_Statistik
Prof. Dr. Armin Eichinger
TH Deggendorf
10.12.2024
Wie sollte ein Maß für Zusammenhänge beschaffen sein? Was sind unsere Anforderungen?
Obligatorisch:
Optional:
Ähnlichkeit zur Varianz (namentlich und formal)
Zur Erinnerung die Formel für die Varianz: \(s² = \hat{\sigma}² = \frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})²}{n-1}\)
Formel der Kovarianz: \(Cov(x,y) = \frac{\sum\limits_{i=1}^{n}(x_{i} - \overline{x})(y_{i} - \overline{y})}{n-1}\)
Ersetzen wir \(y\) durch \(x\) erhalten wir die Varianz.
Lösung: Standardisierung der Kovarianz (d. h. teilen durch die beiden beteiligten Standardabweichungen)
Ergebnis: Korrelationskoeffizient \(r\)
Formel: \(r(x,y) = \frac{Cov(x,y)}{s_x \cdot s_y}\)
Korrelationsmatrix:
Height Weight
Height 1.0000000 0.5143289
Weight 0.5143289 1.0000000
Ausgangsdaten | |
---|---|
Height | Weight |
190 | 95 |
169 | 79 |
165 | 75 |
160 | 71 |
163 | 55 |
176 | 65 |
199 | 90 |
180 | 70 |
179 | 57 |
190 | 80 |
179 | 81 |
190 | 78 |
192 | 60 |
157 | 58 |
196 | 77 |
168 | 77 |
153 | 63 |
165 | 84 |
194 | 79 |
185 | 90 |
160 | 72 |
192 | 73 |
193 | 87 |
163 | 59 |
154 | 59 |
183 | 94 |
174 | 92 |
Korrelationsmatrix:
Height Weight
Height 1.0000000 0.5143289
Weight 0.5143289 1.0000000
Ausgangsdaten | |
---|---|
Height | Weight |
190 | 95 |
169 | 79 |
165 | 75 |
160 | 71 |
163 | 55 |
176 | 65 |
199 | 90 |
180 | 70 |
179 | 57 |
190 | 80 |
179 | 81 |
190 | 78 |
192 | 60 |
157 | 58 |
196 | 77 |
168 | 77 |
153 | 63 |
165 | 84 |
194 | 79 |
185 | 90 |
160 | 72 |
192 | 73 |
193 | 87 |
163 | 59 |
154 | 59 |
183 | 94 |
174 | 92 |
Korrelationsmatrix:
Height Weight
Height 1.0000000 0.5143289
Weight 0.5143289 1.0000000
Ausgangsdaten | |
---|---|
Height | Weight |
190 | 95 |
169 | 79 |
165 | 75 |
160 | 71 |
163 | 55 |
176 | 65 |
199 | 90 |
180 | 70 |
179 | 57 |
190 | 80 |
179 | 81 |
190 | 78 |
192 | 60 |
157 | 58 |
196 | 77 |
168 | 77 |
153 | 63 |
165 | 84 |
194 | 79 |
185 | 90 |
160 | 72 |
192 | 73 |
193 | 87 |
163 | 59 |
154 | 59 |
183 | 94 |
174 | 92 |
KI = Schätzwert \(\pm\) Teststatistik \(\cdot\) Standardfehler
Zur Erinnerung (1): 95%-KI für Stichprobenmittelwerte (bei Normalverteilung):
\[
\begin{eqnarray}
95\%\text{-}KI &=& \overline{x} \pm z_{0.975} \cdot \hat\sigma_{\overline{x}} \\\
&=& \overline{x} \pm 1.96 \cdot \hat\sigma_{\overline{x}} \\\
\end{eqnarray}
\]
Zur Erinnerung (2): 95%-KI für Stichprobenmittelwerte (bei t-Verteilung):
\[
\begin{eqnarray}
95\%\text{-}KI &=& \overline{x} \pm t_{df, 0.975} \cdot \hat\sigma_{\overline{x}} \\\
\end{eqnarray}
\]
Neu: Schätzwert ist ein Korrelationskoeffizient r
Eigentlich …: KI = \(r\) \(\pm\) Teststatistik \(\cdot\) Standardfehler
Problem: \(r\) als Schätzer einer Grundgesamtheit ist nicht symmetrisch verteilt (z. B. normal bzw. t-verteilt) wie Stichprobenmittelwerte
Damit können wir mit \(r\) nicht “rechnen” – z. B. Mittelwerte bilden o. ä.
Lösung: Fisher-z-Transformation
Standardfehler dieser transformierten Verteilung: \(\textit{SE}_z = \frac{1}{\sqrt{n - 3}}\)
KI(Fisher-z) = Fisher-z(r) \(\pm\) 1.96 \(\cdot \textit{SE}_z\)
Das Ergebnis ist von Fisher-z nach r rückzutransformieren (siehe wieder: Fisher-z-Transformation)
Transformation: r \(\rightarrow\) Fisher-z
\[ (Fisher\text{-})z = 0.5 \cdot ln{\frac{1 + r}{1 - r}} \]
Rücktransformation: Fisher-z \(\rightarrow\) r
\[ r = \frac{e^{2z}-1}{e^{2z}+1} \] Beispiel: Mittelwert von \(r_1\) = 0.1, \(r_2\) = 0.3, \(r_3\) = 0.8
95%-KI für die Korrelation zwischen Größe und Gewicht (n = 27)
r = 0.5143
\(\textit{SE}_z\) = \(\frac{1}{\sqrt{n - 3}}\) = 0.2041
Fisher-z(0.5143) = 0.5686
KI(Fisher-z)
KI(Fisher-z \(\rightarrow\) r)
Ausgangsdaten | |
---|---|
Height | Weight |
190 | 95 |
169 | 79 |
165 | 75 |
160 | 71 |
163 | 55 |
176 | 65 |
199 | 90 |
180 | 70 |
179 | 57 |
190 | 80 |
179 | 81 |
190 | 78 |
192 | 60 |
157 | 58 |
196 | 77 |
168 | 77 |
153 | 63 |
165 | 84 |
194 | 79 |
185 | 90 |
160 | 72 |
192 | 73 |
193 | 87 |
163 | 59 |
154 | 59 |
183 | 94 |
174 | 92 |
Fragestellung: Unterscheidet sich der Korrelationskoeffizient r einer Stichprobe von 0?
Mögliche Erweiterung der Fragestellung (bleibt hier unberücksichtigt): Unterscheidet sich der Korrelationskoeffizient r einer Stichprobe von einem Wert ungleich \(\rho \neq 0\) in der Population (\(\rho\) – “rho” – ist das griechische r)?
Voraussetzungen:
Hypothesen:
Teststatistik/Prüfgröße: \(t = \frac{r \sqrt{n-2}}{\sqrt{1-r^2}}\)
\(t\) ist t-verteilt mit n - 2 Freiheitsgraden.
Nicht-parametrische Alternative für ordinale Daten: Rangkorrelation nach Spearman. Der Signifikanztest erfolgt analog.
Eine kleine Stichprobe von VPn (n = 5) sieht eine Anzahl von Werbungen und kauft im Anschluss eine bestimmte Anzahl an Produkten. Hängen beide Variablen signifikant positiv zusammen? Wie lautet das 95%-KI für r?
Ergebnisse der Rechenschritte:
Ausgangsdaten | |
---|---|
Werbungen | Käufe |
5 | 8 |
4 | 9 |
4 | 10 |
6 | 13 |
8 | 15 |
Angenommen, die Daten sind nicht intervallskaliert – Problem …?!
Lösung: ordinale Information ausnutzen; (falls erforderlich Daten sortieren und) Rangplätze zuweisen
Rangkorrelation nach Spearman \(r_S\): Zusammenhangsmaß für zwei ordinalskalierte Merkmale
Monotoner statt linearer Zusammenhang
Aber: \(r_S\) ist linear in den Rängen!
Die Rangkorrelation nach Spearman ist identisch mit der Produkt-Moment-Korrelation nach Pearson der in Ränge transformierten Werte.
Rangkorrelation wird auch berechnet für den Zusammenhang zwischen einer ordinalskalierten und einer intervallskalierten Variablen.
Weiterer Einsatz von \(r_S\): nicht-linearer aber monotoner Zusammenhang zwischen metrischen Variablen
Zentrale Eigenschaften entsprechen denen des Produkt-Moment-Korrelationskoeffizienten:
Korrelation der Rohwerte: 0.602
Korrelation der Ränge: 0.59
Ausgangsdaten | |||
---|---|---|---|
Groesse | Rang1 | Gewicht | Rang2 |
147 | 19 | 54 | 17 |
187 | 6 | 86 | 3 |
158 | 16 | 70 | 10 |
195 | 1 | 85 | 4 |
190 | 3 | 81 | 6 |
165 | 15 | 58 | 14 |
174 | 12 | 76 | 7 |
185 | 7 | 55 | 15 |
169 | 14 | 68 | 11 |
184 | 8 | 85 | 4 |
189 | 4 | 74 | 8 |
181 | 9 | 99 | 2 |
191 | 2 | 100 | 1 |
178 | 10 | 68 | 11 |
148 | 18 | 41 | 19 |
151 | 17 | 61 | 13 |
188 | 5 | 52 | 18 |
176 | 11 | 55 | 15 |
171 | 13 | 71 | 9 |
Achtung: Die Tabelle hat zwei Hälften – oben negative unten positive z-Werte
-.00 | -.01 | -.02 | -.03 | -.04 | -.05 | -.06 | -.07 | -.08 | -.09 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5000 | 0.4960 | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |
-0.1 | 0.4602 | 0.4562 | 0.4522 | 0.4483 | 0.4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
-0.2 | 0.4207 | 0.4168 | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
-0.3 | 0.3821 | 0.3783 | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
-0.4 | 0.3446 | 0.3409 | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
-0.5 | 0.3085 | 0.3050 | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
-0.6 | 0.2743 | 0.2709 | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
-0.7 | 0.2420 | 0.2389 | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
-0.8 | 0.2119 | 0.2090 | 0.2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
-0.9 | 0.1841 | 0.1814 | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
-1 | 0.1587 | 0.1562 | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
-1.1 | 0.1357 | 0.1335 | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
-1.2 | 0.1151 | 0.1131 | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
-1.3 | 0.0968 | 0.0951 | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
-1.4 | 0.0808 | 0.0793 | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0721 | 0.0708 | 0.0694 | 0.0681 |
-1.5 | 0.0668 | 0.0655 | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
-1.6 | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
-1.7 | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
-1.8 | 0.0359 | 0.0351 | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
-1.9 | 0.0287 | 0.0281 | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
-2 | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
-2.1 | 0.0179 | 0.0174 | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
-2.2 | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
-2.3 | 0.0107 | 0.0104 | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
-2.4 | 0.0082 | 0.0080 | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
-2.5 | 0.0062 | 0.0060 | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
-2.6 | 0.0047 | 0.0045 | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
-2.7 | 0.0035 | 0.0034 | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
-2.8 | 0.0026 | 0.0025 | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
-2.9 | 0.0019 | 0.0018 | 0.0018 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
-3 | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
.00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
1 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
2 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
3 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
df | 0.01 | 0.025 | 0.05 | 0.10 | 0.25 | 0.5 | 0.75 | 0.90 | 0.95 | 0.975 | 0.99 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | -31.8205 | -12.7062 | -6.3138 | -3.0777 | -1.0000 | 0 | 1.0000 | 3.0777 | 6.3138 | 12.7062 | 31.8205 |
2 | -6.9646 | -4.3027 | -2.9200 | -1.8856 | -0.8165 | 0 | 0.8165 | 1.8856 | 2.9200 | 4.3027 | 6.9646 |
3 | -4.5407 | -3.1824 | -2.3534 | -1.6377 | -0.7649 | 0 | 0.7649 | 1.6377 | 2.3534 | 3.1824 | 4.5407 |
4 | -3.7469 | -2.7764 | -2.1318 | -1.5332 | -0.7407 | 0 | 0.7407 | 1.5332 | 2.1318 | 2.7764 | 3.7469 |
5 | -3.3649 | -2.5706 | -2.0150 | -1.4759 | -0.7267 | 0 | 0.7267 | 1.4759 | 2.0150 | 2.5706 | 3.3649 |
6 | -3.1427 | -2.4469 | -1.9432 | -1.4398 | -0.7176 | 0 | 0.7176 | 1.4398 | 1.9432 | 2.4469 | 3.1427 |
7 | -2.9980 | -2.3646 | -1.8946 | -1.4149 | -0.7111 | 0 | 0.7111 | 1.4149 | 1.8946 | 2.3646 | 2.9980 |
8 | -2.8965 | -2.3060 | -1.8595 | -1.3968 | -0.7064 | 0 | 0.7064 | 1.3968 | 1.8595 | 2.3060 | 2.8965 |
9 | -2.8214 | -2.2622 | -1.8331 | -1.3830 | -0.7027 | 0 | 0.7027 | 1.3830 | 1.8331 | 2.2622 | 2.8214 |
10 | -2.7638 | -2.2281 | -1.8125 | -1.3722 | -0.6998 | 0 | 0.6998 | 1.3722 | 1.8125 | 2.2281 | 2.7638 |
11 | -2.7181 | -2.2010 | -1.7959 | -1.3634 | -0.6974 | 0 | 0.6974 | 1.3634 | 1.7959 | 2.2010 | 2.7181 |
12 | -2.6810 | -2.1788 | -1.7823 | -1.3562 | -0.6955 | 0 | 0.6955 | 1.3562 | 1.7823 | 2.1788 | 2.6810 |
13 | -2.6503 | -2.1604 | -1.7709 | -1.3502 | -0.6938 | 0 | 0.6938 | 1.3502 | 1.7709 | 2.1604 | 2.6503 |
14 | -2.6245 | -2.1448 | -1.7613 | -1.3450 | -0.6924 | 0 | 0.6924 | 1.3450 | 1.7613 | 2.1448 | 2.6245 |
15 | -2.6025 | -2.1314 | -1.7531 | -1.3406 | -0.6912 | 0 | 0.6912 | 1.3406 | 1.7531 | 2.1314 | 2.6025 |
16 | -2.5835 | -2.1199 | -1.7459 | -1.3368 | -0.6901 | 0 | 0.6901 | 1.3368 | 1.7459 | 2.1199 | 2.5835 |
17 | -2.5669 | -2.1098 | -1.7396 | -1.3334 | -0.6892 | 0 | 0.6892 | 1.3334 | 1.7396 | 2.1098 | 2.5669 |
18 | -2.5524 | -2.1009 | -1.7341 | -1.3304 | -0.6884 | 0 | 0.6884 | 1.3304 | 1.7341 | 2.1009 | 2.5524 |
19 | -2.5395 | -2.0930 | -1.7291 | -1.3277 | -0.6876 | 0 | 0.6876 | 1.3277 | 1.7291 | 2.0930 | 2.5395 |
20 | -2.5280 | -2.0860 | -1.7247 | -1.3253 | -0.6870 | 0 | 0.6870 | 1.3253 | 1.7247 | 2.0860 | 2.5280 |
21 | -2.5176 | -2.0796 | -1.7207 | -1.3232 | -0.6864 | 0 | 0.6864 | 1.3232 | 1.7207 | 2.0796 | 2.5176 |
22 | -2.5083 | -2.0739 | -1.7171 | -1.3212 | -0.6858 | 0 | 0.6858 | 1.3212 | 1.7171 | 2.0739 | 2.5083 |
23 | -2.4999 | -2.0687 | -1.7139 | -1.3195 | -0.6853 | 0 | 0.6853 | 1.3195 | 1.7139 | 2.0687 | 2.4999 |
24 | -2.4922 | -2.0639 | -1.7109 | -1.3178 | -0.6848 | 0 | 0.6848 | 1.3178 | 1.7109 | 2.0639 | 2.4922 |
25 | -2.4851 | -2.0595 | -1.7081 | -1.3163 | -0.6844 | 0 | 0.6844 | 1.3163 | 1.7081 | 2.0595 | 2.4851 |
26 | -2.4786 | -2.0555 | -1.7056 | -1.3150 | -0.6840 | 0 | 0.6840 | 1.3150 | 1.7056 | 2.0555 | 2.4786 |
27 | -2.4727 | -2.0518 | -1.7033 | -1.3137 | -0.6837 | 0 | 0.6837 | 1.3137 | 1.7033 | 2.0518 | 2.4727 |
28 | -2.4671 | -2.0484 | -1.7011 | -1.3125 | -0.6834 | 0 | 0.6834 | 1.3125 | 1.7011 | 2.0484 | 2.4671 |
29 | -2.4620 | -2.0452 | -1.6991 | -1.3114 | -0.6830 | 0 | 0.6830 | 1.3114 | 1.6991 | 2.0452 | 2.4620 |
30 | -2.4573 | -2.0423 | -1.6973 | -1.3104 | -0.6828 | 0 | 0.6828 | 1.3104 | 1.6973 | 2.0423 | 2.4573 |
31 | -2.4528 | -2.0395 | -1.6955 | -1.3095 | -0.6825 | 0 | 0.6825 | 1.3095 | 1.6955 | 2.0395 | 2.4528 |
32 | -2.4487 | -2.0369 | -1.6939 | -1.3086 | -0.6822 | 0 | 0.6822 | 1.3086 | 1.6939 | 2.0369 | 2.4487 |
33 | -2.4448 | -2.0345 | -1.6924 | -1.3077 | -0.6820 | 0 | 0.6820 | 1.3077 | 1.6924 | 2.0345 | 2.4448 |
34 | -2.4411 | -2.0322 | -1.6909 | -1.3070 | -0.6818 | 0 | 0.6818 | 1.3070 | 1.6909 | 2.0322 | 2.4411 |
35 | -2.4377 | -2.0301 | -1.6896 | -1.3062 | -0.6816 | 0 | 0.6816 | 1.3062 | 1.6896 | 2.0301 | 2.4377 |
36 | -2.4345 | -2.0281 | -1.6883 | -1.3055 | -0.6814 | 0 | 0.6814 | 1.3055 | 1.6883 | 2.0281 | 2.4345 |
37 | -2.4314 | -2.0262 | -1.6871 | -1.3049 | -0.6812 | 0 | 0.6812 | 1.3049 | 1.6871 | 2.0262 | 2.4314 |
38 | -2.4286 | -2.0244 | -1.6860 | -1.3042 | -0.6810 | 0 | 0.6810 | 1.3042 | 1.6860 | 2.0244 | 2.4286 |
39 | -2.4258 | -2.0227 | -1.6849 | -1.3036 | -0.6808 | 0 | 0.6808 | 1.3036 | 1.6849 | 2.0227 | 2.4258 |
40 | -2.4233 | -2.0211 | -1.6839 | -1.3031 | -0.6807 | 0 | 0.6807 | 1.3031 | 1.6839 | 2.0211 | 2.4233 |
41 | -2.4208 | -2.0195 | -1.6829 | -1.3025 | -0.6805 | 0 | 0.6805 | 1.3025 | 1.6829 | 2.0195 | 2.4208 |
42 | -2.4185 | -2.0181 | -1.6820 | -1.3020 | -0.6804 | 0 | 0.6804 | 1.3020 | 1.6820 | 2.0181 | 2.4185 |
43 | -2.4163 | -2.0167 | -1.6811 | -1.3016 | -0.6802 | 0 | 0.6802 | 1.3016 | 1.6811 | 2.0167 | 2.4163 |
44 | -2.4141 | -2.0154 | -1.6802 | -1.3011 | -0.6801 | 0 | 0.6801 | 1.3011 | 1.6802 | 2.0154 | 2.4141 |
45 | -2.4121 | -2.0141 | -1.6794 | -1.3006 | -0.6800 | 0 | 0.6800 | 1.3006 | 1.6794 | 2.0141 | 2.4121 |
46 | -2.4102 | -2.0129 | -1.6787 | -1.3002 | -0.6799 | 0 | 0.6799 | 1.3002 | 1.6787 | 2.0129 | 2.4102 |
47 | -2.4083 | -2.0117 | -1.6779 | -1.2998 | -0.6797 | 0 | 0.6797 | 1.2998 | 1.6779 | 2.0117 | 2.4083 |
48 | -2.4066 | -2.0106 | -1.6772 | -1.2994 | -0.6796 | 0 | 0.6796 | 1.2994 | 1.6772 | 2.0106 | 2.4066 |
49 | -2.4049 | -2.0096 | -1.6766 | -1.2991 | -0.6795 | 0 | 0.6795 | 1.2991 | 1.6766 | 2.0096 | 2.4049 |
50 | -2.4033 | -2.0086 | -1.6759 | -1.2987 | -0.6794 | 0 | 0.6794 | 1.2987 | 1.6759 | 2.0086 | 2.4033 |
51 | -2.4017 | -2.0076 | -1.6753 | -1.2984 | -0.6793 | 0 | 0.6793 | 1.2984 | 1.6753 | 2.0076 | 2.4017 |
52 | -2.4002 | -2.0066 | -1.6747 | -1.2980 | -0.6792 | 0 | 0.6792 | 1.2980 | 1.6747 | 2.0066 | 2.4002 |
53 | -2.3988 | -2.0057 | -1.6741 | -1.2977 | -0.6791 | 0 | 0.6791 | 1.2977 | 1.6741 | 2.0057 | 2.3988 |
54 | -2.3974 | -2.0049 | -1.6736 | -1.2974 | -0.6791 | 0 | 0.6791 | 1.2974 | 1.6736 | 2.0049 | 2.3974 |
55 | -2.3961 | -2.0040 | -1.6730 | -1.2971 | -0.6790 | 0 | 0.6790 | 1.2971 | 1.6730 | 2.0040 | 2.3961 |
56 | -2.3948 | -2.0032 | -1.6725 | -1.2969 | -0.6789 | 0 | 0.6789 | 1.2969 | 1.6725 | 2.0032 | 2.3948 |
57 | -2.3936 | -2.0025 | -1.6720 | -1.2966 | -0.6788 | 0 | 0.6788 | 1.2966 | 1.6720 | 2.0025 | 2.3936 |
58 | -2.3924 | -2.0017 | -1.6716 | -1.2963 | -0.6787 | 0 | 0.6787 | 1.2963 | 1.6716 | 2.0017 | 2.3924 |
59 | -2.3912 | -2.0010 | -1.6711 | -1.2961 | -0.6787 | 0 | 0.6787 | 1.2961 | 1.6711 | 2.0010 | 2.3912 |
60 | -2.3901 | -2.0003 | -1.6706 | -1.2958 | -0.6786 | 0 | 0.6786 | 1.2958 | 1.6706 | 2.0003 | 2.3901 |
61 | -2.3890 | -1.9996 | -1.6702 | -1.2956 | -0.6785 | 0 | 0.6785 | 1.2956 | 1.6702 | 1.9996 | 2.3890 |
62 | -2.3880 | -1.9990 | -1.6698 | -1.2954 | -0.6785 | 0 | 0.6785 | 1.2954 | 1.6698 | 1.9990 | 2.3880 |
63 | -2.3870 | -1.9983 | -1.6694 | -1.2951 | -0.6784 | 0 | 0.6784 | 1.2951 | 1.6694 | 1.9983 | 2.3870 |
64 | -2.3860 | -1.9977 | -1.6690 | -1.2949 | -0.6783 | 0 | 0.6783 | 1.2949 | 1.6690 | 1.9977 | 2.3860 |
65 | -2.3851 | -1.9971 | -1.6686 | -1.2947 | -0.6783 | 0 | 0.6783 | 1.2947 | 1.6686 | 1.9971 | 2.3851 |
66 | -2.3842 | -1.9966 | -1.6683 | -1.2945 | -0.6782 | 0 | 0.6782 | 1.2945 | 1.6683 | 1.9966 | 2.3842 |
67 | -2.3833 | -1.9960 | -1.6679 | -1.2943 | -0.6782 | 0 | 0.6782 | 1.2943 | 1.6679 | 1.9960 | 2.3833 |
68 | -2.3824 | -1.9955 | -1.6676 | -1.2941 | -0.6781 | 0 | 0.6781 | 1.2941 | 1.6676 | 1.9955 | 2.3824 |
69 | -2.3816 | -1.9949 | -1.6672 | -1.2939 | -0.6781 | 0 | 0.6781 | 1.2939 | 1.6672 | 1.9949 | 2.3816 |
70 | -2.3808 | -1.9944 | -1.6669 | -1.2938 | -0.6780 | 0 | 0.6780 | 1.2938 | 1.6669 | 1.9944 | 2.3808 |
71 | -2.3800 | -1.9939 | -1.6666 | -1.2936 | -0.6780 | 0 | 0.6780 | 1.2936 | 1.6666 | 1.9939 | 2.3800 |
72 | -2.3793 | -1.9935 | -1.6663 | -1.2934 | -0.6779 | 0 | 0.6779 | 1.2934 | 1.6663 | 1.9935 | 2.3793 |
73 | -2.3785 | -1.9930 | -1.6660 | -1.2933 | -0.6779 | 0 | 0.6779 | 1.2933 | 1.6660 | 1.9930 | 2.3785 |
74 | -2.3778 | -1.9925 | -1.6657 | -1.2931 | -0.6778 | 0 | 0.6778 | 1.2931 | 1.6657 | 1.9925 | 2.3778 |
75 | -2.3771 | -1.9921 | -1.6654 | -1.2929 | -0.6778 | 0 | 0.6778 | 1.2929 | 1.6654 | 1.9921 | 2.3771 |
76 | -2.3764 | -1.9917 | -1.6652 | -1.2928 | -0.6777 | 0 | 0.6777 | 1.2928 | 1.6652 | 1.9917 | 2.3764 |
77 | -2.3758 | -1.9913 | -1.6649 | -1.2926 | -0.6777 | 0 | 0.6777 | 1.2926 | 1.6649 | 1.9913 | 2.3758 |
78 | -2.3751 | -1.9908 | -1.6646 | -1.2925 | -0.6776 | 0 | 0.6776 | 1.2925 | 1.6646 | 1.9908 | 2.3751 |
79 | -2.3745 | -1.9905 | -1.6644 | -1.2924 | -0.6776 | 0 | 0.6776 | 1.2924 | 1.6644 | 1.9905 | 2.3745 |
80 | -2.3739 | -1.9901 | -1.6641 | -1.2922 | -0.6776 | 0 | 0.6776 | 1.2922 | 1.6641 | 1.9901 | 2.3739 |
81 | -2.3733 | -1.9897 | -1.6639 | -1.2921 | -0.6775 | 0 | 0.6775 | 1.2921 | 1.6639 | 1.9897 | 2.3733 |
82 | -2.3727 | -1.9893 | -1.6636 | -1.2920 | -0.6775 | 0 | 0.6775 | 1.2920 | 1.6636 | 1.9893 | 2.3727 |
83 | -2.3721 | -1.9890 | -1.6634 | -1.2918 | -0.6775 | 0 | 0.6775 | 1.2918 | 1.6634 | 1.9890 | 2.3721 |
84 | -2.3716 | -1.9886 | -1.6632 | -1.2917 | -0.6774 | 0 | 0.6774 | 1.2917 | 1.6632 | 1.9886 | 2.3716 |
85 | -2.3710 | -1.9883 | -1.6630 | -1.2916 | -0.6774 | 0 | 0.6774 | 1.2916 | 1.6630 | 1.9883 | 2.3710 |
86 | -2.3705 | -1.9879 | -1.6628 | -1.2915 | -0.6774 | 0 | 0.6774 | 1.2915 | 1.6628 | 1.9879 | 2.3705 |
87 | -2.3700 | -1.9876 | -1.6626 | -1.2914 | -0.6773 | 0 | 0.6773 | 1.2914 | 1.6626 | 1.9876 | 2.3700 |
88 | -2.3695 | -1.9873 | -1.6624 | -1.2912 | -0.6773 | 0 | 0.6773 | 1.2912 | 1.6624 | 1.9873 | 2.3695 |
89 | -2.3690 | -1.9870 | -1.6622 | -1.2911 | -0.6773 | 0 | 0.6773 | 1.2911 | 1.6622 | 1.9870 | 2.3690 |
90 | -2.3685 | -1.9867 | -1.6620 | -1.2910 | -0.6772 | 0 | 0.6772 | 1.2910 | 1.6620 | 1.9867 | 2.3685 |
91 | -2.3680 | -1.9864 | -1.6618 | -1.2909 | -0.6772 | 0 | 0.6772 | 1.2909 | 1.6618 | 1.9864 | 2.3680 |
92 | -2.3676 | -1.9861 | -1.6616 | -1.2908 | -0.6772 | 0 | 0.6772 | 1.2908 | 1.6616 | 1.9861 | 2.3676 |
93 | -2.3671 | -1.9858 | -1.6614 | -1.2907 | -0.6771 | 0 | 0.6771 | 1.2907 | 1.6614 | 1.9858 | 2.3671 |
94 | -2.3667 | -1.9855 | -1.6612 | -1.2906 | -0.6771 | 0 | 0.6771 | 1.2906 | 1.6612 | 1.9855 | 2.3667 |
95 | -2.3662 | -1.9853 | -1.6611 | -1.2905 | -0.6771 | 0 | 0.6771 | 1.2905 | 1.6611 | 1.9853 | 2.3662 |
96 | -2.3658 | -1.9850 | -1.6609 | -1.2904 | -0.6771 | 0 | 0.6771 | 1.2904 | 1.6609 | 1.9850 | 2.3658 |
97 | -2.3654 | -1.9847 | -1.6607 | -1.2903 | -0.6770 | 0 | 0.6770 | 1.2903 | 1.6607 | 1.9847 | 2.3654 |
98 | -2.3650 | -1.9845 | -1.6606 | -1.2902 | -0.6770 | 0 | 0.6770 | 1.2902 | 1.6606 | 1.9845 | 2.3650 |
99 | -2.3646 | -1.9842 | -1.6604 | -1.2902 | -0.6770 | 0 | 0.6770 | 1.2902 | 1.6604 | 1.9842 | 2.3646 |
100 | -2.3642 | -1.9840 | -1.6602 | -1.2901 | -0.6770 | 0 | 0.6770 | 1.2901 | 1.6602 | 1.9840 | 2.3642 |