979 
0.9980 
0.9981 
 
2.9 
0.9981 
0.9982 
0.9982 
0.9983 
0.9984 
0.9984 
0.9985 
0.9985 
0.9986 
0.9986 
 
3 
0.9987 
0.9987 
0.9987 
0.9988 
0.9988 
0.9989 
0.9989 
0.9989 
0.9990 
0.9990 
 
 
 
 
 
 
t -Verteilung 
 
1 
-31.8205 
-12.7062 
-6.3138 
-3.0777 
-1.0000 
0 
1.0000 
3.0777 
6.3138 
12.7062 
31.8205 
 
2 
-6.9646 
-4.3027 
-2.9200 
-1.8856 
-0.8165 
0 
0.8165 
1.8856 
2.9200 
4.3027 
6.9646 
 
3 
-4.5407 
-3.1824 
-2.3534 
-1.6377 
-0.7649 
0 
0.7649 
1.6377 
2.3534 
3.1824 
4.5407 
 
4 
-3.7469 
-2.7764 
-2.1318 
-1.5332 
-0.7407 
0 
0.7407 
1.5332 
2.1318 
2.7764 
3.7469 
 
5 
-3.3649 
-2.5706 
-2.0150 
-1.4759 
-0.7267 
0 
0.7267 
1.4759 
2.0150 
2.5706 
3.3649 
 
6 
-3.1427 
-2.4469 
-1.9432 
-1.4398 
-0.7176 
0 
0.7176 
1.4398 
1.9432 
2.4469 
3.1427 
 
7 
-2.9980 
-2.3646 
-1.8946 
-1.4149 
-0.7111 
0 
0.7111 
1.4149 
1.8946 
2.3646 
2.9980 
 
8 
-2.8965 
-2.3060 
-1.8595 
-1.3968 
-0.7064 
0 
0.7064 
1.3968 
1.8595 
2.3060 
2.8965 
 
9 
-2.8214 
-2.2622 
-1.8331 
-1.3830 
-0.7027 
0 
0.7027 
1.3830 
1.8331 
2.2622 
2.8214 
 
10 
-2.7638 
-2.2281 
-1.8125 
-1.3722 
-0.6998 
0 
0.6998 
1.3722 
1.8125 
2.2281 
2.7638 
 
11 
-2.7181 
-2.2010 
-1.7959 
-1.3634 
-0.6974 
0 
0.6974 
1.3634 
1.7959 
2.2010 
2.7181 
 
12 
-2.6810 
-2.1788 
-1.7823 
-1.3562 
-0.6955 
0 
0.6955 
1.3562 
1.7823 
2.1788 
2.6810 
 
13 
-2.6503 
-2.1604 
-1.7709 
-1.3502 
-0.6938 
0 
0.6938 
1.3502 
1.7709 
2.1604 
2.6503 
 
14 
-2.6245 
-2.1448 
-1.7613 
-1.3450 
-0.6924 
0 
0.6924 
1.3450 
1.7613 
2.1448 
2.6245 
 
15 
-2.6025 
-2.1314 
-1.7531 
-1.3406 
-0.6912 
0 
0.6912 
1.3406 
1.7531 
2.1314 
2.6025 
 
16 
-2.5835 
-2.1199 
-1.7459 
-1.3368 
-0.6901 
0 
0.6901 
1.3368 
1.7459 
2.1199 
2.5835 
 
17 
-2.5669 
-2.1098 
-1.7396 
-1.3334 
-0.6892 
0 
0.6892 
1.3334 
1.7396 
2.1098 
2.5669 
 
18 
-2.5524 
-2.1009 
-1.7341 
-1.3304 
-0.6884 
0 
0.6884 
1.3304 
1.7341 
2.1009 
2.5524 
 
19 
-2.5395 
-2.0930 
-1.7291 
-1.3277 
-0.6876 
0 
0.6876 
1.3277 
1.7291 
2.0930 
2.5395 
 
20 
-2.5280 
-2.0860 
-1.7247 
-1.3253 
-0.6870 
0 
0.6870 
1.3253 
1.7247 
2.0860 
2.5280 
 
21 
-2.5176 
-2.0796 
-1.7207 
-1.3232 
-0.6864 
0 
0.6864 
1.3232 
1.7207 
2.0796 
2.5176 
 
22 
-2.5083 
-2.0739 
-1.7171 
-1.3212 
-0.6858 
0 
0.6858 
1.3212 
1.7171 
2.0739 
2.5083 
 
23 
-2.4999 
-2.0687 
-1.7139 
-1.3195 
-0.6853 
0 
0.6853 
1.3195 
1.7139 
2.0687 
2.4999 
 
24 
-2.4922 
-2.0639 
-1.7109 
-1.3178 
-0.6848 
0 
0.6848 
1.3178 
1.7109 
2.0639 
2.4922 
 
25 
-2.4851 
-2.0595 
-1.7081 
-1.3163 
-0.6844 
0 
0.6844 
1.3163 
1.7081 
2.0595 
2.4851 
 
26 
-2.4786 
-2.0555 
-1.7056 
-1.3150 
-0.6840 
0 
0.6840 
1.3150 
1.7056 
2.0555 
2.4786 
 
27 
-2.4727 
-2.0518 
-1.7033 
-1.3137 
-0.6837 
0 
0.6837 
1.3137 
1.7033 
2.0518 
2.4727 
 
28 
-2.4671 
-2.0484 
-1.7011 
-1.3125 
-0.6834 
0 
0.6834 
1.3125 
1.7011 
2.0484 
2.4671 
 
29 
-2.4620 
-2.0452 
-1.6991 
-1.3114 
-0.6830 
0 
0.6830 
1.3114 
1.6991 
2.0452 
2.4620 
 
30 
-2.4573 
-2.0423 
-1.6973 
-1.3104 
-0.6828 
0 
0.6828 
1.3104 
1.6973 
2.0423 
2.4573 
 
31 
-2.4528 
-2.0395 
-1.6955 
-1.3095 
-0.6825 
0 
0.6825 
1.3095 
1.6955 
2.0395 
2.4528 
 
32 
-2.4487 
-2.0369 
-1.6939 
-1.3086 
-0.6822 
0 
0.6822 
1.3086 
1.6939 
2.0369 
2.4487 
 
33 
-2.4448 
-2.0345 
-1.6924 
-1.3077 
-0.6820 
0 
0.6820 
1.3077 
1.6924 
2.0345 
2.4448 
 
34 
-2.4411 
-2.0322 
-1.6909 
-1.3070 
-0.6818 
0 
0.6818 
1.3070 
1.6909 
2.0322 
2.4411 
 
35 
-2.4377 
-2.0301 
-1.6896 
-1.3062 
-0.6816 
0 
0.6816 
1.3062 
1.6896 
2.0301 
2.4377 
 
36 
-2.4345 
-2.0281 
-1.6883 
-1.3055 
-0.6814 
0 
0.6814 
1.3055 
1.6883 
2.0281 
2.4345 
 
37 
-2.4314 
-2.0262 
-1.6871 
-1.3049 
-0.6812 
0 
0.6812 
1.3049 
1.6871 
2.0262 
2.4314 
 
38 
-2.4286 
-2.0244 
-1.6860 
-1.3042 
-0.6810 
0 
0.6810 
1.3042 
1.6860 
2.0244 
2.4286 
 
39 
-2.4258 
-2.0227 
-1.6849 
-1.3036 
-0.6808 
0 
0.6808 
1.3036 
1.6849 
2.0227 
2.4258 
 
40 
-2.4233 
-2.0211 
-1.6839 
-1.3031 
-0.6807 
0 
0.6807 
1.3031 
1.6839 
2.0211 
2.4233 
 
41 
-2.4208 
-2.0195 
-1.6829 
-1.3025 
-0.6805 
0 
0.6805 
1.3025 
1.6829 
2.0195 
2.4208 
 
42 
-2.4185 
-2.0181 
-1.6820 
-1.3020 
-0.6804 
0 
0.6804 
1.3020 
1.6820 
2.0181 
2.4185 
 
43 
-2.4163 
-2.0167 
-1.6811 
-1.3016 
-0.6802 
0 
0.6802 
1.3016 
1.6811 
2.0167 
2.4163 
 
44 
-2.4141 
-2.0154 
-1.6802 
-1.3011 
-0.6801 
0 
0.6801 
1.3011 
1.6802 
2.0154 
2.4141 
 
45 
-2.4121 
-2.0141 
-1.6794 
-1.3006 
-0.6800 
0 
0.6800 
1.3006 
1.6794 
2.0141 
2.4121 
 
46 
-2.4102 
-2.0129 
-1.6787 
-1.3002 
-0.6799 
0 
0.6799 
1.3002 
1.6787 
2.0129 
2.4102 
 
47 
-2.4083 
-2.0117 
-1.6779 
-1.2998 
-0.6797 
0 
0.6797 
1.2998 
1.6779 
2.0117 
2.4083 
 
48 
-2.4066 
-2.0106 
-1.6772 
-1.2994 
-0.6796 
0 
0.6796 
1.2994 
1.6772 
2.0106 
2.4066 
 
49 
-2.4049 
-2.0096 
-1.6766 
-1.2991 
-0.6795 
0 
0.6795 
1.2991 
1.6766 
2.0096 
2.4049 
 
50 
-2.4033 
-2.0086 
-1.6759 
-1.2987 
-0.6794 
0 
0.6794 
1.2987 
1.6759 
2.0086 
2.4033 
 
51 
-2.4017 
-2.0076 
-1.6753 
-1.2984 
-0.6793 
0 
0.6793 
1.2984 
1.6753 
2.0076 
2.4017 
 
52 
-2.4002 
-2.0066 
-1.6747 
-1.2980 
-0.6792 
0 
0.6792 
1.2980 
1.6747 
2.0066 
2.4002 
 
53 
-2.3988 
-2.0057 
-1.6741 
-1.2977 
-0.6791 
0 
0.6791 
1.2977 
1.6741 
2.0057 
2.3988 
 
54 
-2.3974 
-2.0049 
-1.6736 
-1.2974 
-0.6791 
0 
0.6791 
1.2974 
1.6736 
2.0049 
2.3974 
 
55 
-2.3961 
-2.0040 
-1.6730 
-1.2971 
-0.6790 
0 
0.6790 
1.2971 
1.6730 
2.0040 
2.3961 
 
56 
-2.3948 
-2.0032 
-1.6725 
-1.2969 
-0.6789 
0 
0.6789 
1.2969 
1.6725 
2.0032 
2.3948 
 
57 
-2.3936 
-2.0025 
-1.6720 
-1.2966 
-0.6788 
0 
0.6788 
1.2966 
1.6720 
2.0025 
2.3936 
 
58 
-2.3924 
-2.0017 
-1.6716 
-1.2963 
-0.6787 
0 
0.6787 
1.2963 
1.6716 
2.0017 
2.3924 
 
59 
-2.3912 
-2.0010 
-1.6711 
-1.2961 
-0.6787 
0 
0.6787 
1.2961 
1.6711 
2.0010 
2.3912 
 
60 
-2.3901 
-2.0003 
-1.6706 
-1.2958 
-0.6786 
0 
0.6786 
1.2958 
1.6706 
2.0003 
2.3901 
 
61 
-2.3890 
-1.9996 
-1.6702 
-1.2956 
-0.6785 
0 
0.6785 
1.2956 
1.6702 
1.9996 
2.3890 
 
62 
-2.3880 
-1.9990 
-1.6698 
-1.2954 
-0.6785 
0 
0.6785 
1.2954 
1.6698 
1.9990 
2.3880 
 
63 
-2.3870 
-1.9983 
-1.6694 
-1.2951 
-0.6784 
0 
0.6784 
1.2951 
1.6694 
1.9983 
2.3870 
 
64 
-2.3860 
-1.9977 
-1.6690 
-1.2949 
-0.6783 
0 
0.6783 
1.2949 
1.6690 
1.9977 
2.3860 
 
65 
-2.3851 
-1.9971 
-1.6686 
-1.2947 
-0.6783 
0 
0.6783 
1.2947 
1.6686 
1.9971 
2.3851 
 
66 
-2.3842 
-1.9966 
-1.6683 
-1.2945 
-0.6782 
0 
0.6782 
1.2945 
1.6683 
1.9966 
2.3842 
 
67 
-2.3833 
-1.9960 
-1.6679 
-1.2943 
-0.6782 
0 
0.6782 
1.2943 
1.6679 
1.9960 
2.3833 
 
68 
-2.3824 
-1.9955 
-1.6676 
-1.2941 
-0.6781 
0 
0.6781 
1.2941 
1.6676 
1.9955 
2.3824 
 
69 
-2.3816 
-1.9949 
-1.6672 
-1.2939 
-0.6781 
0 
0.6781 
1.2939 
1.6672 
1.9949 
2.3816 
 
70 
-2.3808 
-1.9944 
-1.6669 
-1.2938 
-0.6780 
0 
0.6780 
1.2938 
1.6669 
1.9944 
2.3808 
 
71 
-2.3800 
-1.9939 
-1.6666 
-1.2936 
-0.6780 
0 
0.6780 
1.2936 
1.6666 
1.9939 
2.3800 
 
72 
-2.3793 
-1.9935 
-1.6663 
-1.2934 
-0.6779 
0 
0.6779 
1.2934 
1.6663 
1.9935 
2.3793 
 
73 
-2.3785 
-1.9930 
-1.6660 
-1.2933 
-0.6779 
0 
0.6779 
1.2933 
1.6660 
1.9930 
2.3785 
 
74 
-2.3778 
-1.9925 
-1.6657 
-1.2931 
-0.6778 
0 
0.6778 
1.2931 
1.6657 
1.9925 
2.3778 
 
75 
-2.3771 
-1.9921 
-1.6654 
-1.2929 
-0.6778 
0 
0.6778 
1.2929 
1.6654 
1.9921 
2.3771 
 
76 
-2.3764 
-1.9917 
-1.6652 
-1.2928 
-0.6777 
0 
0.6777 
1.2928 
1.6652 
1.9917 
2.3764 
 
77 
-2.3758 
-1.9913 
-1.6649 
-1.2926 
-0.6777 
0 
0.6777 
1.2926 
1.6649 
1.9913 
2.3758 
 
78 
-2.3751 
-1.9908 
-1.6646 
-1.2925 
-0.6776 
0 
0.6776 
1.2925 
1.6646 
1.9908 
2.3751 
 
79 
-2.3745 
-1.9905 
-1.6644 
-1.2924 
-0.6776 
0 
0.6776 
1.2924 
1.6644 
1.9905 
2.3745 
 
80 
-2.3739 
-1.9901 
-1.6641 
-1.2922 
-0.6776 
0 
0.6776 
1.2922 
1.6641 
1.9901 
2.3739 
 
81 
-2.3733 
-1.9897 
-1.6639 
-1.2921 
-0.6775 
0 
0.6775 
1.2921 
1.6639 
1.9897 
2.3733 
 
82 
-2.3727 
-1.9893 
-1.6636 
-1.2920 
-0.6775 
0 
0.6775 
1.2920 
1.6636 
1.9893 
2.3727 
 
83 
-2.3721 
-1.9890 
-1.6634 
-1.2918 
-0.6775 
0 
0.6775 
1.2918 
1.6634 
1.9890 
2.3721 
 
84 
-2.3716 
-1.9886 
-1.6632 
-1.2917 
-0.6774 
0 
0.6774 
1.2917 
1.6632 
1.9886 
2.3716 
 
85 
-2.3710 
-1.9883 
-1.6630 
-1.2916 
-0.6774 
0 
0.6774 
1.2916 
1.6630 
1.9883 
2.3710 
 
86 
-2.3705 
-1.9879 
-1.6628 
-1.2915 
-0.6774 
0 
0.6774 
1.2915 
1.6628 
1.9879 
2.3705 
 
87 
-2.3700 
-1.9876 
-1.6626 
-1.2914 
-0.6773 
0 
0.6773 
1.2914 
1.6626 
1.9876 
2.3700 
 
88 
-2.3695 
-1.9873 
-1.6624 
-1.2912 
-0.6773 
0 
0.6773 
1.2912 
1.6624 
1.9873 
2.3695 
 
89 
-2.3690 
-1.9870 
-1.6622 
-1.2911 
-0.6773 
0 
0.6773 
1.2911 
1.6622 
1.9870 
2.3690 
 
90 
-2.3685 
-1.9867 
-1.6620 
-1.2910 
-0.6772 
0 
0.6772 
1.2910 
1.6620 
1.9867 
2.3685 
 
91 
-2.3680 
-1.9864 
-1.6618 
-1.2909 
-0.6772 
0 
0.6772 
1.2909 
1.6618 
1.9864 
2.3680 
 
92 
-2.3676 
-1.9861 
-1.6616 
-1.2908 
-0.6772 
0 
0.6772 
1.2908 
1.6616 
1.9861 
2.3676 
 
93 
-2.3671 
-1.9858 
-1.6614 
-1.2907 
-0.6771 
0 
0.6771 
1.2907 
1.6614 
1.9858 
2.3671 
 
94 
-2.3667 
-1.9855 
-1.6612 
-1.2906 
-0.6771 
0 
0.6771 
1.2906 
1.6612 
1.9855 
2.3667 
 
95 
-2.3662 
-1.9853 
-1.6611 
-1.2905 
-0.6771 
0 
0.6771 
1.2905 
1.6611 
1.9853 
2.3662 
 
96 
-2.3658 
-1.9850 
-1.6609 
-1.2904 
-0.6771 
0 
0.6771 
1.2904 
1.6609 
1.9850 
2.3658 
 
97 
-2.3654 
-1.9847 
-1.6607 
-1.2903 
-0.6770 
0 
0.6770 
1.2903 
1.6607 
1.9847 
2.3654 
 
98 
-2.3650 
-1.9845 
-1.6606 
-1.2902 
-0.6770 
0 
0.6770 
1.2902 
1.6606 
1.9845 
2.3650 
 
99 
-2.3646 
-1.9842 
-1.6604 
-1.2902 
-0.6770 
0 
0.6770 
1.2902 
1.6604 
1.9842 
2.3646 
 
100 
-2.3642 
-1.9840 
-1.6602 
-1.2901 
-0.6770 
0 
0.6770 
1.2901 
1.6602 
1.9840 
2.3642